2015届高考数学(理)基础知识总复习课时精练:第8章 第3节 空间简单几何体的表面积和体积]
2015年高考数学理一轮复习精品资料 专题8.3 空间点、直线、平面之间的关系含解析

2015年高考数学理一轮复习精品资料【新课标版】预测卷第三节空间点、直线、平面之间的关系一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选择中,只有一个是符合题目要求的。
)1.以下四个命题中,正确命题的个数是 ( )①不共面的四点中,其中任意三点不共线;②若点A 、B 、C 、D 共面,点A 、B 、C 、E 共面,则A 、B 、C 、D 、E 共面; ③若直线a 、b 共面,直线a 、c 共面,则直线b 、c 共面; ④依次首尾相接的四条线段必共面. A .0B .1C .2D .32.【四川省绵阳南山中学2014届高三12月月考数学(理)】已知a 、b 、c 为三条不重合的直线,下面结论:①若a ⊥b ,a ⊥c ,则b ∥c ;②若a ⊥b ,a ⊥c 则b ⊥c ;③若a ∥b ,b ⊥c ,则a ⊥c .其中正确的个数为( ) A. 0个 B. 1个 C. 2个 D. 3个3.若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件4.【2014年辽宁】已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥5.【广东省揭阳市2014届高三3月第一次模拟考试】设平面α、β,直线a 、b ,a α⊂,b α⊂,则“//a β,//b β”是“//αβ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.【2014年浙江省嘉兴市2014届高三3月教学测试(一)】已知直线l ,m 和平面α,下列命题正确的是( ) A.若//,,l m αα⊂则//l m B.若//,,l m m α⊂ 则//l α C.若,,l m m α⊥⊂ 则l α⊥ D.若,,l m αα⊥⊂ 则l m ⊥7.已知空间中有三条线段AB 、BC 和CD ,且∠ABC =∠BCD ,那么直线AB 与CD 的位置关系是( ) A .AB ∥CD B .AB 与CD 异面C .AB 与CD 相交 D .AB ∥CD 或AB 与CD 异面或AB 与CD 相交8.【2014年全国】已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A .16 BC .13D9.【浙江省“六市六校”联盟2014届高考模拟考试】空间中,设m 表示直线,α,β表示不同的平面,则下列命题正确的是( )A.若βα//,α//m ,则β//m B . 若βα//,α⊥m ,则β⊥m C.若βα⊥,α//m ,则β⊥m D. 若βα⊥,α⊥m ,则β//m10.【2013学年第一学期温州市十校联合体期末联考】空间四边形ABCD 中,AD=BC=2,E,F 分别是AB,CD 的中点,EF = 3,则异面直线AD,BC 所成的角为( )A .30°B . 60°C .90°D .120°D【答案】B11.【安徽蚌埠市2013-2014学年高二第一学期期末考试数学理】在正四棱锥P-ABCD 中,PA=2,直线PA 与平面ABCD 所成角为60°,E 为PC 的中点,则异面直线PA 与BE 所成角为( ) A .90 B .60C . 45D .3012.如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角是( )A .45°B .60°C .90°D .120°二、填空题(本大题共4小题,每小题5分,共20分。
2015年高考数学总复习(人教A版,理科)配套教案:第八章 立体几何 8.3

§8.3直线、平面平行的判定与性质1.直线与平面平行的判定与性质判定性质定义定理图形条件a∩α=∅a⊂α,b⊄α,a∥b a∥αa∥α,a⊂β,α∩β=b结论a∥αb∥αa∩α=∅a∥b 2.面面平行的判定与性质判定性质定义定理图形条件α∩β=∅a⊂β,b⊂β,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=bα∥β,a⊂β结论α∥βα∥βa∥b a∥α1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行. (×)(2)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面. (√)(3)若直线a与平面α内无数条直线平行,则a∥α. (×)(4)空间四边形ABCD中,E、F分别是AB,AD的中点,则EF∥平面BCD. (√)(5)若α∥β,直线a∥α,则a∥β. (×)2.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交答案 B解析由题意知,直线l与平面α相交,则直线l与平面α内的直线只有相交和异面两种位置关系,因而只有选项B是正确的.3.下列命题中,错误的是()A.平面内一个三角形各边所在的直线都与另一个平面平行,则这两个平面平行B.平行于同一个平面的两个平面平行C.若两个平面平行,则位于这两个平面内的直线也互相平行D.若两个平面平行,则其中一个平面内的直线平行于另一个平面答案 C解析由面面平行的判定定理和性质知A、B、D正确.对于C,位于两个平行平面内的直线也可能异面.4.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.答案 2解析因为直线EF∥平面AB1C,EF⊂平面ABCD,且平面AB1C∩平面ABCD=AC,所以EF∥AC,又E是DA的中点,所以F是DC的中点,由中位线定理可得EF=12AC,又在正方体ABCD-A1B1C1D1中,AB=2,所以AC=22,所以EF= 2.5.已知平面α∥平面β,直线a⊂α,有下列命题:①a与β内的所有直线平行;②a与β内无数条直线平行;③a与β内的任意一条直线都不垂直.其中真命题的序号是________.答案②解析因为α∥β,a⊂α,所以a∥β,在平面β内存在无数条直线与直线a平行,但不是所有直线都与直线a平行,故命题②为真命题,命题①为假命题.在平面β内存在无数条直线与直线a垂直,故命题③为假命题.题型一直线与平面平行的判定与性质例1(2012·山东)如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.思维启迪(1)利用等腰△EDB底边中线和高重合的性质证明;(2)根据线面平行的判定或两个平面平行的性质证明线面平行.证明(1)如图,取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD.又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO.又O为BD的中点,所以BE=DE.(2)方法一如图,取AB的中点N,连接DM,DN,MN.因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.又因为△ABD为正三角形,所以∠BDN=30°.又CB=CD,∠BCD=120°,因此∠CBD=30°.所以DN∥BC.又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC.又MN∩DN=N,所以平面DMN∥平面BEC.又DM⊂平面DMN,所以DM∥平面BEC.方法二如图,延长AD,BC交于点F,连接EF.因为CB=CD,∠BCD=120°,所以∠CBD=30°.因为△ABD为正三角形,所以∠BAD=60°,∠ABC=90°,因为∠AFB=30°,所以AB=12AF.又AB=AD,所以D为线段AF的中点.连接DM,由于点M是线段AE的中点,因此DM∥EF.又DM⊄平面BEC,EF⊂平面BEC,所以DM∥平面BEC.思维升华判断或证明线面平行的常用方法:(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);(4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.证明因为EH∥A1D1,A1D1∥B1C1,EH⊄平面BCC1B1,B1C1⊂平面BCC1B1,所以EH∥平面BCC1B1.又平面FGHE∩平面BCC1B1=FG,所以EH∥FG,即FG∥A1D1.又FG⊄平面ADD1A1,A1D1⊂平面ADD1A1,所以FG∥平面ADD1A1.题型二平面与平面平行的判定与性质例2如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.思维启迪要证四点共面,只需证GH∥BC;要证面面平行,可证一个平面内的两条相交直线和另一个平面平行.证明(1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E、F分别为AB、AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG.∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.思维升华证明面面平行的方法:(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.证明(1)如图,连接SB,∵E、G分别是BC、SC的中点,∴EG∥SB.又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,∴直线EG∥平面BDD1B1.(2)连接SD,∵F、G分别是DC、SC的中点,∴FG∥SD. 又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴FG∥平面BDD1B1,且EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.题型三 平行关系的综合应用例3 如图所示,在四面体ABCD 中,截面EFGH 平行于对棱AB 和 CD ,试问截面在什么位置时其截面面积最大?思维启迪 利用线面平行的性质可以得到线线平行,可以先确定截面 形状,再建立目标函数求最值. 解 ∵AB ∥平面EFGH ,平面EFGH 与平面ABC 和平面ABD 分别交于FG 、EH . ∴AB ∥FG ,AB ∥EH ,∴FG ∥EH ,同理可证EF ∥GH , ∴截面EFGH 是平行四边形.设AB =a ,CD =b ,∠FGH =α (α即为异面直线AB 和CD 所成的角或其补角).又设FG =x ,GH =y ,则由平面几何知识可得x a =CG BC ,y b =BG BC ,两式相加得x a +yb =1,即y=ba(a -x ), ∴S ▱EFGH =FG ·GH ·sin α=x ·b a ·(a -x )·sin α=b sin αa x (a -x ).∵x >0,a -x >0且x +(a -x )=a 为定值,∴当且仅当x =a -x 时,b sin αa x (a -x )=ab sin α4,此时x =a 2,y =b 2.即当截面EFGH 的顶点E 、F 、G 、H 为棱AD 、AC 、BC 、BD 的中点时截面面积最大. 思维升华 利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.如图所示,四棱锥P -ABCD 的底面是边长为a 的正方形,侧棱P A ⊥底面ABCD ,在侧面PBC 内,有BE ⊥PC 于E ,且BE =63a ,试在AB 上找一点F ,使EF ∥平面P AD . 解 在平面PCD 内,过E 作EG ∥CD 交PD 于G , 连接AG ,在AB 上取点F ,使AF =EG ,∵EG ∥CD ∥AF ,EG =AF , ∴四边形FEGA 为平行四边形, ∴FE ∥AG .又AG ⊂平面P AD ,FE ⊄平面P AD , ∴EF ∥平面P AD . ∴F 即为所求的点.又P A ⊥面ABCD ,∴P A ⊥BC , 又BC ⊥AB ,∴BC ⊥面P AB . ∴PB ⊥BC .∴PC 2=BC 2+PB 2=BC 2+AB 2+P A 2. 设P A =x 则PC =2a 2+x 2,由PB ·BC =BE ·PC 得: a 2+x 2·a =2a 2+x 2·63a ,∴x =a ,即P A =a ,∴PC =3a . 又CE =a 2-(63a )2=33a , ∴PE PC =23,∴GE CD =PE PC =23, 即GE =23CD =23a ,∴AF =23a .立体几何中的探索性问题典例:(12分)如图,在四面体P ABC 中,PC ⊥AB ,P A ⊥BC ,点D ,E ,F ,G 分别是棱AP , AC ,BC ,PB 的中点. (1)求证:DE ∥平面BCP ; (2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体P ABC 六条棱的中点的距离相等?说明理由. 思维启迪 (1)利用DE ∥PC 证明线面平行;(2)利用平行关系和已知PC⊥AB证明DE⊥DG;(3)Q应为EG中点.规范解答(1)证明因为D,E分别是AP,AC的中点,所以DE∥PC.又因为DE⊄平面BCP,所以DE∥平面BCP. [3分] (2)证明因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE∥PC∥FG,DG∥AB∥EF.所以四边形DEFG为平行四边形.又因为PC⊥AB,所以DE⊥DG.所以四边形DEFG为矩形. [7分] (3)解存在点Q满足条件,理由如下:[8分]连接DF,EG,设Q为EG的中点,由(2)知,DF∩EG=Q,且QD=QE=QF=QG=12EG.分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN.与(2)同理,可证四边形MENG为矩形,其对角线交点为EG的中点Q,且QM=QN=12EG,所以Q为满足条件的点.[12分]解决立体几何中的探索性问题的步骤:第一步:写出探求的最后结论.第二步:证明探求结论的正确性.第三步:给出明确答案.第四步:反思回顾,查看关键点、易错点和答题规范.温馨提醒(1)立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究,解决这类问题一般根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设.(2)这类问题也可以按类似于分析法的格式书写步骤:从结论出发“要使……成立”,“只需使……成立”.方法与技巧1.平行问题的转化关系线∥线判定性质线∥面判定性质面∥性质判定面2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面与面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.失误与防范1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.3.解题中注意符号语言的规范应用.A组专项基础训练(时间:40分钟)一、选择题1.若直线a平行于平面α,则下列结论错误的是()A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a成90°角答案 A解析若直线a平行于平面α,则α内既存在无数条直线与a平行,也存在无数条直线与a异面且垂直,所以A不正确,B、D正确.又夹在相互平行的线与平面间的平行线段相等,所以C正确.2.若直线m⊂平面α,则条件甲:“直线l∥α”是条件乙:“l∥m”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 D3.已知a,b是两条不重合的直线,α,β是两个不重合的平面,则下列命题中正确的是()A.a∥b,b⊂α,则a∥αB.a,b⊂α,a∥β,b∥β,则α∥βC.a⊥α,b∥α,则a⊥bD.当a⊂α,且b⊄α时,若b∥α,则a∥b答案 C解析A选项是易错项,由a∥b,b⊂α,也可能推出a⊂α;B中的直线a,b不一定相交,平面α,β也可能相交;C正确;D中的直线a,b也可能异面.4.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则()A.BD∥平面EFG,且四边形EFGH是平行四边形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是平行四边形D.EH∥平面ADC,且四边形EFGH是梯形答案 B解析 如图,由题意得,EF ∥BD , 且EF =15BD .HG ∥BD ,且HG =12BD .∴EF ∥HG ,且EF ≠HG . ∴四边形EFGH 是梯形.又EF ∥平面BCD ,而EH 与平面ADC 不平行. 故选B.5.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是( )A.①③B.①④C.②③D.②④答案 B解析 ①中易知NP ∥AA ′,MN ∥A ′B ,∴平面MNP ∥平面AA ′B 可得出AB ∥平面MNP (如图). ④中,NP ∥AB ,能得出AB ∥平面MNP .二、填空题6.过三棱柱ABC —A 1B 1C 1任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线有________条. 答案 6解析 如图,E 、F 、G 、H 分别是A 1C 1、B 1C 1、BC 、AC 的中点,则 与平面ABB 1A 1平行的直线有EF ,GH ,FG ,EH ,EG ,FH 共6条.7.如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P 、M 、N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________. 答案223a 解析 ∵平面ABCD ∥平面A 1B 1C 1D 1,∴MN ∥PQ .∵M 、N 分别是A 1B 1、B 1C 1的中点,AP =a3,∴CQ =a 3,从而DP =DQ =2a 3,∴PQ =223a .8.在四面体ABCD 中,截面PQMN 是正方形,则在下列结论中,错误的 为________. ①AC ⊥BD ; ②AC ∥截面PQMN ; ③AC =BD ;④异面直线PM 与BD 所成的角为45°. 答案 ③解析 ∵PQMN 是正方形, ∴MN ∥QP ,则MN ∥平面ABC ,由线面平行的性质知MN ∥AC ,则AC ∥截面PQMN , 同理可得MQ ∥BD ,又MN ⊥QM ,则AC ⊥BD ,故①②正确.又∵BD ∥MQ ,∴异面直线PM 与BD 所成的角即为∠PMQ =45°,故④正确. 三、解答题9.如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点.(1)求证:DE ∥平面ABC ; (2)求三棱锥E -BCD 的体积.(1)证明 取BC 中点G ,连接AG ,EG .因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1綊BB 1,而D 是AA 1的中点,所以EG 綊AD , 所以四边形EGAD 是平行四边形.所以ED ∥AG . 又DE ⊄平面ABC ,AG ⊂平面ABC , 所以DE ∥平面ABC .(2)解 因为AD ∥BB 1,所以AD ∥平面BCE , 所以V E -BCD =V D -BEC =V A -BCE =V E -ABC , 由(1)知,DE ∥平面ABC .所以V E -ABC =V D -ABC =13AD ·12BC ·AG=16×3×6×4=12. 10.如图E 、F 、G 、H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC 、CC 1、 C 1D 1、AA 1的中点.求证: (1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .证明 (1)取B 1D 1的中点O ,连接GO ,OB , 易证四边形BEGO 为平行四边形,故OB ∥GE , 由线面平行的判定定理即可证EG ∥平面BB 1D 1D . (2)由题意可知BD ∥B 1D 1. 如图,连接HB 、D 1F ,易证四边形HBFD 1是平行四边形, 故HD 1∥BF .又B 1D 1∩HD 1=D 1,BD ∩BF =B , 所以平面BDF ∥平面B 1D 1H .B 组 专项能力提升 (时间:30分钟)1.设m ,n 是平面α内的两条不同直线;l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A.m ∥β且l 1∥αB.m ∥l 1且n ∥l 2C.m ∥β且n ∥βD.m ∥β且n ∥l 2答案 B解析 对于选项A ,不合题意;对于选项B ,由于l 1与l 2是相交直线,而且由l 1∥m 可得l 1∥α,同理可得l 2∥α,故可得α∥β,充分性成立,而由α∥β不一定能得到l 1∥m ,它们也可以异面,故必要性不成立,故选B ;对于选项C ,由于m ,n 不一定相交,故是必要非充分条件;对于选项D ,由于n ∥l 2可转化为n ∥β,同选项C ,故不符合题意.综上选B. 2.已知平面α∥平面β,P 是α、β外一点,过点P 的直线m 与α、β分别交于A 、C ,过点P 的直线n 与α、β分别交于B 、D 且P A =6,AC =9,PD =8,则BD 的长为________. 答案 24或245解析 根据题意可得到以下如图两种情况:可求出BD 的长分别为245或24.3.空间四边形ABCD 的两条对棱AC 、BD 的长分别为5和4,则平行 于两条对棱的截面四边形EFGH 在平移过程中,周长的取值范围是 ________. 答案 (8,10)解析 设DH DA =GHAC =k ,∴AH DA =EHBD=1-k ,∴GH=5k,EH=4(1-k),∴周长=8+2k.又∵0<k<1,∴周长的范围为(8,10).4.平面α内有△ABC ,AB =5,BC =8,AC =7,梯形BCDE 的底DE =2, 过EB 的中点B 1的平面β∥α,若β分别交EA 、DC 于A 1、C 1,求△A 1B 1C 1 的面积. 解 ∵α∥β,∴A 1B 1∥AB ,B 1C 1∥BC , 又因∠A 1B 1C 1与∠ABC 同向. ∴∠A 1B 1C 1=∠ABC .又∵cos ∠ABC =52+82-722×5×8=12,∴∠ABC =60°=∠A 1B 1C 1.又∵B 1为EB 的中点,∴B 1A 1是△EAB 的中位线, ∴B 1A 1=12AB =52,同理知B 1C 1为梯形BCDE 的中位线, ∴B 1C 1=12(BC +DE )=5.则S △A 1B 1C 1=12A 1B 1·B 1C 1·sin 60°=12·52·5·32=258 3. 故△A 1B 1C 1的面积为2583.5.如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,底面ABCD 为矩形, PD =DC =4,AD =2,E 为PC 的中点. (1)求三棱锥A —PDE 的体积;(2)AC 边上是否存在一点M ,使得P A ∥平面EDM ?若存在,求出 AM 的长;若不存在,请说明理由.解 (1)因为PD ⊥平面ABCD ,所以PD ⊥AD . 又因ABCD 是矩形,所以AD ⊥CD . 因PD ∩CD =D ,所以AD ⊥平面PCD , 所以AD 是三棱锥A —PDE 的高. 因为E 为PC 的中点,且PD =DC =4,所以S△PDE=12S△PDC=12×⎝⎛⎭⎫12×4×4=4.又AD=2,所以V A—PDE=13AD·S△PDE=13×2×4=83.(2)取AC中点M,连接EM,DM,因为E为PC的中点,M是AC的中点,所以EM∥P A.又因为EM⊂平面EDM,P A⊄平面EDM,所以P A∥平面EDM.所以AM=12AC= 5.即在AC边上存在一点M,使得P A∥平面EDM,AM的长为 5.。
2015届高考数学(文)基础知识总复习精讲课件:第8章 第1节 空间简单几何体的结构

高考总复习•数学(文科)
多面体表面上两点的最短距离问题
【例2】 在三棱锥PABC中,PA=PB=PC=2,∠APB=∠BPC =∠APC=30°,一只蚂蚁从A点出发沿四面体表面绕一周,再回到A点, 问:蚂蚁经过的最短路程是多少?
