《离散数学》刘任任版第七章
《离散数学》第七章 图的基本概念 讲稿

7.1 无向图及有向图一、本节主要内容无向图与有向图顶点的度数握手定理简单图完全图子图补图二、教学内容无序对: 两个元素组成的二元组(没有顺序),即无论a,b是否相同,(a,b )=(b, a )无序积: A与B 为两个集合,A&B={(x,y) |x∈A∧y∈B}例A={a1, a2}, B={b1, b2}A&B={(a1 , b1 ), (a1 , b2 ) ,(a2 , b1 ) ,(a2 , b2 )}A&A={(a1 , a1 ), (a1 , a2 ) ,(a2 , a2 )}多重集合: 元素可以重复出现的集合无向图与有向图定义无向图G=<V,E>, 其中(1) V∅≠为顶点集,元素称为顶点(2) E为V&V的多重子集,其元素称为无向边,简称边.例如, G=<V,E>如图所示,其中V={v1, v2, …,v5},E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)}定义无向图G=<V,E>, 其中(1) V≠∅为顶点集,元素称为顶点(2) E为V&V的多重子集,其元素称为无向边,简称边.例如, G=<V,E>如图所示,其中V={v1, v2, …,v5},E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)} 无向图与有向图(续)定义有向图D=<V,E>, 其中(1) V同无向图的顶点集, 元素也称为顶点(2) E为V⨯V的多重子集,其元素称为有向边,简称边.用无向边代替D的所有有向边所得到的无向图称作D的基图右图是有向图,试写出它的V和E无向图与有向图(续)通常用G表示无向图, D表示有向图,也常用G泛指无向图和有向图,用ek表示无向边或有向边.V(G), E(G), V(D), E(D): G和D的顶点集, 边集.n 阶图: n个顶点的图有限图: V, E都是有穷集合的图零图: E=∅平凡图: 1 阶零图顶点和边的关联与相邻定义设ek=(vi, vj)是无向图G=<V,E>的一条边, 称vi, vj为ek的端点, ek与vi ( vj)关联.若vi ≠ vj, 则称ek与vi ( vj)的关联次数为1;若vi = vj, 则称ek为环, 此时称ek与vi 的关联次数为2;若vi不是ek端点, 则称ek与vi 的关联次数为0.无边关联的顶点称作孤立点.定义设无向图G=<V,E>, vi,vj∈V,ek,el∈E,若(vi,vj) ∈E, 则称vi,vj相邻;若ek,el至少有一个公共端点, 则称ek,el相邻.对有向图有类似定义. 设ek=〈vi,vj〉是有向图的一条边, vi,vj是ek端点,又称vi是ek的始点, vj是ek的终点,vi邻接到vj, vj邻接于vi.邻域和关联集设无向图G , v ∈V(G)v 的邻域 N(v)={u|u ∈V(G)∧(u,v)∈E(G)∧u ≠v} v 的闭邻域 = N(v)∪{v} v 的关联集 I(v)={e|e ∈E(G)∧e 与v 关联} 设有向图D, v ∈V(D)v 的后继元集 ={u|u ∈V(D)∧<v,u>∈E(G)∧u ≠v}v 的先驱元集 ={u|u ∈V(D)∧<u,v>∈E(G)∧u ≠v}v 的邻域v 的闭邻域顶点的度数设G=<V ,E>为无向图, v ∈V,v 的度数(度) d(v): v 作为边的端点的次数之和 悬挂顶点: 度数为1的顶点 悬挂边: 与悬挂顶点关联的边 G 的最大度∆(G)=max{d(v)| v ∈V} G 的最小度δ(G)=min{d(v)| v ∈V} 例如 d(v5)=3, d(v2)=4, d(v1)=4, ∆(G)=4, δ(G)=1,v4是悬挂顶点, e7是悬挂边, e1是环顶点的度数(续)设D=<V ,E>为有向图, v ∈V,v 的出度d+(v): v 作为边的始点的次数之和 v 的入度d -(v): v 作为边的终点的次数之和 v 的度数(度) d(v): v 作为边的端点次数之和 d(v)= d+(v)+ d-(v)D 的最大出度∆+(D), 最小出度δ+(D) 最大入度∆-(D), 最小入度δ-(D) 最大度∆(D), 最小度δ(D) 例如 d+(a)=4, d-(a)=1, d(a)=5, d+(b)=0, d-(b)=3, d(b)=3,∆+(D)=4, δ+(D)=0, ∆-(D)=3, δ-(D)=1, ∆(D)=5, δ(D)=3. 图论基本定理——握手定理定理 任意无向图和有向图的所有顶点度数之和都等于边数的2倍, 并且有向图的所有顶点入度之和等于出度之和等于边数.)(v N )(v D +Γ)(v D -Γ)()()(v v v N D D D -+ΓΓ= }{)()(v v N v N D D =证 G 中每条边(包括环)均有两个端点,所以在计算G 中各顶点度数之和时,每条边均提供2度,m 条边共提供2m 度.有向图的每条边提供一个入度和一个出度, 故所有顶点入度之和等于出度之和等于边数. 握手定理(续)推论 在任何无向图和有向图中,度为奇数的顶点个数必为偶数. 证 设G=<V,E>为任意图,令 V1={v | v ∈V ∧d(v)为奇数} V2={v | v ∈V ∧d(v)为偶数}则V1∪V2=V, V1∩V2=∅,由握手定理可知∑∑∑∈∈∈+==21)()()(2V v V v Vv v d v d v d m由于2m,∑∈2)(V v v d 均为偶数,所以 ∑∈1)(V v v d 也为偶数, 但因为V1中顶点度数都为奇数,所以|V1|必为偶数.