人教版中职数学1.1.1集合的_概念

合集下载

中职数学基础模块第1章《集合》知识点小结

中职数学基础模块第1章《集合》知识点小结

(3)
(2)运算性质: ① A B B A ② (A B) C A (B C) ③ A A A ④ A A ⑤ 若A B,则A B A,反之也成立.
知识清单 ——————————————————————————
2.并集(“取全部”)
(1)定义:给定两个集合A,B,把它们所有的元素合并在一起构成的集合叫作A 与B的并集,记作 A B ,读作“A并B”,即 A B {x x A或xB}
知识清单
知识清单
一.集合的概念
1.集合的概念:一般地,把一些能够确定 的对象看成一个整体,我们就说,这个整 体是由这些对象的全体构成的集合(简称 集).通常用大写英文字母A,B,C...表示;
2.元素:构成集合的每个对象都叫做集合 的元素,一般用小字字母a,b,c...表示;
知识清单
3.集合中元素的性质: (1)确定性:集合中的元素必须是确定的; (2)互异性:集合中的元素互不相同; (3)无序性:集合中元素之间不考虑顺序关系.
(3)空 集:不含任何元素的集合 记作
知识清单
6.实数的分类:
ቤተ መጻሕፍቲ ባይዱ
整数
正整0 数自然数
实数
有理数






负整数
分数
正分数 负分数
无理数(无限不循环小数)
知识清单
7.常用数集的记法:
集合名 称
记法
实数 集
R
有理数 集
Q
整数 集
知识清单
2.性质描述法 用集合所含元素的共同特征表示集合的方法
(把集合中元素的公共特征描述出来,按一定格式 写在括号里)
形式: A {x I | P(x)}其中竖线前的x叫集合的

中职数学1.1.1集合的概念

中职数学1.1.1集合的概念
进入会议的同学请实名
第一章 集合
1.1集合及其运算
知识点
集合
1. 正整数1, 2, 3, ; 2. 中国古典四大名著; 3. 郓城县高级技工学校2022级计
算机应用专业的全体学生; 4. 我校体育队的全体队员; 5. 到XX线段两端距离相等的点.
1.集合的概念:
一般地,指定的某些对象的全体 称为集合,简称“集”.
有限集:含有有限个元素的集合称 为有限集。 无限集:含有无限个元素的集合称 为无限集。
6.空集:
特别的,我们把不含任何元素 的集合称为空集,记作
练习2:⑴ 0 (填∈或)
⑵ { 0 } ≠ (填=或≠)
7.重要的数集:
➢ N:自然数集、非负整数集 (含0)
➢ N+:正整数集(不含0) ➢ Z:整数集 ➢ Q:有理数集 ➢ R:实数集
组成集合的每个个体都叫做这个 集合的元素.
(1)某护理班参加了“抗击新冠肺炎, 我们在一起”的志愿服务活动的学生全 体组成一个集合,其中每个学生都是这 个集合的一个元素;
(2)正数的全体 组成一个集合,其 中每个正数都是这 个集合的一个元素;
(3)平行四边形的全体组成一个集合, 其中每个平行四边形都是这个集合的一 个元素;
C. ②③⑥⑦
D. ②③⑤⑥⑦⑧
例1.下列指定ห้องสมุดไป่ตู้对象,能构成一个集合
的是
( B)
①很小的数 ②不超过 30的非负实数
③直角坐标平面的横坐标与纵坐标相等的点
④的近似值 ⑤高一年级优秀的学生
⑥所有无理数 ⑦大于2的整数
⑧正三角形全体
A. ②③④⑥⑦⑧ B. ②③⑥⑦⑧
C. ②③⑥⑦
D. ②③⑤⑥⑦⑧