自主解答:
第十页,编辑于星期五:十点 二十一分。
思路点拨:利用轴截面来分析正方体的棱长、圆锥母线等相 互间的关系.
第十五页,编辑于星期五:十点 二十一分。
高考总复习•数学(文科)
解析:如图,作过正方体对角面的轴截面, PO=40,OA=30. 设正方体棱长BC=x,则O1C= 22x,
2 ∴OO1AC=OO1PP,即 320x=404-0 x, 解得x=120(3-2 2). ∴正方体的棱长是120(3-2 2).
解析:该四面体的六条棱长都是 2a, 所以,该四面体的四个面都是正三角形, 故表面积为S=4× 43×( 2a)2=2 3a2. 答案:2 3a2
第十八页,编辑于星期五:十点 二十一分。
高考总复习•数学(文科) 与长方体棱长、对角线长相关的问题
【例4】 一个长方体全面积是20 cm2,所有棱长的和是24 cm, 求长方体的对角线长.
高考总复习•数学(文科) 解析:如下图(1)三棱锥PABC,沿棱PA展开得下图(2),蚂蚁
经过的最短路程应是AA′. 又∵∠APB=∠BPC=∠APC=30°,∴AA′=2.
第十一页,编辑于星期五:十点 二十一分。
高考总复习•数学(文科) 点评:求多面体表面上的最短距离,首先将要求距离的两 点通过多面体的表面展开,展开到同一个平面时,再用平 面几何或解三角形方法求两点间的距离.
第四页,编辑于星期五:十点 二十一分。
2015年高考数学(理)核按钮:第八章《立体几何》(含解析)

第八章立体几何§8.1空间几何体的结构,三视图和直观图1.认识柱,锥,台,球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.高考主要考查空间几何体的结构和视图,柱,锥,台,球的定义与性质是基础,以它们为载体考查线线,线面,面面的关系是重点,三视图一般会在选择题,填空题中考查,以给出空间图形选择其三视图或给出三视图判断其空间图形的形式出现,考查空间想象能力.1.棱柱,棱锥,棱台的概念(1)棱柱:有两个面互相______,其余各面都是________,并且每相邻两个四边形的公共边都互相________,由这些面所围成的多面体叫做棱柱.※注:棱柱又分为斜棱柱和直棱柱.侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱.(2)棱锥:有一个面是________,其余各面都是有一个公共顶点的__________,由这些面所围成的多面体叫做棱锥.※注:如果棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,则这个棱锥叫做正棱锥.(3)棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,叫做棱台.※注:由正棱锥截得的棱台叫做正棱台.※2.棱柱,棱锥,棱台的性质(1)棱柱的性质侧棱都相等,侧面是______________;两个底面与平行于底面的截面是__________的多边形;过不相邻的两条侧棱的截面是______________;直棱柱的侧棱长与高相等且侧面,对角面都是________.(2)正棱锥的性质侧棱相等,侧面是全等的__________;棱锥的高,斜高和斜高在底面上的射影构成一个____________;棱锥的高,侧棱和侧棱在底面上的射影也构成一个____________;侧面的斜高,侧棱及底面边长的一半也构成一个____________;侧棱在底面上的射影,斜高在底面上的射影及底面边长的一半也构成一个____________.(3)正棱台的性质侧面是全等的____________;斜高相等;棱台的高,斜高和两底面的边心距组成一个____________;棱台的高,侧棱和两底面外接圆的半径组成一个____________;棱台的斜高,侧棱和两底面边长的一半也组成一个____________.3.圆柱,圆锥,圆台(1)圆柱,圆锥,圆台的概念分别以________的一边,__________的一直角边,________中垂直于底边的腰所在的直线为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体分别叫做圆柱,圆锥,圆台.(2)圆柱,圆锥,圆台的性质圆柱,圆锥,圆台的轴截面分别是________,___________,___________;平行于底面的截面都是__________.4.球(1)球面与球的概念以半圆的______所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球.半圆的圆心叫做球的________.(2)球的截面性质球心和截面圆心的连线________截面;球心到截面的距离d与球的半径R及截面圆的半径r的关系为______________.5.平行投影在一束平行光线照射下形成的投影,叫做__________.平行投影的投影线互相__________.6.空间几何体的三视图,直观图(1)三视图①空间几何体的三视图是用正投影得到的,在这种投影下,与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的.三视图包括__________,__________,__________.②三视图尺寸关系口诀:“长对正,高平齐,宽相等.” 长对正指正视图和俯视图长度相等,高平齐指正视图和侧(左)视图高度要对齐,宽相等指俯视图和侧(左)视图的宽度要相等.(2)直观图空间几何体的直观图常用斜二测画法来画,其规则是:①在已知图形所在空间中取水平面,在水平面内作互相垂直的轴Ox ,Oy ,再作Oz 轴,使∠xOz =________且∠yOz =________.②画直观图时,把Ox ,Oy ,Oz 画成对应的轴O ′x ′,O ′y ′,O ′z ′,使∠x ′O ′y ′=____________,∠x ′O ′z ′=____________.x ′O ′y ′所确定的平面表示水平面.③已知图形中,平行于x 轴,y 轴或z 轴的线段,在直观图中分别画成____________x ′轴,y ′轴或z ′轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.④已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度为原来的__________.⑤画图完成后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图.注:空间几何体的三视图和直观图在观察角度和投影效果上的区别是:(1)观察角度:三视图是从三个不同位置观察几何体而画出的图形,直观图是从某一点观察几何体而画出的图形;(2)投影效果:三视图是在平行投影下画出的平面图形,用斜二测画法画出的直观图是在平行投影下画出的空间图形.【自查自纠】1.(1)平行 四边形 平行 (2)多边形 三角形2.(1)平行四边形 全等 平行四边形 矩形 (2)等腰三角形 直角三角形 直角三角形 直角三角形 直角三角形(3)等腰梯形 直角梯形 直角梯形 直角梯形 3.(1)矩形 直角三角形 直角梯形 (2)矩形 等腰三角形 等腰梯形 圆4.(1)直径 球心 (2)垂直于 d =R 2-r 2 5.平行投影 平行6.(1)①正(主)视图 侧(左)视图 俯视图 (2)①90° 90°②45°(或135°) 90° ③平行于 ④一半下列说法中正确的是( ) A .棱柱的底面一定是平行四边形B .棱锥的底面一定是三角形C .棱锥被平面分成的两部分不可能都是棱锥D .棱柱被平面分成的两部分可以都是棱柱解:根据棱柱,棱锥的性质及截面性质判断,故选D.以下关于几何体的三视图的论述中,正确的是( )A .球的三视图总是三个全等的圆B .正方体的三视图总是三个全等的正方形C .水平放置的正四面体的三视图都是正三角形D .水平放置的圆台的俯视图是一个圆解:几何体的三视图要考虑视角,只有球无论选择怎样的视角,其三视图总是三个全等的圆.故选A.(2012·陕西)将正方体(如图a 所示)截去两个三棱锥,得到图b 所示的几何体,则该几何体的侧视图为( )解:还原正方体知该几何体侧视图为正方形,AD 1为实线,B1C 的正投影为A 1D ,且B 1C 被遮挡为虚线.故选B.用一张4cm×8cm 的矩形硬纸卷成圆柱的侧面,则圆柱轴截面的面积为________cm 2(接头忽略不计).解:以4cm 或8cm为底面周长,所得圆柱的轴截面面积均为32πcm 2,故填32π.已知正三角形ABC 的边长为a ,那么△ABC的平面直观图△A ′B ′C ′的面积为________.解:如图所示是实际图形和直观图.由图可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图中作C ′D ′⊥A ′B ′,垂足为D ′,则C ′D ′=22O ′C ′=68a .∴S △A ′B ′C ′=12A ′B ′×C ′D ′=12×a×68a =616a 2.故填616a 2.类型一 空间几何体的结构特征(2012·湖南)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是()解:D 选项的正视图应为如图所示的图形. 故选D.【评析】本题主要考查空间想象能力,是近年高考中的热点题型.本题可用排除法一一验证:A ,B ,C 都有可能,而D 的正视图与侧视图不可能相同.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解:从俯视图看,B ,D 符合,从正视图看,B 不符合,D 符合,而从侧视图看D 也是符合的.故选D.类型二 空间几何体的三视图如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为()A .6 3B .93C .12 3D .18 3解:由三视图可知该几何体是一个斜四棱柱,高h=22-1=3,底面积为9,所以体积V =9×3=9 3.故选B.【评析】通过三视图考查几何体的体积运算是较为常规的考题,考生对此并不陌生.对于空间几何体的考查,从内容上看,柱,锥的定义和相关性质是基础,以它们为载体考查三视图,体积是重点.本题给出了几何体的三视图,只要掌握三视图的画法“长对正,高平齐,宽相等”,不难将其还原得到斜四棱柱.如图所示的三个直角三角形是 一个体积为20cm 3的几何体的三视图,则h =________cm.解:由三视图可知,该几何体为三棱锥,此三棱锥的底面为直角三角形,直角边长分别为5cm ,6cm ,三棱锥的高为h cm ,则三棱锥的体积为V=13×12×5×6×h=20,解得h =4cm.故填4.类型三 空间多面体的直观图如图是一个几何体的三视图,用斜二测画法画出它的直观图.解:由三视图知该几何体是一个简单组合体,它的下部是一个正四棱台,上部是一个正四棱锥.画法:(1)画轴.如图1,画x 轴,y 轴,z 轴,使∠xOy =45°,∠xOz =90°.图1(2)画底面.利用斜二测画法画出底面ABCD ,在z 轴上截取O ′使OO ′等于三视图中相应高度,过O ′作Ox 的平行线O ′x ′,Oy 的平行线O ′y ′,利用O ′x ′与O ′y ′画出底面A ′B ′C ′D ′.(3)画正四棱锥顶点.在Oz 上截取点P ,使PO ′等于三视图中相应的高度.(4)成图.连接P A ′,PB ′,PC ′,PD ′,A ′A ,B ′B ,C ′C ,D ′D ,整理得到三视图表示的几何体的直观图如图2所示.图2【评析】根据三视图可以确定一个几何体的长,宽,高,再按照斜二测画法,建立x 轴,y 轴,z 轴,使∠xOy =45°,∠xOz =90°,确定几何体在x 轴,y 轴,z 轴方向上的长度,最后连线画出直观图.已知一个四棱锥的高为3,其底面用斜二测画法所画出的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为( )A . 2B .6 2C .13D .2 2解:因为四棱锥的底面直观图是一个边长为1的正方形,该正方形的对角线长为2,根据斜二测画法的规则,原图底面的底边长为1,高为直观图中正方形的对角线长的两倍,即22,则原图底面积为S =2 2.因此该四棱锥的体积为V =13Sh =13×22×3=2 2.故选D.类型四 空间旋转体的直观图用一个平行于圆锥底面的平面截这个圆锥,截得圆台上,下底面的面积之比为1∶16,截去的圆锥的母线长是3cm ,求圆台的母线长.解:设圆台的母线长为l ,截得圆台的上,下底面半径分别为r ,4r .根据相似三角形的性质得, 33+l =r4r ,解得 l =9. 所以,圆台的母线长为9cm.【评析】用平行于底面的平面去截柱,锥,台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,设相关几何变量列方程求解.圆锥底面半径为1cm ,高为2cm,其中有一个内接正方体,求这个内接正方体的棱长.解:过圆锥的顶点S 和正方体底面的一条对角线CD 作圆锥的截面,得圆锥的轴截面SEF ,正方体对角面CDD 1C 1如图所示. 设正方体棱长为x ,则CC 1=x ,C 1D 1=2x .作SO ⊥EF 于O ,则SO =2,OE =1.∵△ECC 1∽△ESO ,∴CC 1SO =EC 1EO ,即x2=1-22x1, 解得x =22(cm).故内接正方体的棱长为22cm.1.在研究圆柱,圆锥,圆台的相关问题时,主要方法就是研究它们的轴截面,这是因为在轴截面中容易找到这些几何体的有关元素之间的位置关系以及数量关系.2.正多面体(1)正四面体就是棱长都相等的三棱锥,正六面体就是正方体,连接正方体六个面的中心,可得到一个正八面体,正八面体可以看作是由两个棱长都相等的正四棱锥拼接而成.(2)如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,连接A 1B ,BC 1,A 1C 1,DC 1,DA 1,DB ,可以得到一个棱长为2a 的正四面体A 1-BDC 1,其体积为正方体体积的13.(3)正方体与球有以下三种特殊情形:一是球内切于正方体;二是球与正方体的十二条棱相切;三是球外接于正方体.它们的相应轴截面如图所示(正方体的棱长为a ,球的半径为R ).3.长方体的外接球(1)长,宽,高分别为a ,b ,c 的长方体的体对角线长等于外接球的直径,即a 2+b 2+c 2=2R .(2)棱长为a 的正方体的体对角线长等于外接球的直径,即3a =2R .4.棱长为a 的正四面体(1)斜高为32a ;(2)高为63a ;(3)对棱中点连线长为22a ; (4)外接球的半径为64a ,内切球的半径为612a ;(5)正四面体的表面积为3a 2,体积为212a 3.5.三视图的正(主)视图,侧(左)视图,俯视图分别是从几何体的正前方,正左方,正上方观察几何体画出的轮廓线,对于能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示.6.一个平面图形在斜二测画法下的直观图与原图形相比发生了变化,注意原图与直观图中的“三变,三不变”.三变:坐标轴的夹角改变,与y 轴平行线段的长度改变(减半),图形改变.三不变:平行性不变,与x 轴平行的线段长度不变,相对位置不变.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S 直观图=24S 原图形,S 原图形=22S 直观图.1.由平面六边形沿某一方向平移形成的空间几何体是( )A .六棱锥B .六棱台C .六棱柱D .非棱柱,棱锥,棱台的一个几何体解:平面六边形沿某一方向平移形成的空间几何体符合棱柱的定义,故选C .2.下列说法中,正确的是( ) A .棱柱的侧面可以是三角形B .若棱柱有两个侧面是矩形,则该棱柱的其它侧面也是矩形C .正方体的所有棱长都相等D .棱柱的所有棱长都相等解:棱柱的侧面都是平行四边形,选项A 错误;其它侧面可能是平行四边形,选项B 错误;棱柱的侧棱与底面边长并不一定相等,选项D 错误;易知选项C 正确.故选C.3.将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括( )A .一个圆台,两个圆锥B .两个圆台,一个圆柱C .两个圆台,一个圆锥D .一个圆柱,两个圆锥解:把等腰梯形分割成两个直角三角形和一个矩形,由旋转体的定义可知所得几何体包括一个圆柱,两个圆锥.故选D.4.将正三棱柱截去三个角(如图1所示A ,B ,C 分别是△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )A B C D解:观察图形,易知图2所示几何体的侧视图为直角梯形,且EB 为直角梯形的对角线.故选A.5.(2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是()A .棱柱B .棱台C .圆柱D .圆台 解:由俯视图可知该几何体的上,下两底面为半径不等的圆,又∵正视图和侧视图相同,∴可判断其为旋转体.故选D.6.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为()A .2 2 B. 2 C .2 3 D. 3 解:由三视图可知,此多面体是四棱锥,底面是边长为2的正方形,并且有一条长为2的侧棱垂直于底面,所以最长棱长为22+22+22=2 3.