图的度数列设无向图G 的顶点集V={v1, v2, …, vn} G 的度数序列: d(v1), d(v2), …, d(vn) 如右图度数序列:4,4,2,1,3设有向图D 的顶点集V={v1, v2, …, vn} D 的度数序列: d(v1), d(v2), …, d(vn) D 的出度序列: d+(v1), d+(v2), …, d+(vn) D 的入度序列: d -(v1), d -(v2), …, d -(vn) 如右图度数序列:5,3,3,3出度序列:4,0,2,1 入度序列:1,3,1,2 握手定理的应用例1 (3,3,3,4), (2,3,4,6,8)能成为图的度数序列吗? 解 不可能. 它们都有奇数个奇数.例2 已知图G 有10条边, 4个3度顶点, 其余顶点的度数均小于等于2, 问G 至少有多少个顶点? 解 设G 有n 个顶点. 由握手定理, 4⨯3+2⨯(n-4)≥2⨯10 解得 n ≥8握手定理的应用(续)例3 给定下列各序列,哪组可以构成无向图的度数序列 (2,2,2,2,2) (1,1,2,2,3) (1,1,2,2,2) (1,3,4,4,5)多重图与简单图定义(1) 在无向图中,如果有2条或2条以上的边关联同一对顶点, 则称这些边为平行边, 平行边的条数称为重数.(2)在有向图中,如果有2条或2条以上的边具有相同的始点和终点, 则称这些边为有向平行边, 简称平行边, 平行边的条数称为重数.(3) 含平行边的图称为多重图.(4) 既无平行边也无环的图称为简单图.注意:简单图是极其重要的概念多重图与简单图(续)例如e5和e6 是平行边重数为2不是简单图e2和e3 是平行边,重数为2 e6和e7不是平行边不是简单图图的同构定义设G1=<V1,E1>, G2=<V2,E2>为两个无向图(有向图), 若存在双射函数f: V1→V2, 使得对于任意的vi,vj∈V1,(vi,vj)∈E1(<vi,vj>∈E1)当且仅当(f(vi),f(vj))∈E2(<f(vi),f(vj)>∈E2),并且,(vi,vj)(<vi,vj>)与(f(vi),f(vj))(<f(vi),f(vj)>)的重数相同,则称G1与G2是同构的,记作G1≅G2.图的同构(续)几点说明:图之间的同构关系具有自反性、对称性和传递性.能找到多条同构的必要条件, 但它们都不是充分条件:①边数相同,顶点数相同②度数列相同(不计度数的顺序)③对应顶点的关联集及邻域的元素个数相同,等等若破坏必要条件,则两图不同构图的同构(续)例1 试画出4阶3条边的所有非同构的无向简单图例2 判断下述每一对图是否同构:(1)度数列不同不同构例2 (续)(2)不同构入(出)度列不同度数列相同但不同构为什么?完全图与正则图n阶无向完全图Kn: 每个顶点都与其余顶点相邻的n阶无向简单图.简单性质: 边数m=n(n-1)/2, ∆=δ=n-1n阶有向完全图: 每对顶点之间均有两条方向相反的有向边的n阶有向简单图.简单性质: 边数m=n(n-1), ∆=δ=2(n-1),∆+=δ+=∆-=δ-=n-1n阶k正则图: ∆=δ=k 的n阶无向简单图简单性质: 边数m=nk/2完全图与正则图(续)(1) 为5阶无向完全图K5(2) 为3阶有向完全图(3) 为彼得森图, 它是3 正则图子图定义设G=<V,E>, G '=<V ',E '>是2个图(1) 若V '⊆V且E '⊆E, 则称G '为G的子图, G为G '的母图, 记作G '⊆G(2)若G '⊆G且G '≠ G(即V '⊂V 或E '⊂E),称G '为G的真子图(3) 若G '⊆G 且V '=V,则称G '为G的生成子图(4) 设V '⊆V 且V '≠∅, 以V '为顶点集, 以两端点都在V '中的所有边为边集的G的子图称作V '的导出子图,记作G[V '](5) 设E '⊆E且E '≠∅, 以E '为边集, 以E '中边关联的所有顶点为顶点集的G的子图称作E '的导出子图, 记作G[E ']子图(续)例画出K4的所有非同构的生成子图补图定义设G=<V,E>为n阶无向简单图,以V为顶点集,所有使G成为完全图Kn的添加边组成的集合为边集的图,称为G的补图,记作G≅G.若G ≅ G , 则称G 是自补图.例 画出5阶7条边的所有非同构的无向简单图首先,画出5阶3条边的所有非同构的无向简单图 然后,画出各自的补图7.2 通路、回路与图的连通性一、本节主要内容简单通(回)路, 初级通(回)路, 复杂通(回)路 无向连通图, 连通分支弱连通图, 单向连通图, 强连通图 点割集与割点边割集与割边(桥) 二、教学内容 通路与回路定义 给定图G=<V ,E>(无向或有向的),设G 中顶点与边的交替序列Γ=v0e1v1e2…elvl ,(1) 若∀i(1≤i ≤l), vi -1 和 vi 是ei 的端点(对于有向图, 要求vi -1是始点, vi 是终点), 则称Γ为通路, v0是通路的起点, vl 是通路的终点, l 为通路的长度. 又若v0=vl ,则称Γ为回路. (2) 若通路(回路)中所有顶点(对于回路, 除v0=vl)各异,则称为初级通路(初级回路).初级通路又称作路径, 初级回路又称作圈.