中职数学基础模块1.1.1集合的概念教学设计教案人教版

中职数学基础模块1.1.1集合的概念教学设计教案人教版

课题 1.1.1 集合的概念课型新授第几课时1~2课时教学目标(三维)1. 初步理解集合的概念;理解集合中元素的性质.2. 初步理解“属于”关系的意义;知道常用数集的概念及其记法.3. 引导学生发现问题和提出问题,培养独立思考和创造性地解决问题的意识.教学重点与难点教学重点:集合的基本概念,元素与集合的关系.教学难点:正确理解集合的概念.教学方法与手段本节课采用问题教学和讲练结合的教学方法,运用现代化教学手段,通过创设情景,引导学生自己独立地去发现、分析、归纳,形成概念.使用教材的构想☆补充设计☆环节教学内容师生互动设计意图导入师生共同欣赏图片“中国所有的大熊猫”、“我们班的所有同学”.师:“物以类聚”;“人以群分”;这些都给我们以集合的印象.引入课题.联系实际;激发兴趣.新课课件展示引例:(1) 某学校数控班学生的全体;(2) 正数的全体;(3) 平行四边形的全体;(4) 数轴上所有点的坐标的全体.1. 集合的概念.(1) 一般地,把一些能够确定的对象看成一个整体,我们就说,这个整体是由这些对象的全体构成的集合(简称为集).(2) 构成集合的每个对象都叫做集合的元素.(3) 集合与元素的表示方法:一个集合,通常用大写英文字母A,B,C,…表示,它的元素通常用小写英文字母a,b,c,…表示.2. 元素与集合的关系.(1) 如果 a 是集合 A 的元素,就说a属于A,记作a A,读作“a属于A”.(2)如果a不是集合A的元素,就说a不属于A,记作a A.读作“a不属于A”.3. 集合中元素的特性.(1) 确定性:作为集合的元素,必须是能够确定的.这就是说,不能确定的对象,就不能构成集合.(2) 互异性:对于一个给定的集合,集合中的元素是互异的.这就是说,集合中的任何两个元素都是不同的对象.师:每个例子中的“全体”是由哪些对象构成的?这些对象是否确定?你能举出类似的几个例子吗?学生回答.教师引导学生阅读教材,提出问题如下:(1) 集合、元素的概念是如何定义的?(2) 集合与元素之间的关系为何?是用什么符号表示的?(3) 集合中元素的特性是什么?(4) 集合的分类有哪些?(5) 常用数集如何表示?教师检查学生自学情况,梳理本节课知识,并强调要注意的问题.教师要把集合与元素的定义分析透彻.请同学举出一些集合的例子,并说出所举例子中的元素.教师强调:“”的开口方向,不能把a A颠倒过来写.从具体事例直观感知集合,为给出集合的定义做好准备.老师提出问题,放手让学生自学,培养自学能力,提高学生的学习能力.检查自学、梳理知识阶段,穿插讲解解难点、强调重点、举例说明疑点等环节,使学生真正掌握所学知识.课4. 集合的分类.(1) 有限集:含有有限个元素的集合叫做有限集.(2) 无限集:含有无限个元素的集合叫做无限集.5. 常用数集及其记法.(1) 自然数集:非负整数全体构成的集合,记作N;(2) 正整数集:非负整数集内排除0的集合,记作N+或N*;(3) 整数集:整数全体构成的集合,记作Z;(4) 有理数集:有理数全体构成的集合,记作Q;(5) 实数集:实数全体构成的集合,记作R.例1 判断下列语句能否构成一个集合,并说明理由.(1) 小于10 的自然数的全体;(2) 某校高一(2)班所有性格开朗的男生;(3) 英文的26 个大写字母;(4) 非常接近 1 的实数.练习1 判断下列语句是否正确:(1) 由2,2,3,3构成一个集合,此集合共有4个元素;(2) 所有三角形构成的集合是无限集;(3) 周长为20 cm 的三角形构成的集合是有限集;(4) 如果 a Q,b Q,则a+bQ.例2 用符号“”或“”填空:(1) 1 N,0 N,-4 N,0.3 N;(2) 1 Z,0 Z,-4 Z,0.3 Z;(3) 1 Q,0 Q,-4 Q,0.3 Q;教师强调集合元素的确定性.师:高一(1)班高个子同学的全体能否构成集合?生:不能构成集合.这是由于没有规定多高才算是高个子,因而“高个子同学”不能确定.教师强调:相同的对象归入同一个集合时只能算作集合的一个元素.请学生试举有限集和无限集的例子.师:说出自然数集与非负整数集的关系.生:自然数集与非负整数集是相同的.师:也就是说,自然数集包括数0.师:出示例题,引导学生讨论、思考.生:讨论,回答,明确说出理由.生:模仿练习;讨论并口答.师:点拨、解答学生疑难.通过具体例子,师生的问答,巩固集合概念及其元素特新课(4) 1 R,0 R,-4 R,0.3 R.练习2 用符号“”或“”填空:(1) -3 N;(2) 3.14 Q;(3)13Z;(4) -12R;(5) 2 R;(6) 0 Z.师:出示例题,请学生填写.生:口答各题结果.师:引导学生进行订正,并说明错误原因.学生模仿练习;老师订正、点拨.性.通过练习进一步强化学生对集合中元素特性的理解.通过例题2和练习2,加深对特殊数集的理解以及元素与集合关系的理解与表示,既突出重点又分解难点.小结本节课学习了以下内容:1. 集合的有关概念:集合、元素.2. 元素与集合的关系:属于、不属于.3. 集合中元素的特性.4. 集合的分类:有限集、无限集.5. 常用数集的定义及记法.学生畅谈本节课的收获,老师引导梳理,总结本节课的知识点.梳理总结也可针对学生薄弱或易错处强调总结.课时教学设计尾页(试用)☆补充设计☆板书设计1. 集合的有关概念:集合、元素.2. 元素与集合的关系:属于、不属于.3. 集合中元素的特性.4. 集合的分类:有限集、无限集.5. 常用数集的定义及记法.作业设计教材P4,练习A组第1~3题教学后记。