故选C.7.若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于________.解:由正视图知,三棱柱是底面边长为2,高为1的正三棱柱,所以底面积为2×12×2×2×32=23,侧面积为3×2×1=6,所以其表面积为6+2 3.故填6+23.8.如图是某个圆锥的三视图,根据图中所标尺寸可得俯视图中圆的面积为________,圆锥母线长为________.解:由三视图可知,圆锥顶点在底面的射影是底面圆的中心,根据图中的数据,底面圆的半径为10,则俯视图中圆的面积为100π,母线长为302+102 =1010,故填100π;1010.9.如图a 是截去一个角的长方体,试按图示的方向画出其三视图.解:图a 中几何体三视图如图b 所示:10.如图1是某几何体的三视图,试说明该几何体的结构特征,并用斜二测画法画出它的直观图.解:图1中几何体是由上部为正六棱柱,下部为倒立的正六棱锥堆砌而成的组合体.斜二测画法:(1)画轴.如图2,画x 轴,y 轴,z 轴,使∠xOy =45°,∠xOz =∠yOz =90°.(2)画底面,利用斜二测画法画出底面ABCDEF ,在z 轴上截取O ′,使OO ′等于正六棱柱的高,过O ′作Ox 的平行线O ′x ′,Oy 的平行线O ′y ′,利用O ′x ′与O ′y ′画出底面A ′B ′C ′D ′E ′F ′.(3)画正六棱锥顶点.在Oz 上截取点P ,使PO ′等于正六棱锥的高.(4)成图.连接P A ′,PB ′,PC ′,PD ′,PE ′,PF ′,AA ′,BB ′,CC ′,DD ′,EE ′,FF ′,整理得到三视图表示的几何体的直观图如图3所示.注意:图形中平行于x 轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,长度为原来的一半.11.某长方体的一条对角线长为7,在该长方体的正视图中,这条对角线的投影长为6,在该长方体的侧视图与俯视图中,这条对角线的投影长分别为a 和b ,求ab的最大值.解:如图,则有AC 1=7,DC 1=6, BC 1=a ,AC =b ,设AB =x ,AD =y ,AA 1=z ,有 x 2+y 2+z 2=7,x 2+z 2=6,∴y 2=1.∵a 2=y 2+z 2=z 2+1,b 2=x 2+y 2=x 2+1, ∴a =z 2+1,b =x 2+1. ∴ab =(z 2+1)(x 2+1)≤z 2+1+x 2+12=4,当且仅当z 2+1=x 2+1,即x =z =3时,ab 的最大值为4.水以匀速注入某容器中,容器的三视图如图所示,其中与题中容器对应的水的高度h 与时间t的函数关系图象是( )解:由三视图知其直观图为两个圆台的组合体,水是匀速注入的,所以水面高度随时间变化的变化率先逐渐减小后逐渐增大,又因为容器的对称性,所以函数图象关于一点中心对称.故选C.§8.2空间几何体的表面积与体积1.了解棱柱,棱锥,台,球的表面积和体积的计算公式.2.会利用公式求一些简单几何体的表面积与体积.高考主要考查空间几何体的侧面积,表面积,体积以及相关元素的关系与计算,这些内容常与三视图相结合,以选择题,填空题的形式出现,也可能以空间几何体为载体,考查线面关系,侧面积,表面积以及体积.1.柱体,锥体,台体的表面积(1)直棱柱,正棱锥,正棱台的侧面积S直棱柱侧=__________,S正棱锥侧=__________,S正棱台侧=__________(其中C,C′为底面周长,h为高,h′为斜高).(2)圆柱,圆锥,圆台的侧面积S圆柱侧=________,S圆锥侧=________,S圆台侧=________(其中r,r′为底面半径,l为母线长).(3)柱或台的表面积等于________与__________的和,锥体的表面积等于________与__________的和.2.柱体,锥体,台体的体积(1)棱柱,棱锥,棱台的体积V棱柱=__________,V棱锥=__________,V棱台=__________(其中S,S′为底面积,h为高).(2)圆柱,圆锥,圆台的体积V圆柱=__________,V圆锥=__________,V圆台=__________(其中r,r′为底面半径,h为高).3.球的表面积与体积(1)半径为R的球的表面积S球=________.(2)半径为R的球的体积V球=________.【自查自纠】1.(1)Ch 12Ch′12()C+C′h′(2)2πrlπrlπ(r+r′)l(3)侧面积两个底面积侧面积一个底面积2.(1)Sh 13Sh13h()S+SS′+S′(2)πr2h13πr2h13πh()r2+rr′+r′23.(1)4πR2(2)43πR3圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为()A.6π(4π+3)B.8π(3π+1)C.6π(4π+3)或8π(3π+1)D.6π(4π+1)或8π(3π+2)解:分两种情况:①以边长为6π的边为高时,4π为圆柱底面周长,则2πr=4π,r=2,∴S底=πr2=4π,S侧=6π×4π=24π2,S表=2S底+S侧=8π+24π2=8π(3π+1);②以边长为4π的边为高时,6π为圆柱底面周长,则2πr=6π,r=3.∴S底=πr2=9π,S表=2S底+S侧=18π+24π2=6π(4π+3).故选C.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为()A.23 2 B. 2 C.23 D.43 2解:∵正三棱锥的侧面均为直角三角形,故侧面为等腰直角三角形,且直角顶点为棱锥的顶点,∴侧棱长为2,V=13×12×(2)2×2=23.故选C.已知圆柱的底面直径与高都等于球的直径,则圆柱的体积与球体积之比为()A.1∶2 B.2∶1 C.2∶3 D.3∶2解:设球半径为R,圆柱底面半径为R,高为2R.∵V球=43πR3,V圆柱=πR2·2R=2πR3,∴V圆柱∶V球=3∶2.故选D.长方体ABCD-A1B1C1D1的8个顶点在同一个球面上,且AB=2,AD=3,AA1=1,则球面面积为________.解:∵长方体ABCD-A1B1C1D1的8个顶点在同一个球面上,则外接球的直径是长方体的体对角线,而长方体的体对角线的长为AB2+AD2+AA21=22,∴半径R= 2.∴S球=4πR2=8π.故填8π.若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为____________.解:设圆锥底面半径为r,母线长为l,则⎩⎪⎨⎪⎧πr2=π,πrl=2π,有⎩⎪⎨⎪⎧r=1,l=2,从而可知圆锥的高h=l2-r2=4-1= 3.∴V=13×π×3=33π.故填33π.类型一空间几何体的面积问题如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC边上的高,沿AD把△ABD折起,使∠BDC=90°.(1)证明:平面ADB⊥平面BDC;(2)若BD=1,求三棱锥D-ABC的表面积.解:(1)证明:∵折起前AD是BC边上的高,∴沿AD把△ABD折起后,AD⊥DC,AD⊥BD.又DB∩DC=D,∴AD⊥平面BDC.又∵AD⊂平面ADB,∴平面ADB⊥平面BDC.(2)由(1)知,DA⊥BD,BD⊥DC,DC⊥DA,DB=DA=DC=1,∴AB=BC=CA= 2.从而S△DAB=S△DBC=S△DCA=12×1×1=12,S△ABC=12×2×2×sin60°=32.∴三棱锥D-ABC的表面积S=12×3+32=3+32.【评析】充分运用图形在翻折前后的不变性,如角的大小不变,线段长度不变,线线关系不变等,再由面面垂直的判定定理进行推理证明,然后再计算.(2013·福建)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图,侧视图,俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是____________.解:由三视图可知该组合体为球内接一个棱长为2的正方体,∴正方体的体对角线为球的直径2r=22+22+22=23,S球=4πr2=12π.故填12π.类型二空间旋转体的面积问题如图,半径为4的球O中有一内接圆柱,当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.解:如图,设球的一条半径与圆柱相应的母线的夹角为α,圆柱侧面积S=2π×4sinα×2×4cosα=32πsin2α,当α=π4时,S取最大值32π,此时球的表面积与该圆柱的侧面积之差为32π.故填32π.【评析】根据球的性质,内接圆柱上,下底面中心连线的中点为球心,且圆柱的上,下底面圆周均在球面上,球心和圆柱的上,下底面圆上的点的连线与母线的夹角相等,这些为我们建立圆柱的侧面积与上述夹角之间的函数关系提供了依据.(2012·辽宁)一个几何体的三视图如图所示,则该几何体的表面积为____________.解:由三视图知该几何体为长4宽3高1的长方体的中间挖去一个半径为1高为1的圆柱所成几何体,所以表面积为2×(4×3+4×1+3×1)-2×π×12+2π×1×1=38.故填38.类型三空间多面体的体积问题一个正三棱锥(底面是正三角形,顶点在底面的射影是底面正三角形的中心)的底面边长为6,侧棱长为15,求这个三棱锥的体积.解:如图所示为正三棱锥S-ABC,设H为正三角形ABC的中心,连接SH,则SH的长即为该正三棱锥的高.连接AH并延长交BC于E,则E为BC的中点,且AH⊥BC.∵△ABC是边长为6的正三角形,∴AE =32×6=33,AH =23AE =2 3. 在△ABC 中,S △ABC =12BC ×AE =12×6×33=93,在Rt △SHA 中,SA =15,AH =23, ∴SH =SA 2-AH 2=15-12= 3.∴V 正三棱锥=13×S △ABC ×SH =13×93×3=9.【评析】(1)求锥体的体积,要选择适当的底面和高,然后应用公式V =13Sh进行计算.(2)求空间几何体体积的常用方法为割补法和等积变换法:①割补法:将这个几何体分割成几个柱体,锥体,分别求出柱体和锥体的体积,从而得出要求的几何体的体积;②等积变换法:特别的,对于三棱锥,由于其任意一个面均可作为棱锥的底面,从而可选择更容易计算的方式来求体积;利用“等积性”还可求“点到面的距离”.如图,在多面体ABCDEF 中,已知ABCD是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23 B.33 C.43 D.32 解:如图,过A ,B 两点分别作AM ,BN 垂直于EF ,垂足分别为M ,N ,连接DM ,CN ,可证得DM ⊥EF ,CN ⊥EF ,则多面体ABCDEF 分为三部分,即多面体的体积V ABCDEF =V AMD -BNC +V E -AMD +V F -BNC .依题意知AEFB 为等腰梯形.易知Rt △DME Rt △CNF ,∴EM =NF =12.又BF =1,∴BN =32.作NH 垂直于BC ,则H 为BC 的中点,∴NH =22. ∴S △BNC =12·BC ·NH =24.∴V F -BNC =13·S △BNC ·NF =224, V E -AMD =V F -BNC =224,V AMD -BNC =S △BNC·MN=24. ∴V ABCDEF =23,故选A .类型四 空间旋转体的体积问题某几何体的三视图如图所示,则它的体积是( )A .8-2π3B .8-π3C .8-2πD .2π3解:由三视图知几何体为一个正方体中间去掉一个圆锥,所以它的体积是V =23-13×π×12×2=8-23π.故选A.【评析】根据已知三视图想象出该几何体的直观图,然后分析该几何体的组成,再用对应的体积公式进行计算.(2012·河南模拟)已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与其内接三角形构成,根据图中的数据可得此几何体的体积为( )A.2π3+12 B.4π3+16 C.2π6+16 D.2π3+12解:由三视图可得该几何体的上部是一个三棱锥,下部是半球,根据三视图中的数据可得V =12×43π×⎝⎛⎭⎫223+13×⎝⎛⎭⎫12×1×1×1=2π6+16.故选C.1.几何体的展开与折叠(1)几何体的表面积,除球以外,都是利用展开图求得的,利用空间问题平面化的思想,把一个平面图形折叠成一个几何体,再研究其性质,是考查空间想象能力的常用方法.(2)多面体的展开图①直棱柱的侧面展开图是矩形;②正棱锥的侧面展开图是由一些全等的等腰三角形拼成的,底面是正多边形;③正棱台的侧面展开图是由一些全等的等腰梯形拼成的,底面是正多边形.(3)旋转体的展开图①圆柱的侧面展开图是矩形,矩形的长(或宽)是底面圆周长,宽(或长)是圆柱的母线长;②圆锥的侧面展开图是扇形,扇形的半径长是圆锥的母线长,弧长是圆锥的底面周长;③圆台的侧面展开图是扇环,扇环的上,下弧长分别为圆台的上,下底面周长.注:①圆锥中母线长l 与底面半径r 和展开图扇形中半径和弧长间的关系及符号容易混淆,同学们应多动手推导,加深理解.②圆锥和圆台的侧面积公式S 圆锥侧=12cl 和S 圆台侧=12(c ′+c )l 与三角形和梯形的面积公式在形式上相同,可将二者联系起来记忆.2.空间几何体的表面积的计算方法有关空间几何体的表面积的计算通常是将空间图形问题转化为平面图形问题,这是解决立体几何问题常用的基本方法.(1)棱柱,棱锥,棱台等多面体的表面积可以分别求各面面积,再求和,对于直棱柱,正棱锥,正棱台也可直接利用公式;(2)圆柱,圆锥,圆台的侧面是曲面,计算其侧面积时需将曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和;(3)组合体的表面积应注意重合部分的处理. 3.空间几何体的体积的计算方法(1)计算柱,锥,台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面和旋转轴截面,将空间问题转化为平面问题求解.(2)注意求体积的一些特殊方法:分割法,补体法,还台为锥法等,它们是计算一些不规则几何体体积常用的方法,应熟练掌握.(3)利用三棱锥的“等体积性”可以解决一些点到平面的距离问题,即将点到平面的距离视为一个三棱锥的高,通过将其顶点和底面进行转化,借助体积的不变性解决问题.4.由几何体的三视图求几何体的表面积与体积问题,一般按如下三个步骤求解:(1)由三视图想象出原几何体的形状;(2)由三视图给出的数量关系确定原几何体的数量关系;(3)如果是规则几何体,直接代入公式求解,如果不是规则几何体,通过“割补”后,转化为规则几何体求解.1.已知圆锥的正视图是边长为2的等边三角形,则该圆锥体积为( )A .2π2B .2πC .3π3D .3π 解:易知圆锥的底面直径为2,母线长为2,则该圆锥的高为22-12=3,因此其体积是13π·12×3=3π3.故选C. 2.一个长方体共一顶点的三个面的面积分别是2,3,6,则这个长方体的体对角线的长是( ) A .2 3 B .3 2 C .6 D . 6 解:设长方体的长,宽,高分别为a ,b ,c ,则有ab =2,ac =3,bc =6,解得a =1,b =2,c=3,则长方体的体对角线的长l =a 2+b 2+c 2= 6.故选D.3.一空间几何体的三视图如图所示,则该几何体的体积为( )A .2π+2 3B .4π+2 3C .2π+233D .4π+233解:该空间几何体由一圆柱和一正四棱锥组成,圆柱的底面半径为1,高为2,体积为2π,正四棱锥的底面边长为2,高为3,所以体积为13×(2)2×3=233.所以该几何体的体积为2π+233.故选C . 4.将长,宽分别为4和3的长方形ABCD 沿对角线AC 折成直二面角,得到四面体A -BCD ,则四面体A -BCD 的外接球的表面积为( )A .25πB .50πC .5πD .10π解:由题设知AC 为外接球的直径,∴2R =32+42=5,S 表=4πR 2=4π×⎝⎛⎭⎫522=25π.故选A.。
【志鸿优化设计】2015届高考数学(理科)一轮总复习精品课件:8.3 空间点、直线、平面之间的位置关系

DG=AD.又在正方形 ABCD 中,BC������AD,所以 CF������DG.所以四边形 CFGD 是平行四边形.所以 FG∥CD. 又 CD∥AB,AB∥பைடு நூலகம்1B1,所以直线 FG∥直线 A1B1.
考点一
考点二
考点三
第八章
8.3
空间点、直线、平面之间的位置关系 -23-
考点三
异面直线所成的角
2.l1,l2,l3 是空间三条不同的直线,则下列命题正确的是( A.l1⊥l2,l2⊥l3⇒ l1∥l3 B.l1⊥l2,l2∥l3⇒ l1⊥l3 C.l1∥l2∥l3⇒ l1,l2,l3 共面 D.l1,l2,l3 共点⇒ l1,l2,l3 共面
)
关闭
在空间中,垂直于同一直线的两条直线不一定平行,故 A 错;两条平行直 线中的一条垂直于第三条直线,则另一条也垂直于第三条直线,B 正确;相互 关闭 平行的三条直线不一定共面,如三棱柱的三条侧棱,故 C 错;共点的三条直线 B 不一定共面 ,如三棱锥的三条侧棱,故 D 错.