(3) 若通路(回路)中所有边各异, 则称为简单通路(简单回路), 否则称为复杂通路(复杂回路). 通路与回路(续) 说明:在无向图中,环是长度为1的圈, 两条平行边构成长度为2的圈. 在有向图中,环是长度为1的圈, 两条方向相反边构成长度为2的圈. 在无向简单图中, 所有圈的长度≥3; 在有向简单图中, 所有圈的长度≥2. 通路与回路(续)定理 在n 阶图G 中,若从顶点vi 到vj (vi ≠vj )存在通 路,则从vi 到vj 存在长度小于等于n -1的通路.推论 在n 阶图G 中,若从顶点vi 到vj (vi ≠vj )存在通121212G G G G G G ≅≅例设与均为无向简单图,当且仅当路,则从vi到vj存在长度小于等于n-1的初级通路.定理在一个n阶图G中,若存在vi到自身的回路,则一定存在vi到自身长度小于等于n的回路.推论在一个n阶图G中,若存在vi到自身的简单回路,则一定存在长度小于等于n的初级回路.无向图的连通性设无向图G=<V,E>,u与v连通: 若u与v之间有通路. 规定u与自身总连通.连通关系R={<u,v>| u,v ∈V且u~v}是V上的等价关系连通图: 平凡图, 或者任意两点都连通的图连通分支: V关于R的等价类的导出子图设V/R={V1,V2,…,Vk}, G[V1], G[V2], …,G[Vk]是G的连通分支, 其个数记作p(G)=k.G是连通图⇔ p(G)=1短程线与距离u与v之间的短程线: u与v之间长度最短的通路(u与v连通)u与v之间的距离d(u,v): u与v之间短程线的长度若u与v不连通, 规定d(u,v)=∞.性质:d(u,v)≥0, 且d(u,v)=0 ⇔ u=vd(u,v)=d(v,u)(对称性)d(u,v)+d(v,w)≥d(u,w) (三角不等式)点割集记G-v: 从G中删除v及关联的边G-V': 从G中删除V'中所有的顶点及关联的边G-e : 从G中删除eG-E': 从G中删除E'中所有边定义设无向图G=<V,E>, 如果存在顶点子集V'⊂V, 使p(G-V')>p(G),而且删除V'的任何真子集V''后(∀ V''⊂V'),p(G-V'')=p(G), 则称V'为G的点割集. 若{v}为点割集, 则称v为割点.点割集(续)例{v1,v4}, {v6}是点割集, v6是割点.{v2,v5}是点割集吗?边割集定义设无向图G=<V,E>, E'⊆E, 若p(G-E')>p(G)且∀E''⊂E',p(G-E'')=p(G), 则称E'为G的边割集. 若{e}为边割集, 则称e为割边或桥.在上一页的图中,{e1,e2},{e1,e3,e5,e6},{e8}等是边割集,e8是桥,{e7,e9,e5,e6}是边割集吗?几点说明:Kn无点割集n阶零图既无点割集,也无边割集.若G连通,E'为边割集,则p(G-E')=2若G连通,V'为点割集,则p(G-V')≥2有向图的连通性设有向图D=<V,E>u可达v: u到v有通路. 规定u到自身总是可达的.可达具有自反性和传递性D弱连通(连通): 基图为无向连通图D单向连通: ∀u,v∈V,u可达v 或v可达uD强连通: ∀u,v∈V,u与v相互可达强连通⇒单向连通⇒弱连通有向图的连通性(续)例下图(1)强连通, (2)单连通, (3) 弱连通有向图的短程线与距离u到v的短程线: u到v长度最短的通路(u可达v)u与v之间的距离d<u,v>: u到v的短程线的长度若u不可达v, 规定d<u,v>=∞.性质:d<u,v>≥0, 且d<u,v>=0 ⇔ u=vd<u,v>+d<v,w> ≥d<u,w>注意: 没有对称性7.3 图的矩阵表示一、本节主要内容无向图的关联矩阵有向图的关联矩阵有向图的邻接矩阵有向图的可达矩阵二、教学内容无向图的关联矩阵定义设无向图G=<V,E>, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令mij为vi与ej的关联次数,称(mij)n⨯m为G的关联矩阵,记为M(G).定义设无向图G=<V,E>, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令mij为vi与ej的关联次数,称(mij)n⨯m为G的关联矩阵,记为M(G).性质关联次数为可能取值为0,1,2有向图的关联矩阵定义 设无环有向图D=<V ,E>, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令则称(mij)n ⨯m 为D 的关联矩阵,记为M(D). 性质:有向图的邻接矩阵定义 设有向图D=<V ,E>, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令 )1(ij a 为顶点vi 邻接到顶点vj 边的条数,称()1(ij a )n ⨯n 为D 的邻接矩阵, 记作A(D), 简记为A. 1110001110()1001200000M G ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1100010111()0000101110M D -⎡⎤⎢⎥--⎢⎥=⎢⎥-⎢⎥-⎣⎦平行边的列相同)4(2)3(),...,2,1()()2(),...,2,1(2)1(,11mm n i v d m m j m ji ijimj ijni ij =====∑∑∑==(1)1(1)1(1)(),1,2,...,(2)(),1,2,...,nij i j n ij ji a d vi n a d v j n+=-=====∑∑性质D 中的通路及回路数定理 设A 为n 阶有向图D 的邻接矩阵, 则Al(l ≥1)中 元素)(l ij a 为D 中vi 到vj 长度为 l 的通路数, )(l ii a 为vi 到自身长度为 l 的回路数,∑∑==n i nj l ija11)( 为D 中长度为 l 的通路总数,∑=ni l iia1)( 为D 中长度为 l 的回路总数.D 中的通路及回路数(续)推论 设Bl=A+A2+…+Al(l ≥1), 则Bl 中元素为D 中长度小于或等于l 的通路数, 为D 中长度小于或等于l 的回路数. 