中职数学基础模块上册(人教版)教案

中职数学基础模块上册(人教版)教案

中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念教学目标:理解集合的含义及集合中元素的特点。

掌握集合的表示方法,如列举法、描述法等。

教学内容:集合的定义与表示方法。

集合的性质与运算。

教学过程:1. 引入新课:通过生活中的实例引入集合的概念。

2. 讲解与演示:讲解集合的定义,展示不同类型的集合及其表示方法。

3. 练习与讨论:学生独立完成练习题,分组讨论集合的性质与运算。

1.2 集合的关系教学目标:理解集合之间的大小关系,包括子集、真子集、并集、交集等。

教学内容:集合之间的基本关系。

集合关系的表示方法。

教学过程:1. 引入新课:通过图形展示集合之间的关系。

2. 讲解与演示:讲解集合之间的子集、真子集、并集、交集等概念。

3. 练习与讨论:学生独立完成练习题,分组讨论集合关系的应用。

第二章:函数2.1 函数的概念教学目标:理解函数的定义及其表示方法。

掌握函数的性质,如单调性、奇偶性等。

教学内容:函数的定义与表示方法。

函数的性质。

教学过程:1. 引入新课:通过生活中的实例引入函数的概念。

2. 讲解与演示:讲解函数的定义,展示不同类型的函数及其表示方法。

3. 练习与讨论:学生独立完成练习题,分组讨论函数的性质。

2.2 函数的图像教学目标:理解函数图像的特点及绘制方法。

学会利用函数图像分析函数的性质。

教学内容:函数图像的特点。

绘制函数图像的方法。

教学过程:1. 引入新课:通过实例展示函数图像的特点。

2. 讲解与演示:讲解函数图像的绘制方法,展示不同类型函数的图像。

3. 练习与讨论:学生独立完成练习题,分组讨论函数图像的应用。

第三章:不等式与不等式组3.1 不等式的概念教学目标:理解不等式的定义及其性质。

学会解一元一次不等式。

教学内容:不等式的定义与性质。

一元一次不等式的解法。

教学过程:1. 引入新课:通过生活中的实例引入不等式的概念。

2. 讲解与演示:讲解不等式的定义,展示不等式的性质。

3. 练习与讨论:学生独立完成练习题,分组讨论一元一次不等式的解法。

中职数学基础模块上册(人教版)全套教案

中职数学基础模块上册(人教版)全套教案

中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念【教学目标】了解集合的概念,掌握集合的表示方法,能够正确理解和运用集合的基本运算。

【教学内容】1. 集合的定义2. 集合的表示方法3. 集合的基本运算(并集、交集、补集)【教学步骤】1. 引入集合的概念,通过实例讲解集合的表示方法。

2. 讲解集合的基本运算,结合实例进行演示和练习。

【课后作业】1. 判断题:判断下列各题的真假。

(1)集合{1, 2, 3} 包含元素1, 2, 3。

(2)集合{1, 2, 3} 和集合{3, 4, 5} 的交集是{1, 2, 3}。

(3)集合{1, 2, 3} 的补集是{4, 5, 6}。

2. 选择题:选择正确答案。

(1)下列哪个选项是集合{1, 2, 3, 4, 5} 的补集?A. {1, 2, 3}B. {2, 3, 4}C. {1, 4, 5}D. {1, 2, 3, 4, 5}(2)设A = {x | x 是小于5 的正整数},B = {x | x 是大于等于2 且小于等于4 的整数},则A ∩B 是哪个集合?A. {2, 3, 4}B. {1, 2, 3, 4}C. {2, 3, 4, 5}D. {1, 2, 3}1.2 集合的关系【教学目标】理解集合之间的包含关系,掌握集合的并集、交集、补集的定义及运算方法。