考点一
考点二
考点三
第八章
8.3
空间点、直线、平面之间的位置关系 -21-
证明:已知 E 是 CD 的中点,
在正方体 ABCD-A1B1C1D1 中,有 A∈平面 ABCD,E∈平面 ABCD,所以 AE⊂ 平面 ABCD.
考点一
考点二
考点三
第八章
8.3
空间点、直线、平面之间的位置关系 -22-
又因为 AE∩BC=F,所以 F∈AE.从而 F∈平面 ABCD.同理 G∈平面 ABCD,所以 FG⊂ 平面 ABCD.因为 EC������ AB,故在 Rt△FBA 中,CF=BC,同理
2015年高考数学总复习(人教A版,理科)配套教案:第八章 立体几何 8.5

§8.5 空间向量及其运算1.空间向量的有关概念名称 概念 表示 零向量 模为0的向量 0 单位向量 长度(模)为1的向量 相等向量 方向相同且模相等的向量 a =b相反向量 方向相反且模相等的向量 a 的相反向量为-a共线向量 表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.(1)共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . 推论 如图所示,点P 在l 上的充要条件是 OP →=OA →+t a①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a ,则①可化为OP →= OA →+tAB →或OP →=(1-t )OA →+tOB →.(2)共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=OM →+xMA →+yMB →或OP →=xOM →+yOA →+zOB →,其中x +y +z =__1__. (3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,把{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b . ②两向量的数量积已知空间两个非零向量a ,b ,则|a||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a·b ,即a·b =|a||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4.空间向量的坐标表示及应用 (1)数量积的坐标运算设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角和距离公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a·a =a 21+a 22+a 23,cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23 . 设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|=(a 2-a 1)2+(b 2-b 1)2+(c 2-c 1)2.1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两非零向量a ,b 共面.( √ ) (2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( × )(3)对于非零向量b ,由a ·b =b ·c ,则a =c . ( × ) (4)两向量夹角的范围与两异面直线所成角的范围相同.( × ) (5)若A 、B 、C 、D 是空间任意四点,则有AB →+BC →+CD →+DA →=0. ( √ ) (6)|a |-|b |=|a +b |是a 、b 共线的充要条件.( × )2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的 交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A.-12a +12b +cB.12a +12b +c C.-12a -12b +cD.12a -12b +c 答案 A解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.已知正方体ABCD -A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若AE →=AA 1→+xAB →+yAD →,则x ,y 的值分别为( )A.x =1,y =1B.x =1,y =12C.x =12,y =12D.x =12,y =1答案 C解析 如图,AE →=AA 1→+A 1E →=AA 1→+12A 1C 1→=AA 1→+12(AB →+AD →).4.同时垂直于a =(2,2,1)和b =(4,5,3)的单位向量是_______________________. 答案 ⎝⎛⎭⎫13,-23,23或⎝⎛⎭⎫-13,23,-23 解析 设与a =(2,2,1)和b =(4,5,3)同时垂直的单位向量是c =(p ,q ,r ),则⎩⎪⎨⎪⎧p 2+q 2+r 2=1,2p +2q +r =0,4p +5q +3r =0,解得⎩⎪⎨⎪⎧ p =13,q =-23,r =23,或⎩⎪⎨⎪⎧p =-13,q =23,r =-23,即同时垂直于a ,b 的单位向量为⎝⎛⎭⎫13,-23,23或⎝⎛⎭⎫-13,23,-23.5.如图,在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点, E 为AD 的中点,则OE →=________(用a ,b ,c 表示). 答案 12a +14b +14c解析 OE →=12OA →+12OD →=12OA →+14OB →+14OC →=12a +14b +14c .题型一 空间向量的线性运算例1 三棱锥O —ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示MG →,OG →. 思维启迪 利用空间向量的加减法和数乘运算表示即可. 解 MG →=MA →+AG →=12OA →+23AN →=12OA →+23(ON →-OA →) =12OA →+23[12(OB →+OC →)-OA →] =-16OA →+13OB →+13OC →.OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC →=13OA →+13OB →+13OC →. 思维升华 用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.如图,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.(1)化简A 1O →-12AB →-12AD →=________;(2)用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________. 答案 (1)A 1A →(2)12AB →+12AD →+AA 1→解析 (1)A 1O →-12AB →-12AD →=A 1O →-12AC →=A 1O →-AO →=A 1A →. (2)OC 1→=OC →+CC 1→ =12AB →+12AD →+AA 1→. 题型二 共线定理、共面定理的应用例2 已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、 DA 的中点,(1)求证:E 、F 、G 、H 四点共面; (2)求证:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM →=14(OA →+OB →+OC →+OD →).思维启迪 对于(1)只要证出向量EG →=EF →+EH →即可;对于(2)只要证出BD →与EH →共线即可;对于(3),易知四边形EFGH 为平行四边形,则点M 为线段EG 与FH 的中点,于是向量OM →可由向量OG →和OE →表示,再将OG →与OE →分别用向量OC →,OD →和向量OA →,OB →表示. 证明 (1)连接BG , 则EG →=EB →+BG → =EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →, 由共面向量定理的推论知: E 、F 、G 、H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →, 所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .(3)找一点O ,并连接OM ,OA ,OB ,OC ,OD ,OE ,OG . 由(2)知EH →=12BD →,同理FG →=12BD →,所以EH →=FG →,即EH 綊FG , 所以四边形EFGH 是平行四边形. 所以EG ,FH 交于一点M 且被M 平分. 故OM →=12(OE →+OG →)=12OE →+12OG →=12⎣⎡⎦⎤12(OA →+OB →)+12⎣⎡⎦⎤12(OC →+OD →) =14(OA →+OB →+OC →+OD →). 思维升华 (1)证明点共线的方法证明点共线的问题可转化为证明向量共线的问题,如证明A ,B ,C 三点共线,即证明AB →,AC →共线,亦即证明AB →=λAC →(λ≠0). (2)证明点共面的方法证明点共面问题可转化为证明向量共面问题,如要证明P ,A ,B ,C 四点共面,只要能证明P A →=xPB →+yPC →或对空间任一点O ,有OA →=OP →+xPB →+yPC →或OP →=xOA →+yOB →+zOC (x +y +z =1)即可.共面向量定理实际上也是三个非零向量所在直线共面的充要条件.如图,正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 上的点,F 是AC 上的点,且A 1E =2EB ,CF =2AF ,则EF 与平面A 1B 1CD 的位置关系为________. 答案 平行解析 取AB →=a ,AD →=b ,AA 1→=c 为基底,易得EF →=-13(a -b +c ),而DB 1→=a -b +c ,即EF →∥DB 1→,故EF ∥DB 1, 且EF ⊄平面A 1B 1CD ,DB 1⊂平面A 1B 1CD , 所以EF ∥平面A 1B 1CD .题型三 空间向量数量积的应用例3 如图所示,已知空间四边形AB -CD 的各边和对角线的长都等于 a ,点M 、N 分别是AB 、CD 的中点. (1)求证:MN ⊥AB ,MN ⊥CD ; (2)求MN 的长;(3)求异面直线AN 与CM 所成角的余弦值.思维启迪 两条直线的垂直关系可以转化为两个向量的垂直关系;利用|a |2=a ·a 可以求线段长;利用cos θ=a ·b |a ||b |可求两条直线所成的角.(1)证明 设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p 、q 、r 三向量两两夹角均为60°. MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0. ∴MN →⊥AB →.即MN ⊥AB .同理可证MN ⊥CD . (2)解 由(1)可知MN →=12(q +r -p ),∴|MN →|2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -p ·q -r ·p )] =14[a 2+a 2+a 2+2(a 22-a 22-a 22)] =14×2a 2=a 22. ∴|MN →|=22a .∴MN 的长为22a .(3)解 设向量AN →与MC →的夹角为θ. ∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·(q -12p )=12(q 2-12q ·p +r ·q -12r ·p ) =12(a 2-12a 2cos 60°+a 2cos 60°-12a 2cos 60°) =12(a 2-a 24+a 22-a 24)=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华 (1)当题目条件有垂直关系时,常转化为数量积为零进行应用;(2)当异面直线所成的角为α时,常利用它们所在的向量转化为向量的夹角θ来进行计算.应该注意的是α∈(0,π2],θ∈[0,π],所以cos α=|cos θ|=|a ·b ||a ||b |;(3)立体几何中求线段的长度可以通过解三角形,也可依据|a |=a 2转化为向量求解.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求向量a 与向量b 的夹角的余弦值; (2)若k a +b 与k a -2b 互相垂直,求实数k 的值. 解 (1)∵a =(1,1,0),b =(-1,0,2), ∴a ·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2, |b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010. (2)方法一 ∵k a +b =(k -1,k,2). k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0, ∴k =2或k =-52,∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52.方法二 由(1)知|a |=2,|b |=5,a ·b =-1, ∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2 =2k 2+k -10=0, 得k =2或k =-52.“两向量同向”意义不清致误典例:(5分)已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,则x ,y 的值分别为________.易错分析 将a ,b 同向和a ∥b 混淆,没有搞清a ∥b 的意义:a ·b 方向相同或相反.解析 由题意知a ∥b ,所以x 1=x 2+y -22=y3,即⎩⎪⎨⎪⎧y =3x ①x 2+y -2=2x ②把①代入②得x 2+x -2=0,(x +2)(x -1)=0, 解得x =-2,或x =1当x =-2时,y =-6;当x =1时,y =3.当⎩⎪⎨⎪⎧x =-2y =-6时,b =(-2,-4,-6)=-2a , 两向量a ,b 反向,不符合题意,所以舍去.当⎩⎪⎨⎪⎧ x =1y =3时,b =(1,2,3)=a ,a 与b 同向,所以⎩⎪⎨⎪⎧x =1y =3.答案1,3温馨提醒(1)两向量平行和两向量同向不是等价的,同向是平行的一种情况.两向量同向能推出两向量平行,但反过来不成立,也就是说,“两向量同向”是“两向量平行”的充分不必要条件;(2)若两向量a,b满足a=λb(b≠0)且λ>0则a,b同向;在a,b的坐标都是非零的条件下,a,b的坐标对应成比例.方法与技巧1.利用向量的线性运算和空间向量基本定理表示向量是向量应用的基础.2.利用共线向量定理、共面向量定理可以证明一些平行、共面问题;利用数量积运算可以解决一些距离、夹角问题.3.利用向量解立体几何题的一般方法:把线段或角度转化为向量表示,用已知向量表示未知向量,然后通过向量的运算或证明去解决问题.失误与防范1.向量的数量积满足交换律、分配律,但不满足结合律,即a·b=b·a,a·(b+c)=a·b+a·c成立,(a·b)·c=a·(b·c)不一定成立.2.求异面直线所成的角,一般可以转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.A 组 专项基础训练(时间:40分钟)一、选择题1.空间直角坐标系中,A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( ) A.垂直B.平行C.异面D.相交但不垂直 答案 B解析 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB →与CD →没有公共点.∴AB ∥CD .2.已知O ,A ,B ,C 为空间四个点,又OA →,OB →,OC →为空间的一个基底,则 ( )A.O ,A ,B ,C 四点不共线B.O ,A ,B ,C 四点共面,但不共线C.O ,A ,B ,C 四点中任意三点不共线D.O ,A ,B ,C 四点不共面答案 D解析 OA →,OB →,OC →为空间的一个基底,所以OA →,OB →,OC →不共面,但A ,B ,C 三种情况都有可能使OA →,OB →,OC →共面.3.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( ) A.2,12B.-13,12C.-3,2D.2,2 答案 A解析 由题意知:⎩⎨⎧ λ+16=22λ,2μ-1=0,解得⎩⎪⎨⎪⎧ λ=2,μ=12或⎩⎪⎨⎪⎧λ=-3,μ=12.4.空间四点A (2,3,6)、B (4,3,2)、C (0,0,1)、D (2,0,2)的位置关系是( ) A.共线B.共面C.不共面D.无法确定 答案 C解析 ∵AB →=(2,0,-4),AC →=(-2,-3,-5),AD →=(0,-3,-4).假设四点共面,由共面向量定理得,存在实数x ,y ,使AD →=xAB →+yAC →,即⎩⎪⎨⎪⎧ 2x -2y =0, ①-3y =-3, ②-4x -5y =-4, ③由①②得x =y =1,代入③式不成立,矛盾.∴假设不成立,故四点不共面.5.如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为( ) A.0 B.12 C.32 D.22 答案 A解析 设OA →=a ,OB →=b ,OC →=c ,则|b |=|c |,〈a ,b 〉=〈a ,c 〉=π3,BC →=c -b , ∴OA →·BC →=a ·(c -b )=a ·c -a ·b=|a ||c |cos π3-|a ||b |cos π3=0, ∴OA →⊥BC →,∴cos 〈OA →,BC →〉=0.二、填空题6.已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.答案 60°解析 由题意得,(2a +b )·c =0+10-20=-10.即2a ·c +b ·c =-10,又∵a ·c =4,∴b ·c =-18,∴cos 〈b ,c 〉=b ·c |b |·|c |=-1812×1+4+4=-12,∴〈b ,c 〉=120°,∴两直线的夹角为60°.7.已知a =(1-t,1-t ,t ),b =(2,t ,t ),则|b -a |的最小值为________.答案 355解析 b -a =(1+t,2t -1,0),∴|b -a |=(1+t )2+(2t -1)2= 5⎝⎛⎭⎫t -152+95,∴当t =15时,|b -a |取得最小值355.8.如图所示,已知P A ⊥平面ABC ,∠ABC =120°,P A =AB =BC =6,则PC 等于________.答案 12解析 因为PC →=P A →+AB →+BC →,所以PC →2=P A →2+AB →2+BC →2+2AB →·BC →=36+36+36+2×36cos 60°=144.所以|PC →|=12.三、解答题9.已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上是否存在一点E ,使得OE →⊥b (O 为原点)?解 (1)∵a =(1,-3,2),b =(-2,1,1),∴2a +b =(0,-5,5),∴|2a +b |=02+(-5)2+52=5 2.(2)假设存在点E ,其坐标为E (x ,y ,z ),则AE →=λAB →,即(x +3,y +1,z -4)=λ(1,-1,-2),∴⎩⎪⎨⎪⎧ x =λ-3y =-λ-1z =-2λ+4,∴E (λ-3,-λ-1,-2λ+4),∴OE →=(λ-3,-λ-1,-2λ+4).又∵b =(-2,1,1),OE →⊥b ,∴OE →·b =-2(λ-3)+(-λ-1)+(-2λ+4)=-5λ+9=0,∴λ=95,∴E (-65,-145,25),∴在直线AB 上存在点E (-65,-145,25),使OE →⊥b .10.如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长;(2)求BD 1与AC 夹角的余弦值.解 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.(1)|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×(12+12+12)=6,∴|AC 1→|=6,即AC 1的长为 6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66. ∴AC 与BD 1夹角的余弦值为66. B 组 专项能力提升(时间:30分钟)1.若向量c 垂直于不共线的向量a 和b ,d =λa +μb (λ、μ∈R ,且λμ≠0),则( ) A.c ∥dB.c ⊥dC.c 不平行于d ,c 也不垂直于dD.以上三种情况均有可能答案 B解析 由题意得,c 垂直于由a ,b 确定的平面.∵d =λa +μb ,∴d 与a ,b 共面.∴c ⊥d .2.以下命题中,正确的命题个数为 ( ) ①若a ,b 共线,则a 与b 所在直线平行;②若{a ,b ,c }为空间一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底; ③若空间向量m 、n 、p 满足m =n ,n =p ,则m =p ;④对空间任意一点O 和不共线三点A 、B 、C ,若OP →=xOA →+yOB →+zOC →(其中x ,y ,z ∈R ),则P 、A 、B 、C 四点共面.A.1B.2C.3D.4答案 B解析 由共线向量知a 与b 所在直线可能重合知①错;若a +b ,b +c ,c +a 共面,则存在实数x ,y ,使a +b =x (b +c )+y (c +a )=y a +x b +(x +y )c , ∵a ,b ,c 不共面,∴y =1,x =1,x +y =0,∴x ,y 无解,∴{a +b ,b +c ,c +a }能构成空间的一个基底,∴②正确;由向量相等的定义知③正确;由共面向量定理的推论知,当x +y +z =1时,P ,A ,B ,C 四点共面,∴④不正确.故选B.3.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为________.答案 25解析 以D 为原点,DA 、DC 、DD 1为x 、y 、z 轴正半轴建立空间直角 坐标系,则A (1,0,0),A 1(1,0,1),B 1(1,1,1),B (1,1,0),C (0,1,0),∴M (1,12,1),N (1,1,12),∴AM →=(0,12,1),CN →=(1,0,12),∴cos 〈AM →,CN →〉=AM →·CN→|AM →|·|CN →|=12(12)2+12× 12+(12)2=25.4.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)求以AB →,AC →为边的平行四边形的面积;(2)若|a |=3,且a 分别与AB →,AC →垂直,求向量a 的坐标.解 (1)由题意可得:AB →=(-2,-1,3),AC →=(1,-3,2),∴cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|=-2+3+614×14=714=12.∴sin 〈AB →,AC →〉=32,∴以AB →,AC →为边的平行四边形的面积为S =2×12|AB →|·|AC →|·sin 〈AB →,AC →〉=14×32=7 3.(2)设a =(x ,y ,z ),由题意得⎩⎪⎨⎪⎧ x 2+y 2+z 2=3-2x -y +3z =0x -3y +2z =0,解得⎩⎪⎨⎪⎧ x =1y =1z =1或⎩⎪⎨⎪⎧ x =-1y =-1z =-1,∴向量a 的坐标为(1,1,1)或(-1,-1,-1).5.直三棱柱ABC —A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D 、E 分别 为AB 、BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明 设CA →=a ,CB →=b ,CC ′→=c ,根据题意,|a |=|b |=|c |,且a·b =b·c =c·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=-12c 2+12b 2=0.∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解 ∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |.AC ′→·CE →=(-a +c )·⎝⎛⎭⎫b +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=12|a |22·52|a |2=1010.即异面直线CE 与AC ′所成角的余弦值为1010.。