例 有向图D 如图所示, 求A, A2, A3, A4, 并回答问题:(1) D 中长度为1, 2, 3, 4的通路各有多 少条?其中回路分别为多少条? (2) D 中长度小于或等于4的通路为多 少条?其中有多少条回路?12100010()00010010A D ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦有向图的可达矩阵定义 设D=<V ,E>为有向图, V={v1, v2, …, vn}, 令称(pij)n ⨯n 为D 的可达矩阵, 记作P(D), 简记为P. 性质:P(D)主对角线上的元素全为1.D 强连通当且仅当P(D)的元素全为1. 有向图的可达矩阵(续)例 右图所示的有向图D 的可达矩阵为7.4 最短路径及关键路径一、本节主要内容 最短路 关键路线二、教学内容对于有向图或无向图G 的每条边,附加一个实数w(e),则称w(e)为边e 上的权. G 连同附加在各边上的实数,称为带权图.设带权图G=<V,E,W>,G 中每条边的权都大于等于0.u,v 为G 中任意两个顶点,从u 到v 的所有通⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1101110111110001P路中带权最小的通路称为u 到v 的最短路径.求给定两个顶点之间的最短路径,称为最短路径问题. 算法:Dijkstra(标号法){}()*()*1()*()()1()*1.2./5.i r r i i i i ir i r r j j j j j r i r v l v v v l v r p l l v v v l v r l v v p r T V r ∞==-j ij r r 如果顶点与v 不相邻,则w =为顶点到顶点最短路径的权,如果顶点获得了标号,则称顶点在第步获得了标号(永久性标号)3.为顶点到顶点最短路径的权的上界,如果顶点获得了标号,则称顶点在第步获得了t 标号(临时性标号)4.P 已经获得标号为第步通过集P 为第步未通过集例:求图中v0与v5的最短路径(0)*000(0)0(1)*(0)(1)*1010100,{},T {},1,2,3,4,5{},min {},T T {}(2)T j jj i j i v T l P l w j l l l P P t ∈=======⋃=-0012345j i i i i 第步(r=0):v 获得p 标号v v ,v ,v ,v ,v ,v 获得t 标号第1步(r=1):(1)求下一个p 标号的顶点,将标在顶点v 处,表明顶点v 获得p 标号.修改通过集和未通过集:v v 修改中各顶点的标1(1)(0)(1)*(2)*(1)(2)*2121(2)(1)(2)*2min{,}{},min {},T T {}(2)T min{,}j jj iij i j iv T j j iij ll lw l l l P P t l l l w ∈=+==⋃=-=+i i i i 号:第2步(r=2):(1)求下一个p 标号的顶点,将标在顶点v 处,表明顶点v 获得p 标号.修改通过集和未通过集:v v 修改中各顶点的标号:2.关键路径问题,(){/,}(){/,}D D D V E v V v x x V v x E v v x x V x v E v +=<>∈Γ=∈∧<>∈Γ=∈∧<>∈-设为一个有向图,,则为的后继元集为的先继元集定义:PERT 图设D=<V ,E,W>是n 阶有向带权图1. D 是简单图2. D 中无环路3. 有一个顶点出度为0,称为发点;有一个顶点入度为0,称为收点4. 记边<vi, vj>的权为wij,它常常表示时间1. 最早完成时间:自发点v1开始,沿最长路径(权)到达vi 所需时间,称为vi 的最早完成时间,记为TE (vi ) ,i=1,2,…,nj 1i i j ij v ()234567TE(v )=0,v (1)TE(v )={(v )+w },1,2,,max TE(v )=max{0+1}=1;TE(v )=max{0+2,1+0}=2;TE(v )=max{0+3,2+2}=4;TE(v )=max{1+3,4+4}=8;TE(v )=max{2+4,8+1}=9;TE(v )=max{1+4,2+D i v i TE i n-∈Γ≠=显然的最早完成时间按如下公式计算:813784}=6;TE(v )=max{6+6,9+1}=12;v v v v 关键路径:从发点到收点的一条最长路径,2. 