【教学内容】1. 集合的包含关系2. 集合的并集3. 集合的交集4. 集合的补集【教学步骤】1. 讲解集合的包含关系,通过实例说明集合之间的包含关系。

2. 讲解集合的并集、交集、补集的定义及运算方法,结合实例进行演示和练习。

【课后作业】1. 判断题:判断下列各题的真假。

(1)集合{1, 2, 3} 包含于集合{1, 2, 3, 4, 5}。

(2)集合{1, 2, 3} 和集合{3, 4, 5} 的并集是{1, 2, 3, 4, 5}。

(3)集合{1, 2, 3} 和集合{3, 4, 5} 的交集是{3}。

中职数学教学课件:第1章 集合

中职数学教学课件:第1章 集合
答案:{x|1<x<10}
1.1 充要条件
已知条件 p 和结论 q : (1)如果由条件 p 成立可推出结论 q 成立,则说明条件 p 是 q
的充分条件,记作“ p q ”.
(2)如果由结论 q 成立可推出条件 p 成立,则说明条件 p 是结论q
的必要条件,记作“ q p(或 p q )”.
掌握集合之间的关系和集合的运算,了解充要条件.
1.1 集合的概念及表示方法 1.1.1 集合与元素
由某些指定的对象集在一起所组成的整体就叫做集合,简 概念
称集.组成集合的每个对象称为元素.
集合一般采用大写英文字母 A、B、C…来表示,它们的
元素一般采用小写英文字母 a、b、c…来表示.如果 a 是集合
用列举法表示集合可以明确地看到集合中的每一个元素,
提 而用描述法表示集合可以很清晰地反映出集合元素的特征性质, 示 因此在具体的应用中要根据实际情况灵活选用.
例2.试分别用列举法和描述法表示下列集合: (1)x2-3=0方程的所有实数根组成的集合; (2)由大于15小于25的所有整数组成的集合.
答案:(1){ 3, 3};(2)16,17,18,19, 20, 21, 22, 23, 24 。
学习 提示
在求并集时,两个集合中相同的元素只列举 一次,不能重复列举.
例 4.设全集 M {0,a} , N {1,4} ,且 M N {1},
则 M N 等于( )
A.{a,0,1,4} B. {1,0,1,4} C. {0,1,4}
D.不能确定
答案:C
变 式 . 设 全 集 U {x |1 x 10} , A {x | 2 x 5} , B {x | 6 x 9},求 CU A CU B 。