2015届高考数学(人教,理科)大一轮复习配套讲义:第八章 平面解析几何
第八章 平面解析几何第一节直线的倾斜角与斜率、直线的方程1.直线的倾斜角(1)定义:x 轴正向与直线向上方向之间所成的角叫做这条直线的倾斜角.当直线与x 轴平行或重合时,规定它的倾斜角为0°.(2)倾斜角的范围为[0,π). 2.直线的斜率(1)定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan_α,倾斜角是90°的直线没有斜率.(2)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1=y 1-y 2x 1-x 2.3.直线方程1.利用两点式计算斜率时易忽视x 1=x 2时斜率k 不存在的情况.2.用直线的点斜式求方程时,在斜率k 不明确的情况下,注意分k 存在与不存在讨论,否则会造成失误.3.直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式. 4.由一般式Ax +By +C =0确定斜率k 时易忽视判断B 是否为0,当B =0时,k 不存在;当B ≠0时,k =-A B.[试一试]1.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m 是( ) A .1 B .2 C .-12D .2或-12解析:选D 当2m 2+m -3≠0时,即m ≠1或m ≠-32时,在x 轴上截距为4m -12m 2+m -3=1,即2m 2-3m -2=0,故m =2或m =-12.2.过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为________. 解析:∵k MN =m -4-2-m =1,∴m =1.答案:13.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为________. 解析:①若直线过原点,则k =-43,所以y =-43x ,即4x +3y =0.②若直线不过原点. 设x a +ya =1,即x +y =a . 则a =3+(-4)=-1, 所以直线的方程为x +y +1=0. 答案:4x +3y =0或x +y +1=01.求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界线,遇到斜率要谨记,存在与否需讨论”.2.求直线方程的一般方法(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程,选择时,应注意各种形式的方程的适用范围,必要时要分类讨论.(2)待定系数法,具体步骤为: ①设所求直线方程的某种形式; ②由条件建立所求参数的方程(组); ③解这个方程(组)求出参数; ④把参数的值代入所设直线方程. [练一练]1.直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4 D.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π 解析:选B 设倾斜角为θ,则有tan θ=-sin α其中sin α∈[-1,1].又θ∈[0,π),∴0≤θ≤π4或3π4≤θ<π. 2.过点(5,10)且到原点的距离是5的直线的方程为________. 解析:当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0. 由点到直线的距离公式,得|10-5k |k 2+1=5, 解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0. 答案:x -5=0或3x -4y +25=0直线的倾斜角与斜率1.(2013·秦皇岛模拟)直线x +3y +1=0的倾斜角是( ) A.π6B.π3C.2π3D.5π6解析:选D 由直线的方程得直线的斜率为k =-33,设倾斜角为α,则tan α=-33,又α∈[0,π),所以α=5π6.2.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎡⎭⎫π6,π4∪⎣⎡⎭⎫2π3,π则k 的取值范围是________. 解析:当α∈⎣⎡⎭⎫π6,π4时,k =tan α∈⎣⎡⎭⎫33,1; 当α∈⎣⎡⎭⎫2π3,π时,k =tan α∈[)-3,0. 综上k ∈[)-3,0∪⎣⎡⎭⎫33,1.答案:[)-3,0∪⎣⎡⎭⎫33,1[类题通法]1.求倾斜角的取值范围的一般步骤: (1)求出斜率k =tan α的取值范围;(2)利用三角函数的单调性,借助图像或单位圆数形结合,确定倾斜角α的取值范围. 2.求倾斜角时要注意斜率是否存在.直线方程[典例] 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12. [解] (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0<α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0.(2)由题设知截距不为0,设直线方程为x a +y12-a =1,又因为直线过点(-3,4),所以-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. [类题通法]1.在求直线方程时,应选择适当的形式,并注意各种形式的适用条件. 2.对于点斜式、截距式方程使用时要注意分类讨论思想的运用. [针对训练]经过点P (-5,-4),且与两坐标轴围成的三角形的面积为5的直线方程是( ) A .8x +5y +20=0或2x -5y -12=0 B .8x -5y -20=0或2x -5y +10=0 C .8x +5y +10=0或2x +5y -10=0 D .8x -5y +20=0或2x -5y -10=0解析:选D 由题意设所求方程为y +4=k (x +5),即kx -y +5k -4=0.由12·|5k -4|·|4k -5|=5得,k =85或k =25.直线方程的综合应用角度一 与基本不等式相结合求最值问题1.已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.求:(1)当|OA |+|OB |取得最小值时,直线l 的方程; (2)当|MA |2+|MB |2取得最小值时,直线l 的方程. 解:(1)设A (a,0),B (0,b )(a >0,b >0). 设直线l 的方程为x a +y b =1,则1a +1b=1,所以|OA |+|OB |=a +b =(a +b )⎝⎛⎭⎫1a +1b =2+a b +ba≥2+2a b ·ba=4, 当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0. (2)设直线l 的斜率为k ,则k <0,直线l 的方程为y -1=k (x -1),则A ⎝⎛⎭⎫1-1k ,0,B (0,1-k ), 所以|MA |2+|MB |2=⎝⎛⎭⎫1-1+1k 2+12+12+(1-1+k )2=2+k 2+1k2≥2+2k 2·1k 2=4,当且仅当k 2=1k2,即k =-1时,|MA |2+|MB |2取得最小值4,此时直线l 的方程为x +y -2=0.角度二 直线方程与平面向量的综合2.已知直线l 过点M (2,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.求当MA ·MB 取得最小值时,直线l 的方程.解:设A (a,0),B (0,b )则a >0,b >0,直线l 的方程为x a +y b =1,所以2a +1b =1.故MA ·MB =-MA ·MB =-(a -2,-1)·(-2,b -1)=2(a -2)+b -1=2a +b -5=(2a +b )⎝⎛⎭⎫2a +1b -5=2b a +2ab≥4,当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0. [类题通法]1.含有参数的直线方程可看作直线系方程,这时要能够整理成过两条定直线交点的直线系,即能够看出“动中有定”.2.求解与直线方程有关的最值问题,选设出直线方程,建立目标函数,再利用基本不等式求解最值.第二节两直线的位置关系1.两直线的位置关系2.两直线的交点设两条直线的方程是l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,两条直线的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解,若方程组有唯一解,则两条直线相交,此解就是交点坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立.3.几种距离 (1)两点间的距离:平面上的两点A (x 1,y 1),B (x 2,y 2)间的距离公式 d (A ,B )=|AB |(2)点到直线的距离:点P (x 1,y 1)到直线l :Ax +By +C =0的距离d(3)两条平行线间的距离:两条平行线Ax +By +C1=0与Ax +By +C 2=0间的距离d1.在判断两直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x ,y 的系数分别相等这一条件盲目套用公式导致出错.[试一试]1.(2013·长春调研)已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( )A.1710 B.175 C .8D .2解析:选D ∵63=m 4≠14-3,∴m =8,直线6x +my +14=0可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2.2.已知p :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,q :a =-1,则p 是q 的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选A 由于直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行的充要条件是1×a -(-1)×1=0,即a =-1.1.与已知直线垂直及平行的直线系的设法与直线Ax +By +C =0(A 2+B 2≠0)垂直和平行的直线方程可设为: (1)垂直:Bx -Ay +m =0; (2)平行:Ax +By +n =0. 2.转化思想在对称问题中的应用对称问题一般是将线与线的对称转化为点与点的对称,利用坐标转移法. [练一练]1.点(2,3)关于直线x +y +1=0的对称点是________.解析:设对称点为(a ,b ),则⎩⎨⎧b -3a -2=1,a +22+b +32+1=0,解得⎩⎪⎨⎪⎧a =-4,b =-3. 答案:(-4,-3)2.(2014·张家口质检)已知直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则直线l 的方程为________.解析:由直线l 与直线2x -3y +4=0垂直,可知直线l 的斜率是-32,由点斜式可得直线l 的方程为y -2=-32(x +1),即3x +2y -1=0.答案:3x +2y -1=0两直线平行与垂直1.已知过点A (-2,m )和点B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10B .-2C .0D .8解析:选A ∵l 1∥l 2, ∴k AB =4-mm +2=-2.解得m =-8. 又∵l 2⊥l 3,∴-1n ×(-2)=-1,解得n =-2,∴m +n =-10.2.“a =2”是“直线ax +2y =0与直线x +y =1平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 解析:选C 当a =2时,直线ax +2y =0即x +y =0与直线x +y =1平行;当直线ax +2y =0与直线x +y =1平行时,-a2=-1,a =2.综上所述,“a =2”是“直线ax +2y =0与直线x +y =1平行”的充要条件,故选C.3.经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程为________.解析:法一 由方程组⎩⎪⎨⎪⎧ x -2y +4=0,x +y -2=0,得⎩⎪⎨⎪⎧x =0,y =2,即P (0,2). ∵l ⊥l 3,∴直线l 的斜率k 1=-43,∴直线l 的方程为y -2=-43x ,即4x +3y -6=0.法二 ∵直线l 过直线l 1和l 2的交点,∴可设直线l 的方程为x -2y +4+λ(x +y -2)=0, 即(1+λ)x +(λ-2)y +4-2λ=0. ∵l 与l 3垂直,∴3(1+λ)+(-4)(λ-2)=0, ∴λ=11,∴直线l 的方程为12x +9y -18=0,即4x +3y -6=0. 答案:4x +3y -6=0 [类题通法]充分掌握两直线平行与垂直的条件是解决本题的关键,对于斜率都存在且不重合的两条直线l 1和l 2,l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1·k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率是多少一定要特别注意.距离问题[典例] 已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,在坐标平面内求一点P ,使|P A |=|PB |,且点P 到直线l 的距离为2.解:设点P 的坐标为(a ,b ). ∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2). 而AB 的斜率k AB =-3+14-2=-1, ∴线段AB 的垂直平分线方程为 y +2=x -3, 即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上, ∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2, ∴|4a +3b -2|5=2, 即4a +3b -2=±10,②由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4,或⎩⎨⎧a =277,b =-87.∴所求点P 的坐标为(1,-4)或⎝⎛⎭⎫277,-87. [类题通法]1.点到直线的距离问题可直接代入点到直线的距离公式去求.注意直线方程为一般式. 2.动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而计算简便,如本例中|P A |=|PB |这一条件的转化处理.[针对训练]与直线7x +24y -5=0平行,并且到它的距离等于3的直线方程是______________________.解析:设所求直线方程为7x +24y +m =0, 由3=|m +5|72+242,∴m =70或-80.答案:7x +4y -80=0或7x +24y +70=0对称问题角度一 点关于点的对称1.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,求直线l 的方程.解:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上, 代入l 2的方程得-a -3(2a -6)+10=0, 解得a =4,即点A (4,0)在直线l 上, 所以直线l 的方程为x +4y -4=0. 角度二 点关于线对称2.已知直线l :2x -3y +1=0,点A (-1,-2),求点A 关于直线l 的对称点A ′的坐标. 解:设A ′(x ,y ),再由已知得⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413,故A ′⎝⎛⎭⎫-3313,413. 角度三 线关于线对称3.在[角度二]的条件下,求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程. 解:在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设对称点M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝⎛⎭⎫a +22-3×⎝⎛⎭⎫b +02+1=0,b -0a -2×23=-1,得M ′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0, 得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0. 角度四 对称问题的应用4.光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上的C点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程.解:作出草图,如图所示,设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为y -66+4=x -11+2,即10x -3y +8=0.[类题通法]解决对称问题的方法(1)中心对称①点P (x ,y )关于O (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y . ②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有⎩⎪⎨⎪⎧n -b m -a ×⎝⎛⎭⎫-A B =-1,A ·a +m 2+B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.第三节圆的方程1.圆的定义及方程2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.对于方程x 2+y 2+Dx +Ey +F =0表示圆时易忽视D 2+E 2-4F >0这一成立条件. [试一试]方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( ) A.14<m <1 B .m <14或m >1C .m <14D .m >1解析:选B 由(4m )2+4-4×5m >0知m <14或m >1.1.确定一个圆的方程,需要三个独立条件.“选形式、定参数”是求圆的方程的基本方法:是指根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.2.求圆的方程时,要注意应用圆的几何性质简化运算. (1)圆心在过切点且与切线垂直的直线上. (2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线. [练一练]1.圆心在y 轴上且通过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A .x 2+y 2+10y =0 B .x 2+y 2-10y =0 C .x 2+y 2+10x =0D .x 2+y 2-10x =0解析:选B 设圆心为(0,b ),半径为r ,则r =|b |, ∴圆的方程为x 2+(y -b )2=b 2. ∵点(3,1)在圆上,∴9+(1-b )2=b 2,解得:b =5. ∴圆的方程为x 2+y 2-10y =0.2.以直线3x -4y +12=0夹在两坐标轴间的线段为直径的圆的方程为______________. 解析:法一:直线3x -4y +12=0与两坐标轴的交点分别为A (-4,0),B (0,3),所以线段AB 的中点为C ⎝⎛⎭⎫-2,32,|AB |=5. 故所求圆的方程为(x +2)2+⎝⎛⎭⎫y -322=⎝⎛⎭⎫522. 法二:易得圆的直径的两端点为A (-4,0),B (0,3), 设P (x ,y )为圆上任一点,则P A ⊥PB.∴k P A ·k PB =-1得y x +4·y -3x =-1(x ≠-4,x ≠0),即x (x +4)+y (y -3)=0. 化简得(x +2)2+⎝⎛⎭⎫y -322=⎝⎛⎭⎫522. 答案:(x +2)2+⎝⎛⎭⎫y -322=254圆的方程1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1 解析:选A 设圆心坐标为(0,b ),则由题意知(0-1)2+(b -2)2=1,解得b =2,故圆的方程为x 2+(y -2)2=1.2.经过点(1,0),且圆心是两直线x =1与x +y =2的交点的圆的方程为( ) A .(x -1)2+y 2=1 B .(x -1)2+(y -1)2=1 C .x 2+(y -1)2=1D .(x -1)2+(y -1)2=2解析:选B 由⎩⎪⎨⎪⎧ x =1,x +y =2得⎩⎪⎨⎪⎧x =1,y =1,即所求圆的圆心坐标为(1,1),又由该圆过点(1,0),得其半径为1,故圆的方程为(x -1)2+(y -1)2=1.3. 