最晚完成时间:在保证收点vn 的最早完成时间不增加的条件下,自发点v1最迟到达vi 所需时间,称为vi 的最晚完成时间,记为TL (vi ).j n n i i j ij v ()876543TL(v )=TL(v ),v ()TL(v )={(v )-w },1,2,,min TL(v )=12;TL(v )=min{12-6}=6;TL(v )=min{12-1}=11;TL(v )=min{11-1}=10;TL(v )=min{10-4}=6;TL(v )=min{6-2,11-4,6-4}=2;TL(D i v i n TL i n∈Γ≠=+显然的最晚完成时间按如下公式计算:21v )=min{2-0,10-3,6-4}=2;TL(v )=min{2-1,2-2,6-3}=0;3. 缓冲时间:TS(vi)=TL(vi)- TE(vi) TS(v1)= TS(v3)= TS(v7)= TS(v8)=0 TS(v2)=2-1=1; TS(v4)=6-4=2; TS(v5)=10-8=2; TS(v6)=11-9=2。
湘潭大学刘任任版离散数学课后习题答案习题

习 题 一1. 用列举法表示下列集合:(1)1到100之间的自然数的集合; (2)小于5的正整数集合;(3)偶自然数的集合; (4)奇整数的集合.分析 本题主要考察集合的定义及怎样用列举法表示集合。
解:(1) A ={,,,,},123100 (2) B ={,,,}1234,(3) },8,6,4,2,0{ =C , (4) D =---{,,,,,,,} 531135.2. 用描述法表示下列集合:(1)偶整数的集合;(2)素数的集合;(3)自然数a 的整数幂的集合.分析 本题主要考察集合的定义及怎样用描述法表示集合。
解:(1) }2{整除的整数被是能x x E =(2) }11{数和自身整除的整且只能被是大于x x P =(3) }{是整数是自然数,n a a A n =3. 设},1,4,3},{{},4},3{,,2{a R a S ==请判断下面的写法正确与否:(1)S a ∈}{(2)R a ∈}{ (3)S a ⊆}}3{,4,{(4)R a ⊂}4,3,1},{{ (5)S R =(6)S a ⊆}{ (7)R a ⊆}{(8)R ⊆∅ (9)E R a ⊆⊆⊆∅}}{{(10)S ⊆∅}{ (11)R ∈∅ (12)}4},3{{⊆∅分析 本题主要考察集合的基本运算。
解:(1) 错; (2) 对; (3) 对; (4) 错; (5) 错; (6) 对; (7) 错; (8) 对; (9) 对; (10) 错;(11)错; (12) 对.4. 设A 、B 和C 为任意三个集合. 以下说法是否正确? 若正确则证明之, 否则举反例说明.(1)若B A ∈且C B ⊆,则C A ∈;(2)若B A ∈且C B ⊆,则C A ⊆;(3)若B A ⊆且C B ∈,则C A ∈;(4)若B A ⊆且C B ∈,则C A ⊆分析 本题主要考察集合的基本运算。
解:(1) 正确。
因B C ⊆,所以,对任何x B ∈均有x C ∈,今A B ∈,故A C ∈。
离散数学 第七章的课件

主要内容 有序对与笛卡儿积 二元关系的定义与表示法 关系的运算 关系的性质 关系的闭包 等价关系与划分 偏序关系
1
7.1 有序对与笛卡儿积
定义7.1 由两个元素 x 和 y(允许x = y),按照一定的顺序组成的 二元组称为有序对或序偶,记作<x,y>. 其中,x是它的第一个元素,y是它的第二个元素。
注意: 关系矩阵适合表示从A到B的关系或A上的关系(A,B为有穷集) 关系图适合表示有穷集A上的关系 12
实例
例 A={1,2,3,4}, R={<1,1>,<1,2>,<2,3>,<2,4>,<4,2>}, R的关系矩阵MR和关系图GR如下:
1 0 MR 0 0
1 0 0 1
4
实例
例7.2 设A={1,2},求P(A)×A。 解 P(A)×A ={,{1},{2},{1,2}}×{1,2} ={<,1>,<,2>,<{1},1>,<{1},2>,<{2},1>,<{2},2>,<{1,2},1>,<{1,2},2>} 例7.3 设A,B,C,D为任意集合,判断以下命题是否为真,并说明理由。 (1) A×B=A×C B=C (2) A-(B×C)=(A-B)×(A-C) (3) A=B∧C=D A×C=B×D (4) 存在集合A,使得A A×A 解: (1) 不一定为真。当A= ,B={1},C={2}时,有A×B=A×C=,但B≠C。 (2) 不一定为真。当A=B={1},C={2}时有 A-(B×C)={1}-{<1,2>}={1} (A-B)×(A-C)= ×{1}= (3) 为真。由等量代入的原理可证。 (4) 为真。当A= 时有A A×A成立。
离散数学课后习题答案第七章

第七章 特 殊 图 类习题7.11.解 因 m=n-1,这里m=6,所以n=6+1=7.2.解 不正确。
与平凡图构成的非连通图中有4个结点3条边,但是它不是树。
3K 3.证明 必要性。
因为G 中有n 个结点,边数m=n-1,又因为G 是连通的,由本节定理1可知,G 为树,因而G 中无回路。
再证充分性。
因为G 中无回路,又因为边数m=n-1,由本节定理1,可知G 为树,所以G 是连通的。
4.解 因 m=n-r,这里n=15,r=3,所以m=15-3=12,即G 有12条边。
5.解6个结点的所有不同构的树如图7-1所示。