中职数学 集合的概念

1.1集合及其表示1.1.1集合的概念【学习目标】1.掌握元素与集合的概念,能在具体问题中判断是否可以组成集合.2.通过实例和阅读自学记忆常见的数集,培养自主探究意识和自学能力.【知识脉络】【基础过关】一、集合1.某些确定的对象就成为一个集合,简称.集合中的每一个对象叫做这个集合的 .2.集合中的元素属性具有:(1) 确定性 (2) (3) .【答案】1.确定的对象集元素 2. (1) 确定性(2)互异性(3)无序性.二、元素与集合的关系a A∉∈a A【答案】【分析】本题主要考查集合中元素的性质.根据元素与集合的关系和元素的性质进行求解即可.对于此类题,要注意集合中元素互异性的验证.【解答】解:因为3A ∈,所以23a -=或 3.a =当23a -=,即5a =时,满足题意;当3a =时,不满足集合元素的互异性,故舍去.综上可得a 的值为5.【综合提升】1. 下列各项中不能组成集合的是()A . 所有的正三角形B . 数学课本中的所有习题C . 所有的数学难题D . 所有无理数2. 下列各组对象能构成集合的是()A .B . 所有的正方形C . 著名的数学家D . 1,2,3,3,4,4,4,43. 给出下列关系:①13R ∈Q ;③3Z -∉;④N ,其中正确的个数为() A . 1 B . 2 C . 3 D . 44. “notebooks ”中的字母构成一个集合,该集合中的元素个数是()A. 5B. 6C. 7D. 85. 下列元素与集合的关系判断正确的是()(1)0∈N ;(2)1-∈Z ;(3)π∈Q ;.RA .(1)(2)B .(1)(3)C .(1)(4)D .(2)(4)二、填空题 6. 下列对象中,能够组成集合的有__________.①比较小的数;②不大于10的非负偶数;③所有三角形;④直角坐标平面内横坐标为零的点;⑤高个子男生;⑥某班17岁以下的学生.7. 用数学符号表示下列常见数集整数集_______ 自然数集________ 正整数集_______ 有理数集________实数集_______8. 用符号“∈”或“∉”填空:0________N 3-________N 0.5________ZZ13________Q π________R 9. 已知集合{,1}A m m =-,若1A ∈,则实数m 的值为__________.10. 仅由英语字母b ,e ,e 组成的集合中含有________个元素.三、解答题11. 数集A 中的元素由2,2x x x +组成,求x 的取值范围.12. 设集合A 是由方程220x x a +-=的解构成的,若A 是空集,求实数a 的取值范围.【素养提升】13. 已知集合A 是由0,m ,232m m -+三个元素组成的集合,且2A ∈,求实数m 的值.答案1. C2. B3. B4. C5. A6.②③④⑥7. Z N N *Q R 8. ∈ ∉ ∉ ∉ ∈ ∈ 9. 1或2 10. 2 11.解:由集合的互异性,得22x x x +≠解得0x ≠且1x ≠.12.解:∵集合A 是由方程220x x a +-=得解构成的,因为A 是空集,所以220x x a +-=无解,所以44()0a =--<,解得1a <-,所以实数a 的取值范围是(,1).-∞-13.解:由2A ∈可知,若2m =,则2320m m -+=,这与2320m m -+≠相矛盾; 若2322m m -+=,则0m =或3m =,当0m =时,与0m ≠相矛盾,当3m =时,集合A 中的三个元素互异,符合题意.故m 的值为3.。

中职数学1.1.1《集合的概念》教学设计教案


想 类。
太原市教研科研中心研制
课时教学流程
教师行为
学生行为
*首次课导语
倾听

1.自我介绍; 2.介绍中职阶段学习数学的重要性,学习内容、学习方法
以及学习本科目的课堂要求和作业要求.
随机请学生做自我介 绍。
3.准备:轻松愉快的心情、热情饱满的精神、全力以赴的态
度、踏实努力的行动、科学认真的方法及真诚交流的习惯。
母 a,b,c, …表示集合的元素.
3.元素与集合的关系 (1) 如果 a 是集合 A 的元素,就说 a 属于 A,记作
aA,读作“a 属于 A”. (2)如果 a 不是集合 A 的元素,就说 a 不属于 A,记作 a
A.读作“a 不属于 A”. 教师强调:“”的开口方向,不能把 aA 颠倒过来写.
激发学习兴趣体验数学与生活的联系学习数学的意义增强有意注意增强理解能力举一反三发散思维带着问题边阅读边思考加深记忆提升归纳小结抽象的能力目标检测课时教学设计尾页试用补充设计补充设计11集合11集合1
课 时 教 学 设 计 首 页(试用)
授课时间:
年月 日
课题
1.1.1 集合的概念
课型 新授
第几 课时
学生体会“确定性”的 含义
学生回答 同学们举出一些集合的 例子,并说出所举例子
第1页共6页
太原市教研科研中心研制
课时教学流程
(5)方程 x2 1 0 的所有解;(6)不等式 x-2>0 的所有解
中的元素.
你能举出类似的几个例子吗?
集合举例:
由方程的所有解组成的集合叫做这个方程的解集. 由不等式的所有解组成的集合叫做这个不等式的解集. 由数组成的集合叫做数集.方程的解集与不等式的解集都