过直线2x +y +4=0和圆(x +1)2+(y -2)2=4的交点,并且面积最小的圆的方程为( )A .x 2+y 2+265x -125y +375=0B .x 2+y 2+265x -125y -375=0C .x 2+y 2-265x -125y +375=0D .x 2+y 2-265x -125y -375=0解析:选A 设所求圆的方程为(x +1)2+(y -2)2-4+k (2x +y +4)=0,即x 2+y 2+2(k +1)x +(k -4)y +1+4k =0,化为圆的标准方程得[x +(k +1)]2+⎣⎡⎦⎤y +12(k -4)2=(k +1)2+14(k -4)2-(4k +1),由(k +1)2+14(k -4)2-(1+4k )>0,得5k 2-16k +16>0,此时,所求圆的半径r=(k +1)2+14(k -4)2-(1+4k )=125k 2-16k +16.显然,当k =--1610,即k =85时,5k 2-16k +16有最小值165,此时,圆的半径最小,从而面积最小.故所求的圆的方程为x 2+y 2+265x -125y +375=0.[类题通法]1.利用待定系数法求圆的方程关键是建立关于a ,b ,r 或D ,E ,F 的方程组. 2.利用圆的几何性质求方程可直接求出圆心坐标和半径,进而写出方程,体现了数形结合思想的运用.与圆有关的最值问题角度一 斜率型最值问题1.已知实数x ,y 满足方程x 2+y 2-4x +1=0.求yx 的最大值和最小值.解:原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆. yx的几何意义是圆上一点与原点连线的斜率,所以设yx=k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1= 3,解得k =±3.(如图)所以yx 的最大值为3,最小值为- 3.角度二 截距型最值问题2.在[角度一]条件下求y -x 的最大值和最小值.解:y -x 可看作是直线y =x +b 在y 轴上的截距,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2= 3,解得b =-2±6.(如图)所以y -x 的最大值为-2+6,最小值为-2- 6. 角度三 距离型最值问题3.在[角度一]条件下求x 2+y 2的最大值和最小值.解:x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.(如图)又圆心到原点的距离为(2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是()2-32=7-4 3. 角度四 利用对称性求最值4.(2013·重庆高考)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4 B.17-1 C .6-2 2D.17解析:选A 两圆的圆心均在第一象限,先求|PC 1|+|PC 2|的最小值,作点C 1关于x 轴的对称点C ′1(2,-3),则(|PC 1|+|PC 2|)min =|C ′1C 2|=52,所以(|PM |+|PN |)min =52-(1+3)=52-4.[类题通法]数形结合法求解与圆有关的最值问题(1)形如t =y -b x -a 形式的最值问题,可转化为动直线斜率的最值问题;(2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题;(3)形如t =(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的最值问题.与圆有关的轨迹问题[典例] xOy 中,已知圆为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程; (2)若P 点到直线y =x 的距离为22,求圆P 的方程. [解] (1)设P (x ,y ),圆P 的半径为r .由题设y 2+2=r 2,x 2+3=r 2,从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1. (2)设P (x 0,y 0).由已知得|x 0-y 0|2=22.又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧|x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧ x 0-y 0=1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3. 由⎩⎪⎨⎪⎧ x 0-y 0=-1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=1.此时,圆P 的半径r = 3. 故圆P 的方程为x 2+(y -1)2=3或x 2+(y +1)2=3. [类题通法]求与圆有关的轨迹问题时,根据题设条件的不同常采用以下做法 (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据圆、直线等定义列方程. (3)几何法:利用圆与圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等. [针对训练]已知OP =(2+2cos α,2+2sin α),α∈R ,O 为坐标原点,向量OQ 满足OP +OQ =0,则动点Q 的轨迹方程是________.解析:设Q (x ,y ),由OP +OQ =(2+2cos α+x,2+2sin α+y )=(0,0),∴⎩⎪⎨⎪⎧x =-2-2cos α,y =-2-2sin α, ∴(x +2)2+(y +2)2=4. 答案:(x +2)2+(y +2)2=4第四节直线与圆、圆与圆的位置关系1.直线与圆的位置关系(半径r ,圆心到直线的距离为d )2.圆与圆的位置关系(两圆半径r 1、r 2,d =|O 1O 2|)1.对于圆的切线问题,尤其是圆外一点引圆的切线,易忽视切线斜率k 不存在情形. 2.两圆相切问题易忽视分两圆内切与外切两种情形. [试一试]1.(2014·石家庄模拟)过点(2,3)与圆(x -1)2+y 2=1相切的直线的方程为________. 解析:设圆的切线方程为y =k (x -2)+3,由圆心(1,0)到切线的距离为半径1,得k =43,所以切线方程为4x -3y +1=0,又直线x =2也是圆的切线,所以直线方程为4x -3y +1=0或x =2.答案:x =2或4x -3y +1=02.(2013·北京东城模拟)已知圆C :x 2+y 2-6x +8=0, 则圆心C 的坐标为________;若直线y =kx 与圆C 相切,且切点在第四象限,则k =________.解析:圆的方程可化为(x -3)2+y 2=1,故圆心坐标为(3,0);由|3k |1+k 2=1, 解得k =±24,根据切点在第四象限,可得k =-24. 答案:(3,0) -241.圆的切线问题(1)过圆x 2+y 2=r 2(r >0)上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2;(2)过圆x 2+y 2+Dx +Ey +F =0外一点M (x 0,y 0)引切线,有两条,求方程的方法是待定系数法,切点为T 的切线长公式为|MT |= x 20+y 20+Dx 0+Ey 0+F =|MC |2-r 2(其中C 为圆C 的圆心,r 为其半径).2.求圆的弦长的常用方法(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2. (2)代数方法:运用根与系数的关系及弦长公式: |AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. 注意:常用几何法研究圆的弦的有关问题. [练一练]1.(2014·泉州模拟)过坐标原点且与圆x 2-4x +y 2+2=0相切的直线方程为( ) A .x +y =0 B .x -y =0C .x +y =0或x -y =0D .x +3y =0或x -3y =0解析:选C 圆x 2-4x +y 2+2=0的圆心为(2,0),半径为2,易知过原点与该圆相切时,直线必有斜率.设斜率为k ,则直线方程为y =kx ,则|2k |k 2+1=2, ∴k 2=1,∴k =±1, ∴直线方程为y =±x .2.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34D .-68解析:选B ∵弦长为8,圆的半径为5, ∴弦心距为52-42=3,∵圆心坐标为(1,-2), ∴|5×1-12×(-2)+c |13=3,∴c =10或c =-68.直线与圆的位置关系1.(2013·陕西高考)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定解析:选B 由点M 在圆外,得a 2+b 2>1,∴圆心O 到直线ax +by =1的距离d =1a 2+b 2<1,则直线与圆O 相交.2.(2014·江南十校联考)直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同交点的一个充分不必要条件是( )A .-3<m <1B .-4<m <2C .0<m <1D .m <1解析:选C 根据直线与圆有两个不同的交点,可知圆心到直线的距离d 小于半径. ∵圆x 2+y 2-2x -1=0可化为(x -1)2+y 2=2,即圆心是(1,0),半径是2, ∴d =|1-0+m |2<2,∴|m +1|<2,∴-3<m <1,由题意知m 的取值范围应是(-3,1)的一个真子集,故选C. [类题通法]判断直线与圆的位置关系常见的方法(1)几何法:利用d 与r 的关系.(2)代数法:联立方程随之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.切线、弦长问题[典例] +y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0[解析] 根据平面几何知识,直线AB 一定与点(3,1),(1,0)的连线垂直,这两点连线的斜率为12,故直线AB 的斜率一定是-2,只有选项A 中直线的斜率为-2.[答案] A(2)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.[解析] 最短弦为过点(3,1),且垂直于点(3,1)与圆心的连线的弦,易知弦心距d =(3-2)2+(1-2)2=2,所以最短弦长为2r 2-d 2=222-(2)2=2 2. [答案] 2 2 [类题通法]1.处理直线与圆的弦长问题时多用几何法,即弦长一半、弦心距、半径构成直角三角形. 2.圆的切线问题的处理要抓住圆心到直线的距离等于半径建立关系解决问题. [针对训练](2014·济南模拟)已知直线ax +by +c =0与圆O :x 2+y 2=1相交于A ,B 两点,且|AB |= 3,则OA ·OB 的值是( ) A .-12B.12 C .-34D .0解析:选A 在△OAB 中,|OA |=|OB |=1,|AB |= 3,可得∠AOB =120°,所以OA ·OB =1×1×cos 120°=-12.圆与圆的位置关系[典例] 12:(x +m )2+∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是________.[解析] 由两圆在点A 处的切线互相垂直,可知两切线分别过另一圆的圆心,即AO 1⊥AO 2,在直角三角形AO 1O 2中,(25)2+(5)2=m 2,∴m =±5,|AB |=2×25×55=4. [答案] 4在本例条件下求AB 所在的直线方程.解:由本例可知m =±5.当m=5时,⊙O1:x2+y2=5,①⊙O2:x2+y2+10x+5=0.②②-①得,x=-1,即AB所在直线方程为x=-1.当m=-5时,⊙O1:x2+y2=5,①⊙O2:x2+y2-10x+5=0.②②-①得,x=1,即AB所在直线方程为x=1.∴AB所在的直线方程为x=1或x=-1.[类题通法]1.两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.[针对训练]与圆x2+y2+4x-4y+7=0和x2+y2-4x-10y+13=0都相切的直线共有()A.1条B.2条C.3条D.4条解析:选C由题意知,两圆圆心分别为(-2,2)与(2,5),半径分别为1和4,圆心距为(-2-2)2+(2-5)2=5,显然两圆外切,故公切线的条数为3.第五节椭圆1.椭圆的定义(1)满足以下条件的点的轨迹是椭圆:①在平面内;②与两个定点F1、F2的距离之和等于常数;③常数大于|F1F2|.(2)焦点:两定点.(3)焦距:两焦点间的距离.2.椭圆的标准方程和几何性质1.椭圆的定义中易忽视2a >|F 1F 2|这一条件,当2a =|F 1F 2|其轨迹为线段F 1F 2,当2a <|F 1F 2|不存在轨迹.2.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x 2a 2+y 2b 2=1(a >b >0).3.注意椭圆的范围,在设椭圆x 2a 2+y 2b 2=1(a >b >0)上点的坐标为P (x ,y )时,则|x |≤a ,这往往在求与点P 有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.[试一试]若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( ) A.x 25+y 2=1 B.x 24+y 25=1 C.x 25+y 2=1或x 24+y 25=1 D .以上答案都不对解析:选C 直线与坐标轴的交点为(0,1),(-2,0),由题意知当焦点在x 轴上时,c =2,b =1,∴a 2=5,所求椭圆的标准方程为x 25+y 2=1.当焦点在y 轴上时,b =2,c =1,∴a 2=5,所求椭圆标准方程为y 25+x 24=1.故选C.1.求椭圆标准方程的方法(1)定义法:根据椭圆定义,确定a 2,b 2的值,再结合焦点位置,直接写出椭圆方程. (2)待定系数法:根据椭圆焦点是在x 轴还是y 轴上,设出相应形式的标准方程,然后根据条件确定关于a ,b ,c 的方程组,解出a 2,b 2,从而写出椭圆的标准方程.2.椭圆上任意一点M 到焦点F 的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a +c ,最小距离为a -c .3.求椭圆离心率e 时,只要求出a ,b ,c 的一个齐次方程,再结合b 2=a 2-c 2就可求得e (0<e <1).[练一练]1.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是( )A.33B.22C.14D.12解析:选D 在双曲线中m 2+n 2=c 2,又2n 2=2m 2+c 2,解得m =c2,又c 2=am ,故椭圆的离心率e =c a =12.2.椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,则这个椭圆方程为________.解析:由题意知⎩⎪⎨⎪⎧a -c =3,c a =12,解得⎩⎨⎧a =23,c = 3.∴椭圆方程为x 212+y 29=1或y 212+x 29=1.答案:x 212+y 29=1或y 212+x 29=1椭圆的定义及标准方程1.(2014·三明模拟)设F 1,F 2是椭圆x 49+y 24=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=4∶3,则△PF 1F 2的面积为( )A .30B .25C .24D .40解析:选C ∵|PF 1|+|PF 2|=14, 又|PF 1|∶|PF 2|=4∶3, ∴|PF 1|=8,|PF 2|=6. ∵|F 1F 2|=10,∴PF 1⊥PF 2.∴S △PF 1F 2=12|PF 1|·|PF 2|=12×8×6=24.2.(2014·烟台质检)一个椭圆中心在原点,焦点F 1,F 2在x 轴上,P (2, 3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆方程为( )A.x 28+y 26=1 B.x 216+y 26=1 C.x 28+y 24=1 D.x 216+y 24=1解析:选A 设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点P (2, 3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2·2c ,c a =12,又c 2=a 2-b 2,联立得a 2=8,b 2=6.3.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( )A.x 264-y 248=1 B.x 248+y 264=1 C.x 248-y 264=1 D.x 264+y 248=1 解析:选D 设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16,∴M 的轨迹是以C 1、C 2为焦点的椭圆,且2a =16,2c =8,故所求的轨迹方程为x 264+y 248=1.[类题通法]1.椭圆定义的应用主要有两个方面:一是利用定义求椭圆的标准方程;二是利用定义求焦点三角形的周长、面积及弦长、最值和离心率等.2.利用定义和余弦定理可求得|PF 1|·|PF 2|,再结合|PF 1|2+|PF 2|2=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2| 进行转化,可求焦点三角形的周长和面积.3.当椭圆焦点位置不明确时,可设为x 2m +y 2n =1(m >0,n >0,m ≠n ),也可设为Ax 2+By 2=1(A >0,B >0,且A ≠B ).椭圆的几何性质[典例] (2013·福建高考)椭圆Γ:x a 2+y b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c ,若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.[解析] 直线y =3(x +c )过点F 1,且倾斜角为60°,所以∠MF 1F 2=60°,从而∠MF 2F 1=30°,所以MF 1⊥MF 2.在Rt △MF 1F 2中,|MF 1|=c ,|MF 2|=3c ,所以该椭圆的离心率e =2c 2a =2cc +3c =3-1.[答案] 3-1本例条件变为“过F1,F2的两条互相垂直的直线l1,l2的交点在椭圆的内部”求离心率的取值范围.解:作图分析可知以线段F1F2为直径的圆在椭圆的内部,所以c<b,从而c2<b2,即c2<a2-c2,⎝⎛⎭⎫ca2<12,0<ca<22,故e∈⎝⎛⎭⎫0,22.[类题通法]椭圆几何性质的应用技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式.例如-a≤x≤a,-b≤y≤b,0<e<1,在求椭圆的相关量的范围时,要注意应用这些不等关系.[针对训练]1.椭圆x29+y24+k=1的离心率为45,则k的值为()A.-21B.21C.-1925或21 D.1925或21解析:选C若a2=9,b2=4+k,则c=5-k,由ca=45,即5-k3=45,得k=-1925;若a2=4+k,b2=9,则c=k-5,由ca=45,即k-54+k=45,解得k=21.2.若椭圆上存在点P,使得点P到两个焦点的距离之比为2∶1,则此椭圆离心率的取值范围是()A.[14,13] B.[13,12]C.(13,1) D.[13,1)解析:选D设P到两个焦点的距离分别为2k,k,根据椭圆定义可知:3k=2a,又结合椭圆的性质可知.椭圆上的点到两个焦点距离之差的最大值为2c,即k≤2c,∴2a≤6c,即e≥13.又∵0<e<1,∴13≤e<1.直线与椭圆的位置关系[典例] (2013·天津高考)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC ·DB +AD ·CB =8,求k 的值.[解] (1)设F (-c,0),由c a =33,知a =3c .过点F 且与x 轴垂直的直线的方程为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b 3,于是26b 3=433,解得b =2,又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧y =k (x +1),x 23+y 22=1,消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0. 由根与系数的关系可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0)所以AC ·DB +AD ·CB =(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1) =6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2 =6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.[类题通法]1.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.2.直线和椭圆相交的弦长公式 |AB |= (1+k 2)[(x 1+x 2)2-4x 1x 2]或|AB |= ⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2].[针对训练](2013·全国新课标Ⅱ)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1 (a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.解:(1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1, 由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3. 所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1,解得⎩⎨⎧x =433,y =-33,或⎩⎨⎧x =0,y = 3.因此|AB |=463.由题意可设直线CD 的方程为y =x +n ⎝⎛⎭⎫-533<n <3, 设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y 23=1得3x 2+4nx +2n 2-6=0. 于是x 3,4=-2n ±2(9-n 2)3.因为直线CD 的斜率为1,所以|CD |=2|x 4-x 3|=439-n 2. 由已知,四边形ACBD 的面积S =12|CD |·|AB |=8699-n 2.当n =0时,S 取得最大值,最大值为863.。
(人教A版,理科)2015届高考数学一轮细讲精练【第八篇】解析几何