图7-16.证明 由定理1,在任意的树中,边数),(m n 1−=n m;所以,由握手定理得)1(22)(1−==∑=n m v d ni i①⑴若T 没有树叶,则由于T 是连通图,所以T 中任一结点均有,从而2)(≥i v d n v d ni i2)(1≥∑= ②则①与②矛盾。
⑵若树T 仅有1片树叶,则其余1−n个结点的度数不小于2,于是121)1(2)(1−=+−≥∑=n n v d ni i③从而①、③相矛盾。
综合⑴,⑵得知T 中至少有两片树叶。
7.解 图7-2⑴中共有两棵非同构的生成树(如图7-3⑴,⑵)。
图7-2⑵中共有3棵非同构的生成树(如图7-3⑶,⑷,⑸)。
⑵⑴⑶⑷ ⑸图7-38.解 在图7-4中共有8棵生成树,如图7-5⑴~⑻所示,第i 生成树用表示。
,,,)8,,2,1( =iT i 7)(8=T W 8)()(61==T W T W 6)()(52==T W T W )()(73==T W T W 9)(4=T W 。
其中T 2,T 5是图中的最小生成树。
9.解 最小生成树T 如图7-7所示,W (T )=18。
a bc da b cda ba bcdabc d⑴⑵⑶⑷⑸⑹⑺ ⑻图7-5图7-4图7-6图7-7习题7.21.解 不一定是。
如图7-8就不是根树.2.解 五个结点可形成3棵非同构的无向树,如图7-9⑴,⑵,⑶所示。
湘潭大学计算机科学与技术刘任任版离散数学课后习题答案---第三学期--代数结构

习题十六(整 数)1. 请推导出本节定理16.1.3中计算k S 和k T 的递推公式.分析:本题主要是考察矩阵的推导过程。
解:由(P154)T V S U q q q k k kk k ⎛⎝ ⎫⎭⎪=⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪121101101101 () 有T V S U T V S U q q T V T q S U S k k k k k k k k k k k k k k k k k ⎛⎝ ⎫⎭⎪=⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪=++⎛⎝ ⎫⎭⎪----------11111111111102 ()比较(2)式两端,可知U S V T T q T V S q S U k k k k k k k k kk k k ==⎧⎨⎩=+=+⎧⎨⎩------11111134 ()() 由(3)有U S V T k k k k ----==⎧⎨⎩1212 (5) 由(4)和(5)得S q S S T q T T k k k k k k k k =+=+⎧⎨⎩----12126 () 由(3)可令S U T V 01017==⎧⎨⎩ () 又由(1)有T V S U q 11111110⎛⎝ ⎫⎭⎪=⎛⎝ ⎫⎭⎪ 于是 S U T V S T q 0101111011====⎧⎨⎩==⎧⎨⎩ 这样,对任意k ≥2, 由(6)可求出S k 和 T k 。
2. 求1331和5709的最大公因数,并表为它们的倍数之和.分析:本题主要是考察用辗转相除法来求两个数的最大公因数。
解:用辗转相除法求最大公因数,逐次得出商及余数并计算S k 和T k 。
今列表如下: k 0 1 2 3 4 5 r k 385 176 33 11 0 q k 4 3 2 5 3S k 0 1 3 7 38 空T k 1 4 13 30 163 空 由上表知,最大公因数为 r 411=, 且有r S T 44144415709113313857091631331=-⋅+-⋅=-⨯+⨯-()() 3. 求证:任意奇数的平方减1必是8的倍数.分析:本题首先根据奇数的概念,然后进行变形即得。
《离散数学》刘任任版第七章

习题七1.对图7.7中的两个图,各作出两个顶点割。
解: 对图7.7增加加节点标记如下图所示,则(a)的两个顶点割为: V11={a,b} ; V12={c,d} (b)的两个顶点割为: V21={u,v} ; V12={y}2.求图7.7中两个图的()G κ和()G λ.解:如上两个图,有 k(G1)=λ(G1)=2, k(G2)=1, λ(G2)=23.试作出一个连通图G , 使之满足:()()()G G G δλκ==解:做连通图G 如下,于是有 :4.求证, 若()q p G ,是-k 边连通的, 则2/kp q ≥.证明:设G 是k —边连通的,由定义有λ(G)≧k. 又由定理7.1.2知λ(G)≦ ,因此有 k ≦λ(G) ≦ ≦即 k ≦ ,从而 (a )(b )图7.7)(a 7.7图wy⎥⎦⎥⎢⎣⎢p q 2⎥⎦⎥⎢⎣⎢p q 2p q 2p q 2。
2kp q ≥)()()(G G G k δλ==5.求证, 若G 是p 阶简单图, 且()2-≥p G δ, 则()()G G δκ=.分析:由G 是简单图,且()2-≥p G δ,可知G 中的δ(G)只能等于 p-1或p-2; 如δ(G)= p-1,则G 是一个完全图,根据书中规定,有k(G)=p-1=δ(G); 如δ(G)= p-2,则从G 中任取V (G )的子集V1,其中|V1|=3,则V(G)-V1的点导出子图是连通的,否则在V1中存在一个顶点v ,与其他两个顶点都不连通。
则在G 中,顶点v 最多与G 中其他p-3个顶点邻接,所以d(v)≤p-3,与δ(G)= p-2矛盾。