中职数学基础模块1.1.1集合的概念教学设计教案人教版

课时教学流程课4. 集合的分类.(1) 有限集:含有有限个兀素的集合叫做有限集.(2) 无限集:含有无限个元素的集合叫做无限集.5. 常用数集及其记法.(1) 自然数集:非负整数全体构成的集合,记作N;(2) 正整数集:非负整数集内排除0 的集合,记作N +或N* ;(3) 整数集:整数全体构成的集合,记作Z;(4) 有理数集:有理数全体构成的集合,记作Q;(5) 实数集:实数全体构成的集合,记作R.教师强调集合兀素的确疋性.师:高一(1)班高个子同学的全体能否构成集合?生:不能构成集合.这是由于没有规定多高才算是高个子,因而"高个子同学”不能确定.教师强调:相同的对象归入同一个集合时只能算作集合的一个元素.请学生试举有限集和无限集的例子.师:说出自然数集与非负整数集的关系.生:自然数集与非负整数集是相同的.师:也就是说,自然数集包括数0.师:出示例题,引导学生讨论、思考.生:讨论,回答,明确说出理由.生:模仿练习;讨论并口答. 师:点拨、解答学生疑难.通过具体例子,师生的问答,巩固集合概念及其元素特例1判断下列语句能否构成一个集合,并说明理由.(1) 小于10的自然数的全体;(2) 某校高一(2)班所有性格开朗的男生;(3) 英文的26个大写字母;(4) 非常接近1的实数.练习1判断下列语句是否正确:(1) 由2, 2, 3, 3构成一个集合,此集合共有4个元素;(2) 所有三角形构成的集合是无限集;(3) 周长为20 cm的三角形构成的集合是有限集;(4) 如果a = Q, b乏Q,贝U a+ b乏Q.例2用符号“”或“”填空:(1) 1 —N , 0 —N , —4_N , 0.3 —N ;(2) 1 —Z, 0—Z , —4—Z , 0.3—Z ;课时教学流程师:出示例题,请学生填写. 生:口答各题结果.师:引导学生进行订正,并 说明错误原因.学生模仿练习; 老师订正、点拨.通过例题2和练习2,加深 对特殊数集的 理解以及练习2用符号“ ”或 “”填空:(1) - 3 N ;⑵ 3.14 Q ;11⑶3Z ; (4) - 2R ;(5) 2R ;⑹oZ .性.通过练习 进一步强化学 生对集合中元 素特性的理解.(4) 1 R , 0 R , - 4 R , 0.3 R .课时教学流程元素与集合关系的理解与表示,既突出重点又分解难点. 本节课学习了以下内容:1. 集合的有关概念:集合、元素.2. 元素与集合的关系:属于、不属于.3. 集合中元素的特性.4. 集合的分类:有限集、无限集.5. 常用数集的定义及记法.学生畅谈本节课的收获,老师引导梳理,总结本节课的知识占八、、♦梳理总结也可针对学生薄弱或易错处强调总结.课时教学设计尾页(试用)☆补充设计☆板书设计1. 集合的有关概念:集合、元素.2. 元素与集合的关系:属于、不属于.3. 集合中元素的特性.4. 集合的分类:有限集、无限集.5. 常用数集的定义及记法.作业设计教材P4,练习A组第1~3题教学后记。

中职数学基础模块上册(人教版)教案

中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念【教学目标】1. 了解集合的概念,掌握集合的表示方法。