第八篇解析几何第1讲直线与方程[最新考纲]1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知识梳理知识梳理1.直线的倾斜角与斜率(1)直线的倾斜角①定义:当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角;②规定:当直线l与x轴平行或重合时,规定它的倾斜角为0;③范围:直线的倾斜角α的取值范围是[0,π).(2)直线的斜率①定义:当直线l的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条斜线的斜率,斜率通常用小写字母k表示,即k=tan_α;②斜率公式:经过两点P1(x1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1. 2.直线方程的五种形式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.辨 析 感 悟1.对直线的倾斜角与斜率的理解(1)坐标平面内的任何一条直线均有倾斜角与斜率.(×) (2)过点M (a ,b ),N (b ,a )(a ≠b )的直线的倾斜角是45°.(×)(3)(教材习题改编)若三点A (2,3),B (a,1),C (0,2)共线,则a 的值为-2.(√) 2.对直线的方程的认识(4)经过点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示.(×)(5)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.(√)(6)直线l 过点P (1,2)且在两坐标轴上的截距相等,则直线l 的方程为x +y -3=0.(×) [感悟·提升]1.直线的倾斜角与斜率的关系 斜率k 是一个实数,当倾斜角α≠90°时,k =tanα.直线都有斜倾角,但并不是每条直线都存在斜率,倾斜角为90°的直线无斜率,如(1).2.三个防范 一是根据斜率求倾斜角,要注意倾斜角的范围,如(2); 二是求直线方程时,若不能断定直线是否具有斜率时,应对斜率存在与不存在加以讨论,如(4);三是在用截距式时,应先判断截距是否为0,若不确定,则需分类讨论,如(6).考点一 直线的倾斜角和斜率【例1】 (1)直线x sin α+y +2=0的倾斜角的取值范围是( ). A .[0,π)B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π C.⎣⎢⎡⎦⎥⎤0,π4 D.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π (2)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( ).A.13B .-13C .-32D.23解析 (1)设直线的倾斜角为θ,则有tan θ=-sin α,其中sin α∈[-1,1],又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.故选B.(2)依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.答案 (1)B (2)B规律方法 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0).【训练1】 经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,求直线l 的倾斜角α的范围. 解 法一 如图所示, k P A =-2-(-1)1-0=-1,k PB =1-(-1)2-0=1, 由图可观察出:直线l 倾斜角α的范围是⎣⎢⎡⎭⎪⎫3π4,π∪⎣⎢⎡⎦⎥⎤0,π4.法二 由题意知,直线l 存在斜率.设直线l 的斜率为k ,则直线l 的方程为y +1=kx ,即kx -y -1=0.∵A ,B 两点在直线的两侧或其中一点在直线l 上. ∴(k +2-1)(2k -1-1)≤0,即2(k +1)(k -1)≤0. ∴-1≤k ≤1.∴直线l 的倾斜角α的范围是⎣⎢⎡⎭⎪⎫3π4,π∪⎣⎢⎡⎦⎥⎤0,π4.考点二 求直线的方程【例2】 求适合下列条件的直线方程:(1)经过点P (3,2),且在两坐标轴上的截距相等;(2)过点A (-1,-3),斜率是直线y =3x 的斜率的-14.(3)过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点,且 |AB |=5.解 (1)法一 设直线l 在x ,y 轴上的截距均为a ,若a =0,即l 过点(0,0)和(3,2), ∴l 的方程为y =23x ,即2x -3y =0. 若a ≠0,则设l 的方程为x a +ya =1, ∵l 过点(3,2),∴3a +2a =1, ∴a =5,∴l 的方程为x +y -5=0,综上可知,直线l 的方程为2x -3y =0或x +y -5=0. 法二 由题意,所求直线的斜率k 存在且k ≠0, 设直线方程为y -2=k (x -3),令y =0,得x =3-2k ,令x =0,得y =2-3k , 由已知3-2k =2-3k , 解得k =-1或k =23,∴直线l 的方程为y -2=-(x -3)或y -2=23(x -3), 即x +y -5=0或2x -3y =0. (2)设所求直线的斜率为k ,依题意 k =-14×3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1), 即3x +4y +15=0.(3)过点A (1,-1)与y 轴平行的直线为x =1. 解方程组⎩⎨⎧x =1,2x +y -6=0,求得B 点坐标为(1,4),此时|AB |=5, 即x =1为所求.设过A (1,-1)且与y 轴不平行的直线为y +1=k (x -1), 解方程组⎩⎨⎧2x +y -6=0,y +1=k (x -1),得两直线交点为⎩⎪⎨⎪⎧x =k +7k +2,y =4k -2k +2.(k ≠-2,否则与已知直线平行) 则B 点坐标为⎝⎛⎭⎪⎫k +7k +2,4k -2k +2. 由已知⎝⎛⎭⎪⎫k +7k +2-12+⎝ ⎛⎭⎪⎫4k -2k +2+12=52, 解得k =-34,∴y +1=-34(x -1),即3x +4y +1=0. 综上可知,所求直线的方程为x =1或3x +4y +1=0.规律方法 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.【训练2】 △ABC 的三个顶点为A (-3,0),B (2,1),C (-2,3),求: (1)BC 所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程.解 (1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0. (2)设BC 中点D 的坐标为(x ,y ),则x =2-22=0,y =1+32=2.BC 边的中线AD 过A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y2=1,即2x -3y +6=0.(3)BC 的斜率k 1=-12,则BC 的垂直平分线DE 的斜率k 2=2,由点斜式得直线DE 的方程为y -2=2(x -0),即2x -y +2=0.考点三 直线方程的综合应用【例3】 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如右图所示,求△ABO 的面积的最小值及此时直线l 的方程.审题路线 根据截距式设所求直线l 的方程⇒把点P 代入,找出截距的关系式⇒运用基本不等式求S △ABO ⇒运用取等号的条件求出截距⇒得出直线l 的方程. 解 设A (a,0),B (0,b ),(a >0,b >0),则直线l 的方程为x a +yb =1, ∵l 过点P (3,2),∴3a +2b =1. ∴1=3a +2b ≥26ab ,即ab ≥24.∴S △ABO =12ab ≥12.当且仅当3a =2b ,即a =6,b =4. △ABO 的面积最小,最小值为12. 此时直线l 的方程为:x 6+y4=1. 即2x +3y -12=0.规律方法 (1)与函数相结合的问题:解决这类问题,一般是利用直线方程中的x ,y 的关系,将问题转化为关于x (或y )的某函数,借助函数的性质解决; (2)与方程、不等式相结合的问题:一般是利用方程、不等式的有关知识(如方程解的个数、根的存在问题,不等式的性质、基本不等式等)来解决.【训练3】 在例3的条件下,求直线l 在两轴上的截距之和最小时直线l 的方程. 解 设l 的斜率为k (k <0),则l 的方程为y =k (x -3)+2,令x =0,得B (0,2-3k ),令y =0,得A ⎝ ⎛⎭⎪⎫3-2k ,0,∴l 在两轴上的截距之和为2-3k +3-2k =5+⎣⎢⎡⎦⎥⎤(-3k )+⎝ ⎛⎭⎪⎫-2k ≥5+26,当且仅当k =-63时,等号成立. ∴k =-63时,l 在两轴上截距之和最小, 此时l 的方程为6x +3y -36-6=0.1.求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界,遇到斜率要谨记,存在与否需讨论”.2.求直线方程中一种重要的方法就是先设直线方程,再求直线方程中的系数,这种方法叫待定系数法.思想方法9——分类讨论思想在求直线方程中的应用【典例】 在平面直角坐标系中,已知矩形ABCD ,AB =2,BC =1,AB 、AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合.将矩形折叠,使A 点落在线段DC 上.若折痕所在直线的斜率为k ,试写出折痕所在直线的方程. 解 (1)当k =0时,此时A 点与D 点重合,折痕所在的直线方程为y =12. (2)当k ≠0时,将矩形折叠后A 点落在线段CD 上的点为G (a,1).所以A 与G 关于折痕所在的直线对称, 有k AG ·k =-1,1a k =-1⇒a =-k .故G 点坐标为G (-k,1),从而折痕所在的直线与AG 的交点坐标(线段AG 的中点)为M ⎝ ⎛⎭⎪⎫-k 2,12.折痕所在的直线方程为y -12=k ⎝ ⎛⎭⎪⎫x +k 2,即y =kx +k 22+12.∴k =0时,y =12;k ≠0时,y =kx +k 22+12.[反思感悟] (1)求直线方程时,要考虑对斜率是否存在、截距相等时是否为零以及相关位置关系进行分类讨论.(2)本题需对斜率k 为0和不为0进行分类讨论,易错点是忽略斜率不存在的情况.【自主体验】1.若直线过点P ⎝ ⎛⎭⎪⎫-3,-32且被圆x 2+y 2=25截得的弦长是8,则该直线的方程为( ).A .3x +4y +15=0B .x =-3或y =-32 C .x =-3D .x =-3或3x +4y +15=0解析 若直线的斜率不存在,则该直线的方程为x =-3,代入圆的方程解得y =±4,故该直线被圆截得的弦长为8,满足条件;若直线的斜率存在,不妨设直线的方程为y +32=k (x +3),即kx -y +3k -32=0,因为该直线被圆截得的弦长为8,故半弦长为4.又圆的半径为5,则圆心(0,0)到直线的距离为52-42=⎪⎪⎪⎪⎪⎪3k -32k 2+1,解得k =-34,此时该直线的方程为3x +4y +15=0. 答案 D2.已知两点A (-1,2),B (m,3),则直线AB 的方程为________. 解析 当m =-1时,直线AB 的方程为x =-1, 当m ≠-1时,直线AB 的方程为 y -2=1m +1(x +1),即y =1m +1x +1m +1+2. 答案 x =-1或y =1m +1x +1m +1+2基础巩固题组(建议用时:40分钟)一、选择题1.直线3x-y+a=0(a为常数)的倾斜角为().A.30°B.60°C.150°D.120°解析直线的斜率为k=tan α=3,又因为α∈[0,π),所以α=60°. 答案 B2.已知直线l经过点P(-2,5),且斜率为-34.则直线l的方程为().A.3x+4y-14=0 B.3x-4y+14=0 C.4x+3y-14=0 D.4x-3y+14=0解析由点斜式,得y-5=-34(x+2),即3x+4y-14=0.答案 A3.若直线(2m2+m-3)x+(m2-m)y=4m-1在x轴上的截距为1,则实数m是().A.1 B.2 C.-12D.2或-12解析 由题意可知2m 2+m -3≠0,即m ≠1且m ≠-32,在x 轴上截距为4m -12m 2+m -3=1,即2m 2-3m -2=0,解得m =2或-12.答案 D4.(2014·佛山调研)直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( ).A .ab >0,bc <0B .ab >0,bc >0C .ab <0,bc >0D .ab <0,bc <0解析 由题意,令x =0,y =-c b >0;令y =0,x =-ca >0.即bc <0,ac <0,从而ab >0. 答案 A5.(2014·郑州模拟)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( ). A.⎝ ⎛⎭⎪⎫-1,15 B.⎝ ⎛⎭⎪⎫-∞,12∪()1,+∞ C .(-∞,1)∪⎝ ⎛⎭⎪⎫15,+∞ D .(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞解析 设直线的斜率为k ,如图,过定点A 的直线经过点B 时,直线l 在x 轴上的截距为3,此时k =-1;过定点A 的直线经过点C 时,直线l 在x 轴的截距为-3,此时k =12,满足条件的直线l 的斜率范围是(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞.答案 D 二、填空题6.(2014·长春模拟)若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________. 解析 ∵k AC =5-36-4=1,k AB =a -35-4=a -3.由于A ,B ,C 三点共线,所以a -3=1,即a =4.答案 47.(2014·温州模拟)直线3x -4y +k =0在两坐标轴上的截距之和为2,则实数k =________.解析 令x =0,得y =k 4;令y =0,得x =-k 3. 则有k 4-k3=2,所以k =-24. 答案 -248.一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.解析 设所求直线的方程为x a +yb =1, ∵A (-2,2)在直线上, ∴-2a +2b =1.①又因直线与坐标轴围成的三角形面积为1, ∴12|a |·|b |=1.②由①②可得(1)⎩⎪⎨⎪⎧ a -b =1,ab =2或(2)⎩⎪⎨⎪⎧a -b =-1,ab =-2.由(1)解得⎩⎪⎨⎪⎧ a =2,b =1或⎩⎪⎨⎪⎧a =-1,b =-2,方程组(2)无解.故所求的直线方程为x 2+y 1=1或x -1+y-2=1,即x +2y -2=0或2x +y +2=0为所求直线的方程. 答案 x +2y -2=0或2x +y +2=0 三、解答题9.(2014·临沂月考)设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上的截距相等,求l 的方程;(2)若l 不经过第二象限,求实数a 的取值范围.解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距为0,当然相等.∴a =2,方程即为3x +y =0.当直线不过原点时,由截距存在且均不为0, 得a -2a +1=a -2,即a +1=1, ∴a =0,方程即为x +y +2=0.综上,l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2, ∴⎩⎨⎧ -(a +1)>0,a -2≤0或⎩⎨⎧-(a +1)=0,a -2≤0.∴a ≤-1. 综上可知a 的取值范围是(-∞,-1].10.已知直线l 过点M (2,1),且分别与x 轴、y 轴的正半轴交于A ,B 两点,O 为原点,是否存在使△ABO 面积最小的直线l ?若存在,求出直线l 的方程;若不存在,请说明理由. 解 存在.理由如下:设直线l 的方程为y -1=k (x -2)(k <0),则A ⎝ ⎛⎭⎪⎫2-1k ,0,B (0,1-2k ),△AOB 的面积S =12(1-2k )⎝ ⎛⎭⎪⎫2-1k =12⎣⎢⎡⎦⎥⎤4+(-4k )+⎝ ⎛⎭⎪⎫-1k ≥12(4+4)=4.当且仅当-4k =-1k ,即k =-12时,等号成立,故直线l 的方程为y -1=-12(x -2),即x +2y -4=0.能力提升题组 (建议用时:25分钟)一、选择题1.(2014·北京海淀一模)已知点A (-1,0),B (cos α,sin α),且|AB |=3,则直线AB 的方程为( ).A .y =3x +3或y =-3x - 3B .y =33x +33或y =-33x -33C .y =x +1或y =-x -1D .y =2x +2或y =-2x - 2 解析 |AB |=(cos α+1)2+sin 2α=2+2cos α=3,所以cos α=12,sin α=±32,所以k AB =±33,即直线AB 的方程为y =±33(x +1),所以直线AB 的方程为y =33x +33或y =-33x -33. 答案 B2.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ). A.⎣⎢⎡⎭⎪⎫π6,π3 B.⎝ ⎛⎭⎪⎫π6,π2 C.⎝ ⎛⎭⎪⎫π3,π2 D.⎣⎢⎡⎦⎥⎤π6,π2 解析 如图,直线l :y =kx -3,过定点P (0,-3),又A (3,0),∴k P A =33,则直线P A 的倾斜角为π6,满足条件的直线l 的倾斜角的范围是⎝ ⎛⎭⎪⎫π6,π2.答案 B 二、填空题3.已知直线x +2y =2分别与x 轴、y 轴相交于A ,B 两点,若动点P (a ,b )在线段AB 上,则ab 的最大值为________.解析 直线方程可化为x2+y =1,故直线与x 轴的交点为A (2,0),与y 轴的交点为B (0,1),由动点P (a ,b )在线段AB 上,可知0≤b ≤1,且a +2b =2,从而a =2-2b ,故ab =(2-2b )b =-2b 2+2b =-2⎝ ⎛⎭⎪⎫b -122+12,由于0≤b ≤1,故当b =12时,ab 取得最大值12. 答案 12三、解答题4.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解 由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33,所以直线l OA :y =x ,l OB :y =-33x ,设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在y =12x 上,且A ,P ,B 三点共线得 ⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32, 所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.第2讲 两条直线的位置关系[最新考纲]1.能根据两条直线的斜率判定这两条直线平行或垂直. 2.能用解方程组的方法求两条相交直线的交点坐标.3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.知 识 梳 理知 识 梳 理1.两直线平行与垂直(1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2的关系为平行. (2)两条直线垂直如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则l 1⊥l 2⇔k 1k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线的交点直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.距离公式 (1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2. 特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2. (2)点到直线的距离公式平面上任意一点P 0(x 0,y 0)到直线l :Ax +By +C =0(A ,B 不同时为0)的距离为d =|Ax 0+By 0+C |A 2+B 2.可以验证,当A =0或B =0时,上式仍成立. (3)两条平行线间的距离公式一般地,两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0(其中A ,B 不同时为0,且C 1≠C 2)间的距离d =|C 1-C 2|A 2+B 2. 辨 析 感 悟1.对两条直线平行与垂直的理解(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2. (×) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.(×)(3)(2013·天津卷改编)已知过点P(2,2)斜率为-12的直线且与直线ax-y+1=0垂直,则a=2. (√) 2.对距离公式的理解(4)点P(x0,y0)到直线y=kx+b的距离为|kx0+b|1+k2. (×)(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.(√)(6)(教材习题改编)两平行直线2x-y+1=0,4x-2y+1=0间的距离是0.(×)[感悟·提升]三个防范一是在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.两条直线都有斜率,可根据判定定理判断,若直线无斜率时,要单独考虑.如(2)中忽视了斜率不存在的情况;二是求点到直线的距离时,若给出的直线不是一般式,则应化为一般式,如(4);三是求两平行线之间的距离时,应先将方程化为一般式,且x,y的系数对应相同,如(6).考点一两条直线平行与垂直【例1】已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0.(1)试判断l1与l2是否平行;(2)l1⊥l2时,求a的值.解 (1)法一 当a =1时, l 1:x +2y +6=0, l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3, l 2:x -y -1=0,l 1不平行于l 2; 当a ≠1且a ≠0时,两直线可化为 l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),l 1∥l 2⇔⎩⎪⎨⎪⎧-a2=11-a ,-3≠-(a +1),解得a =-1,综上可知,a =-1时,l 1∥l 2,否则l 1与l 2不平行.法二 由A 1B 2-A 2B 1=0,得a (a -1)-1×2=0,由A 1C 2-A 2C 1≠0,得a (a 2-1)-1×6≠0,∴l 1∥l 2⇔⎩⎨⎧a (a -1)-1×2=0,a (a 2-1)-1×6≠0,⇔⎩⎨⎧a 2-a -2=0,a (a 2-1)≠6⇒a =-1, 故当a =-1时,l 1∥l 2,否则l 1与l 2不平行.(2)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不成立;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2; 当a ≠1且a ≠0时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由⎝ ⎛⎭⎪⎫-a 2·11-a=-1⇒a =23. 