这说明了在G 中,去掉任意p-3个顶点后G 还是连通的,按照点连通度的定义有k(G)>k-3,又根据定义7.1.1,()()G G δκ≤,有k(G)=k-2。
证明:因为G 是简单图 ,所以d(v)≦p-1,v ∈V(G),已知δ(G)≧p-2 (ⅰ)若δ(G)= p-1,则G=Kp (完全图),故k(G)=p-1=δ(G)。
离散数学7[1].1-3
![离散数学7[1].1-3](https://img.taocdn.com/s3/m/8c7dd34f02768e9951e738a9.png)
离散数学
31
定理
定理 一个连通无向图G =〈V,E〉的某一点v是 图G的割点,当且仅当存在两个节点u和w, 使得节点u和w的每一条路都通过v。
离散数学
32
三、有向图的连通性
三、有向图的连通性 定义 设G=<V,E>是一个有向图,对vi,vjV,从vi到vj如
存在一条路,则称结点vi到vj是可达的。 在有向图中,如从vi到vj可达,但从vj到vi则不一定是可达的。
3) 在一个图中,关联结点vi和vj的边e,无论是有向的还是无 向的,均称边e与结点vI和vj相关联,而vi和vj称为邻接点, 否则称为不邻接的;
离散数学
2
续:
续: 4) 关联于同一个结点的两条边称为邻接边; 5) 图中关联同一个结点的边称为自回路(或环); 6) 图中不与任何结点相邻接的结点称为孤立结点; 7) 仅由孤立结点组成的图称为零图; 8) 仅含一个结点的零图称为平凡图; 9) 含有n个结点、m条边的图称为(n,m)图;
证明 若G不连通,则k(G)=λ(G)=0,故上式成立。 若G连通, ①证明λ(G)≤δ(G)。若G是平凡图,则λ(G)=0≤δ(G),若
G是非平凡图,则因每一结点的所有关连边必含一 个边割集,故λ(G)≤δ(G)。
离散数学
30
续:
②再证k(G)≤λ(G) .设λ(G)=1,即G有一割边,显然此时k(G)=1,上式成立。 .设λ(G)≥2,则必可删去某λ(G)条边,使G不连通,而删除λ(G)-
δ(G)最小度,Δ(G)最大度
定义 在图G=<V,E>中,对任意结点vV,若度数deg(v)为奇 数,则称此结点为奇度数结点,若度数deg(v)为偶数,则 称此结点为偶度数结点。
离散数学第七章第三节

e1 e2 e3 e4 e5 e6
v1
1
10
011
M
(G )
v2
v v
3 4
1 0 0
11 0 01 1 0 01
0 0 1
0 1 0
v5 0 0 0 0 0 0
13
3、关联矩阵(3)
定 义 4 设 G=<V,E> 为 简 单 有 向 图 , V={v1,v2,…vp} , E={e1,e2,…eq},定义矩阵M(G)=(mij)pq,其中
0 2 1 2
A3
0
0
12 21
2
2
0 2 0 1
0 1 11
A2
0
0
2 1
0 1
1
1
0 0 1 1
0 3 2 3
A4
0
0
4 3
13
2
3
0 1 2 2
17
第7-3讲 作业
P300 1, 2
18
离散数学第七章第三节
1、邻接矩阵(1)
定义1 设G=<V,E>简单图,它有n个结点v1, v2,…vnV, 则n阶 方阵A(G)=(aij)称为G的邻接矩阵,这里
aij 1 0
vi邻v接 j vi不邻 vj或 i接 j
例如,左下图的邻接矩阵列于右侧:
0 1 0 0
A(G ) 0
0
1
1
1 1 0 1
证明思路分析(续):计算连结vi与vj长度为3的路径的数目, 注意从vi到vj长度为3的路径可视为从vi 到中间结点vk长度为1 的路径,再加上从vk到vj长度为2的路径,所以从vi到vj长度为 3的路径的数目等于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.对图7.7中的两个图,各作出两个顶点割。
解: 对图7.7增加加节点标记如下图所示,
则(a)的两个顶点割为:V11={a,b} ; V12={c,d}
(b)的两个顶点割为: V21={u,v}; V12={y}
2.求图7.7中两个图的 和 .
解:如上两个图,有 k(G1)=λ(G1)=2, k(G2)=1, λ(G2)=2
如δ(G)= p-1,则G是一个完全图,根据书中规定,有k(G)=p-1=δ(G);
如δ(G)= p-2,则从G中任取V(G)的子集V1,其中|V1|=3,则V(G)-V1的点导出子图是连通的,否则在V1中存在一个顶点v,与其他两个顶点都不连通。则在G中,顶点v最多与G中其他p-3个顶点邻接,所以d(v)≤p-3,与δ(G)= p-2矛盾。这说明了在G中,去掉任意p-3个顶点后G还是连通的,按照点连通度的定义有k(G)>k-3,又根据定义7.1.1, ,有k(G)=k-2。
(充分性)假设G不是一个2-边连通的,则G中有割边,设e=(u,v)为G中一割边,由已知条件可知,u与v处于同一简单回路C中,于是e处在C中,因而从G中删除e后G仍然连通,这与G中无割边矛盾。
9.举例说明:若在 连通图 中, 是一条 通路, 则 不一定包含一条与 内部不相交的 通路 。
解 如右图G,易知G是2—连通的,
证明: 设K是G的一个块,若k既不是K2也不是奇回路,则k至少有三个顶点,且存在割边e=uv,于是u,v中必有一个是割点,此与k是块相矛盾。
11.证明:不是块的连通图 至少有两个块, 其中每个块恰含一个割点.