2. 能够运用集合的概念解决实际问题。

【教学内容】1. 集合的定义及表示方法。

2. 集合的性质。

3. 集合之间的基本关系。

【教学重点】1. 集合的概念及表示方法。

2. 集合的性质。

【教学难点】1. 集合的表示方法。

2. 集合之间的基本关系。

【教学过程】1. 引入新课:通过生活中的实例,引导学生理解集合的概念。

2. 讲解集合的定义及表示方法,如列举法、描述法等。

3. 讲解集合的性质,如无序性、确定性、互异性。

4. 讲解集合之间的基本关系,如子集、真子集、并集、交集等。

5. 课堂练习:让学生运用集合的概念解决实际问题。

1.2 集合之间的关系【教学目标】1. 掌握集合之间的基本关系,如子集、真子集、并集、交集等。

2. 能够运用集合之间的关系解决实际问题。

【教学内容】1. 集合之间的子集、真子集关系。

2. 集合之间的并集、交集关系。

3. 集合的补集概念。

【教学重点】1. 集合之间的基本关系。

2. 集合的补集概念。

【教学难点】1. 集合之间的基本关系。

2. 集合的补集概念。

【教学过程】1. 复习上节课的内容,引导学生理解集合之间的关系。

2. 讲解集合之间的子集、真子集关系。

3. 讲解集合之间的并集、交集关系。

4. 讲解集合的补集概念。

5. 课堂练习:让学生运用集合之间的关系解决实际问题。

第二章:函数与方程2.1 函数的概念【教学目标】1. 了解函数的概念,掌握函数的表示方法。

2. 能够运用函数的概念解决实际问题。

【教学内容】1. 函数的定义及表示方法。

2. 函数的性质。

【教学重点】1. 函数的概念及表示方法。

2. 函数的性质。

【教学难点】1. 函数的表示方法。

2. 函数的性质。

【教学过程】1. 引入新课:通过生活中的实例,引导学生理解函数的概念。

2. 讲解函数的定义及表示方法,如解析式、表格法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

记作 aA,读作“a 属于 A”;
(2)如果 a 不是集合 A 的元素,就说 a 不属于 A , 记作 aA,读作“a 不属于 A”.
集合中元素的特性:确定性、互异性、无序性. 例1 判断下列语句能否构成一个集合,并说明理由.
(1) 小于 10 的自然数的全体;
(2) 某校高一 (2) 班所有性格开朗的男生;
这些性质都是从概念中得到的,概念是知识的生长点,思维的发源地.
常用数集及其记法 非负整数集 (自然数集) N
集合 记号
正整数集 整数集 有理数集 实数集 N* 或 N+ Z Q R
自然数集与非负整数集是相同的, 也就是说,自然数集包括数 0.
集合的分类 (1)有限集:含有有限个元素的集合叫做有限集. (2)无限集:含有无限个元素的集合叫做无限集. 练习1 判断下列语句是否正确.
(3) 英文的 26 个字母; (4) 非常接近 1 的实数.
确定性:给定的集合,它的元素必须是确定
的,也就是说给定一个集合,那么任何一个元素在 不在这个集合中就确定了
互异性:一个给定的集合中的元素是互不相 同的,即集合中的元素不能相同。 无序性:集合中的元素是无先后顺序的,即
集合里的任何两个元素可以交换位置
集 合
集合 集合
集合
1.1.1 集合的概念

学习目标
1.了解集合的含义以及集合中元素的确定性、互异性 与无序性. 2.掌握元素与集合之间的属于关系并能用用符号表示.
3.掌握常用数集及其专用符号,学会使用集合语言叙
述数学问题.
问题1
物以类聚„„
“中国所有的大熊猫”
阅读教材,解决问题:
(1)集合、元素概念是如何定义的? (2)集合与元素之间有什么关系? 是用什么符号表示的? (3)集合中元素的特性是什么? (4)常用数集如何表示?
(5) 2 ___R ;
ห้องสมุดไป่ตู้(4) -
(6) 0 ___Z .
本节课学习的内容 (1)集合的有关概念:集合、元素;
(2)元素与集合的关系:属于、不属于;
(3)集合中元素的特性; (4)集合的分类:有限集、无限集; (5)常用数集的定义及记法.
教材 P 4,练习 A 组第 1、2题.
(1)由2,2,3,3构成一个集合,此集合共有4个元素;
(2)所有三角形构成的集合是无限集; (3)周长为20 cm 的三角形构成的集合是有限集.
例2
用符号“”或“”填空:
(1)1___N , 0___N , 0.3___N ; , -4___N
(2)1___Z ; , 0___Z , -4___Z , 0.3___Z
(5)集合的分类有哪些?
集合的概念:一般地,把一些能够确定的对象看成 一个整体,我们就说,这个整体称为集合(简称为 集). 元素:构成集合的每个对象都叫做集合的元素. 例如:(1) 某职业学校学生的全体; (2) 正数全体; (3) 平行四边形全体; (4) 数轴上所有点的坐标的全体.
集合与元素的表示方法: 一个集合,通常用大写英文字母 A,B,C,„ 表示, 它的元素通常用小写英文字母 a,b,c,„ 表示. 元素与集合的关系: (1)如果 a 是集合A的元素,就说 a 属于 A,
, 0___Q , 0.3___Q (3)1___Q , -4___Q ;
(4)1___R , 0___R , -4___R , 0.3___R .
练习2
用符号“”或“”填空: (2) 3.14___ Q;
1 ___R ; 2
(1)-3___N ;
1 (3) ___Z ; 3
相关文档
最新文档