分析:一个图不是块,按照块的定义,这个图肯定含有割点v,对图分块的时候也应该以割点为标准进行,而且分得的块中必定含这个割点,否则所得到的子图一定不是极大不可分子图,从而不会是一个块。
证明:(1)若 =0,则G不连通,所以λ(G)=K(G).
(2) 设 K(G)=1,且u 是G中的一个割点,G-u不连通,由于d(u)=3,从而至少存在一个分支仅一边与u相连,显然这边是G的割边,故λ(G)=1,所以λ(G)=K(G)
(3) 设K(G)=2,且{v1,v2}为G的一个顶点割。G1=G-v1连通,则v2是G1的割点且v2在G1中的度小于等于3,类似于(2)知在G1中存在一割边e2(关联v2)使得G1-e2不连通.另一方面由于λ(G)>=K(G)=2故G-e2连通.由于G1-e2= (G-e2)-v1,故v1是G-e2的割点,且v1在G-e2中的度小于等于3,于是类似于(2)知,在G-e2中存在一割边e1,即(G-e2)-e1=G-{e1,e2}不连通,故λ(G)=2.所以λ(G)=K(G).
证明:因为G是简单图 ,所以d(v)≦p-1,v∈V(G),已知δ(G)≧p-2
(ⅰ)若δ(G)= p-1,则G=Kp(完全图),故k(G)=p-1=δ(G)。
(ⅱ)若δ(G)= p-2, 则 G≠Kp,设u,v不邻w ∈E(G).于是,对任意的V1 V(G),
证明:由块的定义知,若图G不是块且连通,则G有割点,依次在有割点的地方将G分解成块,一个割点可分成两块,每个块中含G中的一个割点。如下图G。
易知u,v是割点,G可分成四个块K1~K4。其中每个块恰含一个割点。
12.证明:图 中块的数目等于
其中, 表示包含 的块的数目.
分析:一个图G的非割点只能分布在G的一个块中,即 =1(当v是G的非割点时),且每个块至少包含一个割点。因此下面就从G的割点入手进行证明。证明中使用了归纳法。
(4) 设k(G)=3,于是,
有3=k(G) ≦≦δ(G)=3 ,知
8.证明:一个图 是 边连通的当且仅当 的任意两个顶点由至少两条边不重的通路所连通.
分析:这个题的证明关键是理解 边连通的定义。
证明:(必要性)因为G是 边连通的,所以G没有割边。设u,v是G中任意两个顶点,由G的连通性知u,v之间存在一条路径P1,若还存在从u到v的与P1边不重的路径P2,设C=P1∪P2,则C中含u,v的回路,若从u到v的任意另外路径和P1都有一条(或几条)公共边,也就是存在边e在从u到v的任何路径中,则从G中删除e,G就不连通了,于是e成了G中一割边,矛盾。
3.试作出一个连通图 , 使之满足:
解:做连通图G如下,于是有:
4.求证, 若 是 边连通的, 则 .
证明:设G是k—边连通的,由定义有λ(G)≧k. 又由定理7.1.2知λ(G)≦,因此有 k≦λ(G) ≦≦
即 k≦ ,从而
5.求证, 若 是 阶简单图, 且 , 则 .
分析:由G是简单图,且 ,可知G中的δ(G)只能等于p-1或p-2;
若取P为uv1v2v,
则G中不存在Q了。
10.证明:若 中无长度为偶数的回路, 则 的每个块或者是 , 或者是长度为奇数的回路.
分析:块是G的一个连通的极大不可分子图,按照不可分图的定义,有G的每个块应该是没有割点的。因此,如果能证明G的某个块如果既不是 ,也不是长度为奇数的回路,再由已知条件G中无长度为偶数的回路,则可得出G的这个块肯定存在割点,则可导出矛盾。本题使用反证法。
证明:先考虑G是连通的情况( ),对G中的割点数n用归纳法。
由于对G的非割点v,b(v)=1,即b(v)-1 =0,故对n=0时,G的块数为1 结论成立。
假设G中的割点数n≤k(k≥0)时,结论成立。
对n=k+1的情况,任取G的一个割点a,可将G分解为连通子图Gi,使得a在Gi中不是割点,a又是Gi的公共点。这样,每一个Gi,有且仅有一个块含有a,若这些Gi共有r个,则b(a)=r,又显然Gi的块也是G的块,且Gi的割点数 ≤k。故由归纳法假设Gi的块的块数为1 ,这里 是Gi中含v的块的块数,注意到Gi中异于a的v,b(v)= ,而a在每一个Gi中均为非割点,故 。于是Gi的块数为1
|V1|=p-3 ,G-V1必连通.
因此必有k(G) ≧p-2=δ(G),但k(G) ≦δ(G)。
故k(G) =δ(G)。
6.找出一个 阶简单图, 使 , 但 .
解:
7.设 为 正则简单图, 求证 .
分析:G是一个 正则简单图,所以δ(G)=3,根据定理7.1.1有 ,所以 只能等于0,1,2,3这四种情况。下面的证明中分别讨论了这四种情况下 的关系。