法二 由A 1A 2+B 1B 2=0得a +2(a -1)=0⇒a =23.规律方法 (1)当直线的方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.【训练1】 (2014·长沙模拟)已知过点A (-2,m )和点B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( ).A .-10B .-2C .0D .8 解析 ∵l 1∥l 2,∴k AB =4-m m +2=-2,解得m =-8,又∵l 2⊥l 3,∴⎝ ⎛⎭⎪⎫-1n ×(-2)=-1,解得n =-2,∴m +n =-10. 答案 A考点二 两条直线的交点问题【例2】 求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程. 解 法一 先解方程组⎩⎨⎧3x +2y -1=0,5x +2y +1=0,得l 1,l 2的交点坐标为(-1,2), 再由l 3的斜率35求出l 的斜率为-53, 于是由直线的点斜式方程求出l : y -2=-53(x +1),即5x +3y -1=0.法二 由于l ⊥l 3,故l 是直线系5x +3y +C =0中的一条,而l 过l 1,l 2的交点(-1,2),故5×(-1)+3×2+C =0,由此求出C =-1, 故l 的方程为5x +3y -1=0.法三 由于l 过l 1,l 2的交点,故l 是直线系3x +2y -1+λ(5x +2y +1)=0中的一条,将其整理,得(3+5λ)x +(2+2λ)y +(-1+λ)=0.其斜率-3+5λ2+2λ=-53,解得λ=15, 代入直线系方程即得l 的方程为5x +3y -1=0.规律方法 运用直线系方程,有时会给解题带来方便,常见的直线系方程有:(1)与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ≠C );(2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0;(3)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(其中λ∈R ,此直线系不包括l 2).【训练2】 直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段的中点为P (-1,2),求直线l 的方程.解 法一 设直线l 与l 1的交点为A (x 0,y 0),由已知条件,得直线l 与l 2的交点为B (-2-x 0,4-y 0),并且满足⎩⎨⎧ 4x 0+y 0+3=0,3(-2-x 0)-5(4-y 0)-5=0,即⎩⎨⎧ 4x 0+y 0+3=0,3x 0-5y 0+31=0,解得⎩⎨⎧ x 0=-2,y 0=5,因此直线l 的方程为y -25-2=x -(-1)-2-(-1), 即3x +y +1=0.法二 设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由⎩⎨⎧ kx -y +k +2=0,4x +y +3=0,得x =-k -5k +4. 由⎩⎨⎧kx -y +k +2=0,3x -5y -5=0,得x =-5k -155k -3. 则-k -5k +4+-5k -155k -3=-2,解得k =-3. 因此直线l 的方程为y -2=-3(x +1),即3x +y +1=0.考点三 距离公式的应用【例3】 已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y + 1=0;l 3:x+y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5.若能,求点P 的坐标;若不能,说明理由.解 (1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =⎪⎪⎪⎪⎪⎪a -⎝ ⎛⎭⎪⎫-1222+(-1)2=7510,所以⎪⎪⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪⎪⎪a +12=72,又a >0,解得a =3. (2)假设存在点P ,设点P (x 0,y 0),若P 点满足条件②,则P 点在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12⎪⎪⎪⎪⎪⎪c +125,即c =132或116, 所以2x 0-y 0+132=0或2x 0-y 0+116=0;若P 点满足条件③,由点到直线的距离公式,有|2x 0-y 0+3|5=25|x 0+y 0-1|2, 即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y 0+4=0或3x 0+2=0;由于P 在第一象限,所以3x 0+2=0不可能.联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧ x 0=-3,y 0=12;(舍去)联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧ x 0=19,y 0=3718.所以存在P ⎝ ⎛⎭⎪⎫19,3718同时满足三个条件. 规律方法 (1)在应用两条平行直线间的距离公式时.要注意两直线方程中x ,y 的系数必须对应相同.(2)第(2)问是开放探索性问题,要注意解决此类问题的一般策略.【训练3】 (1)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为( ).A .2x +3y -18=0B .2x -y -2=0C .3x -2y +18=0或x +2y +2=0D .2x +3y -18=0或2x -y -2=0(2)已知两条平行直线,l 1:mx +8y +n =0与l 2:2x +my -1=0间的距离为5,则直线l 1的方程为________.解析 (1)由题意可知所求直线斜率存在,故设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0, 由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k2, ∴k =2或-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0. (2)∵l 1∥l 2,∴m 2=8m ≠n -1,∴⎩⎪⎨⎪⎧ m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2. ①当m =4时,直线l 1的方程为4x +8y +n =0,把l 2的方程写成4x +8y -2=0,∴|n+2|16+64=5,解得n=-22或18.故所求直线的方程为2x+4y-11=0或2x+4y+9=0.②当m=-4时,直线l1的方程为4x-8y-n=0,l2的方程为4x-8y-2=0,∴|-n+2|16+64=5,解得n=-18或22.故所求直线的方程为2x-4y+9=0或2x-4y-11=0.答案(1)D(2)2x±4y+9=0或2x±4y-11=0两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l1,l2,l1∥l2⇔k1=k2;l1⊥l2⇔k1·k2=-1..若有一条直线的斜率不存在,那么另一条直线的斜率一定要特别注意思想方法10——对称变换思想的应用【典例】已知直线l:2x-3y+1=0,点A(-1,-2).求:(1)点A关于直线l的对称点A′的坐标;(2)直线m:3x-2y-6=0关于直线l的对称直线m′的方程;(3)直线l 关于点A (-1,-2)对称的直线l ′的方程.解 (1)设A ′(x ,y ),再由已知⎩⎪⎨⎪⎧ y +2x +1·23=-1,2×x -12-3×y -22+1=0.解得⎩⎪⎨⎪⎧ x =-3313,y =413.∴A ′⎝ ⎛⎭⎪⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上. 设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧ 2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013. 设m 与l 的交点为N ,则由⎩⎨⎧2x -3y +1=0,3x -2y -6=0,得N (4,3). 又∵m ′经过点N (4,3),∴由两点式得直线方程为9x -46y +102=0.(3)设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.[反思感悟] (1)解决点关于直线对称问题要把握两点:点M 与点N 关于直线l 对称,则线段MN 的中点在直线l 上,直线l 与直线MN 垂直.(2)如果是直线或点关于点成中心对称问题,则只需运用中点公式就可解决问题.(3)若直线l 1,l 2关于直线l 对称,则有如下性质:①若直线l 1与l 2相交,则交点在直线l 上;②若点B 在直线l 1上,则其关于直线l 的对称点B ′在直线l 2上.【自主体验】(2013·湖南卷)在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 反射后又回到点P (如图).若光线QR 经过△ABC 的重心,则AP 等于( ).A .2B .1 C.83 D.43 解析 以AB 、AC 所在直线分别为x 轴、y 轴建立平面直角坐标系,则A (0,0),B (4,0),C (0,4),得△ABC 的重心D ⎝ ⎛⎭⎪⎫43,43,设AP =x ,从而P (x,0),x ∈(0,4),由光的几何性质可知点P 关于直线BC 、AC 的对称点P 1(4,4-x ),P 2(-x,0)与△ABC的重心D ⎝ ⎛⎭⎪⎫43,43共线,所以4343+x =43-(4-x )43-4,求得x =43.答案 D基础巩固题组(建议用时:40分钟)一、选择题1.直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( ).A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=0解析 由题意知,直线l 的斜率是-32,因此直线l 的方程为y -2=-32(x +1),即3x +2y -1=0.答案 A2.(2014·济南模拟)已知两条直线l 1:(a -1)x +2y +1=0,l 2:x +ay +3=0平行,则a =( ).A .-1B .2C .0或-2D .-1或2解析 若a =0,两直线方程分别为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a ≠0;当a ≠0时,两直线若平行,则有a -11=2a ≠13,解得a =-1或2.答案 D3.已知直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,则直线l 1与l 2的距离为( ).A.85B.32 C .4 D .8解析 ∵直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,即3x+4y +12=0,∴直线l 1与l 2的距离为⎪⎪⎪⎪⎪⎪12+732+42=32. 答案 B4.(2014·金华调研)当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( ).A .第一象限B .第二象限C .第三象限D .第四象限解析 解方程组⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k得两直线的交点坐标为⎝ ⎛⎭⎪⎪⎫k k -1,2k -1k -1,因为0<k <12,所以k k -1<0,2k -1k -1>0,故交点在第二象限. 答案 B5.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2经过定点( ).A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)解析 直线l 1:y =k (x -4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2经过定点(0,2).答案 B二、填空题6.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.解析 由⎩⎪⎨⎪⎧ y =2x ,x +y =3得⎩⎪⎨⎪⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0,即m ×1+2×2+5=0,∴m =-9.答案 -97.设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线x sin A +ay +c =0与bx -y sin B +sin C =0的位置关系是________.解析 由a sin A =b sin B ,得b sin A -a sin B =0.∴两直线垂直.答案 垂直8.若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是:①15°;②30°;③45°;④60°;⑤75°.其中正确答案的序号是________.解析 很明显直线l 1∥l 2,直线l 1,l 2间的距离为d =|1-3|2=2,设直线m 与直线l 1,l 2分别相交于点B ,A ,则|AB |=22,过点A 作直线l 垂直于直线l 1,垂足为C ,则|AC |=d =2,则在Rt △ABC 中,sin ∠ABC =|AC ||AB |=222=12,所以∠ABC =30°,又直线l 1的倾斜角为45°,所以直线m 的倾斜角为45°+30°=75°或45°-30°=15°.答案 ①⑤三、解答题9.已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,求m 的值,使得:(1)l 1与l 2相交; (2)l 1⊥l 2; (3)l 1∥l 2; (4)l 1,l 2重合.解 (1)由已知1×3≠m (m -2),即m 2-2m -3≠0,解得m ≠-1且m ≠3.故当m ≠-1且m ≠3时,l 1与l 2相交.(2)当1·(m -2)+m ·3=0,即m =12时,l 1⊥l 2.(3)当1×3=m (m -2)且1×2m ≠6×(m -2)或m ×2m ≠3×6,即m =-1时,l 1∥l 2.(4)当1×3=m (m -2)且1×2m =6×(m -2),即m =3时,l 1与l 2重合.10.求过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)的距离为2的直线方程.解 由⎩⎨⎧ x -2y +3=0,2x +3y -8=0,解得⎩⎨⎧x =1,y =2,∴l 1,l 2的交点为(1,2),设所求直线方程为y -2=k (x -1),即kx -y +2-k =0,∵P (0,4)到直线的距离为2,∴2=|-2-k |1+k2, 解得k =0或43.∴直线方程为y =2或4x -3y +2=0.能力提升题组(建议用时:25分钟)一、选择题1.设两条直线的方程分别为x +y +a =0和x +y +b =0,已知a ,b 是关于x 的方程x 2+x +c =0的两个实数根,且0≤c ≤18,则这两条直线之间的距离的最大值和最小值分别为( ). A.24,12 B.2,22 C.2,12 D.22,12解析 ∵d =|a -b |2,a +b =-1,ab =c ,又|a -b |=1-4c ∈⎣⎢⎡⎦⎥⎤22,1,从而d max=22,d min =12.答案 D2.(2014·武汉调研)已知A ,B 两点分别在两条互相垂直的直线2x -y =0与x +ay =0上,且AB 线段的中点为P ⎝ ⎛⎭⎪⎫0,10a ,则线段AB 的长为( ).A .11B .10C .9D .8解析 由两直线垂直,得-1a ·2=-1,解得a =2.所以中点P 的坐标为(0,5).则OP =5,在直角三角形中斜边的长度AB =2OP =2×5=10,所以线段AB 的长为10.答案 B二、填空题3.已知0<k <4,直线l 1:kx -2y -2k +8=0和直线l 2:2x +k 2y -4k 2-4=0与 两坐标轴围成一个四边形,则使得这个四边形面积最小的k 值为________.解析 由题意知直线l 1,l 2恒过定点P (2,4),直线l 1的纵截距为4-k ,直线l 2的横截距为2k 2+2,如图,所以四边形的面积S =2k 2×2+(4-k +4)×2×12=4k 2-k +8,故面积最小时,k =18.答案 18三、解答题4.(1)在直线l :3x -y -1=0上求一点P ,使得P 到A (4,1)和B (0,4)的距离之差最大;(2)在直线l :3x -y -1=0上求一点Q ,使得Q 到A (4,1)和C (3,4)的距离之和最小.图1图1解 (1)如图1,设点B 关于l 的对称点B ′的坐标为(a ,b ),直线l 的斜率为k 1,则k 1·k BB ′=-1.即3·b -4a =-1. ∴a +3b -12=0.①又由于线段BB ′的中点坐标为⎝ ⎛⎭⎪⎫a 2,b +42,且在直线l 上, ∴3×a 2-b +42-1=0.即3a -b -6=0.②解①②得a =3,b =3,∴B ′(3,3).于是AB ′的方程为y -13-1=x -43-4,即2x +y -9=0. 解⎩⎨⎧ 3x -y -1=0,2x +y -9=0,得⎩⎨⎧x =2,y =5,即l 与AB ′的交点坐标为P (2,5).(2)如图2,设C 关于l 的对称点为C ′,求出C ′的坐标为⎝ ⎛⎭⎪⎫35,245. ∴AC ′所在直线的方程为19x +17y -93=0,AC ′和l 交点坐标为⎝ ⎛⎭⎪⎫117,267, 图2故Q 点坐标为⎝ ⎛⎭⎪⎫117,267.第3讲 圆的方程[最新考纲]1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.初步了解用代数方法处理几何问题.知 识 梳 理1.圆的定义和圆的方程 定义平面内到定点的距离等于定长的点的轨迹叫做圆方 程标准 (x -a )2+(y -b )2=r 2(r >0)圆心C (a ,b )半径为r一般 x 2+y 2+Dx +Ey +F =0 充要条件:D 2+E 2-4F >0圆心坐标:⎝ ⎛⎭⎪⎫-D 2,-E 2 半径r =(1)确定方法:比较点与圆心的距离与半径的大小关系.(2)三种关系:圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0).①(x 0-a )2+(y 0-b )2=r 2⇔点在圆上;②(x 0-a )2+(y 0-b )2>r 2⇔点在圆外;③(x 0-a )2+(y 0-b )2<r 2⇔点在圆内.辨 析 感 悟1.对圆的方程的理解(1)确定圆的几何要素是圆心与半径.(√)(2)方程x 2+y 2=a 2表示半径为a 的圆.(×)(3)方程x 2+y 2+4mx -2y +5m =0表示圆.(×)(4)(2013·江西卷改编)若圆C 经过坐标原点和点(4,0)且与直线y =1相切,则圆C的方程是(x -2)2+⎝ ⎛⎭⎪⎫y +322=254. (√) 2.对点与圆的位置关系的认识(5)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.(√)(6)已知圆的方程为x 2+y 2-2y =0,过点A (1,2)作该圆的切线只有一条.(×)[感悟·提升]1.一个性质 圆心在任一弦的中垂线上,如(4)中可设圆心为(2,b ).2.三个防范 一是含字母的圆的标准方程中注意字母的正负号,如(2)中半径应为|a |;二是注意一个二元二次方程表示圆时的充要条件,如(3);三是过一定点,求圆的切线时,首先判断点与圆的位置关系.若点在圆外,有两个结果,若只求出一个,应该考虑切线斜率不存在的情况,如(6).考点一 求圆的方程【例1】 根据下列条件,求圆的方程.(1)求过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段长为43的圆的方程.(2)已知圆的半径为10,圆心在直线y =2x 上,圆被直线x -y =0截得的弦长为4 2.解 (1)设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0).①将P ,Q 点的坐标分别代入①得⎩⎨⎧ 4D -2E +F =-20, ②D -3E -F =10, ③令x =0,由①得y 2+Ey +F =0.④由已知|y 1-y 2|=43,其中y 1,y 2是方程④的两根, 所以(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=E 2-4F =48.⑤解②、③、⑤组成的方程组得⎩⎨⎧ D =-2,E =0,F =-12或⎩⎨⎧ D =-10,E =-8,F =4.故所求圆的方程为x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0.(2)法一 设圆的方程为(x -a )2+(y -b )2=10.由圆心在直线y =2x 上,得b =2a .①由圆在直线x -y =0上截得的弦长为42,将y =x 代入(x -a )2+(y -b )2=10,整理得2x 2-2(a +b )x +a 2+b 2-10=0.由弦长公式得 2(a +b )2-2(a 2+b 2-10)=42,化简得a -b =±2.②解①、②得a =2,b =4或a =-2,b =-4.故所求圆的方程为(x -2)2+(y -4)2=10或(x +2)2+(y +4)2=10.法二 根据图形的几何性质:半径、弦长的一半、弦心距构成直角三角形.如图, 由勾股定理,可得弦心距d =r 2-⎝ ⎛⎭⎪⎫4222=10-8= 2.又弦心距等于圆心(a ,b )到直线x -y =0的距离,所以d =|a -b |2,即|a -b |2= 2.③又已知b =2a .④解③、④得a =2,b =4或a =-2,b =-4.故所求圆的方程是(x -2)2+(y -4)2=10或(x +2)2+(y +4)2=10.规律方法 求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.【训练1】 (1)(2014·济南模拟)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( ).A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1(2)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则C 的方程为________. 解析 (1)由于圆心在第一象限且与x 轴相切,故设圆心为(a,1),又由圆与直线4x -3y =0相切,得|4a -3|5=1,解得a =2或-12(舍去).故圆的标准方程为(x -2)2+(y -1)2=1.故选A.(2)依题意设所求圆的方程为(x -a )2+y 2=r 2,将A ,B 点坐标分别代入方程得⎩⎪⎨⎪⎧(5-a )2+1=r 2,(1-a )2+9=r 2, 解得⎩⎪⎨⎪⎧a =2,r 2=10.所以所求圆的方程为(x -2)2+y 2=10. 答案 (1)A (2)(x -2)2+y 2=10考点二 与圆有关的最值问题【例2】 已知实数x ,y 满足方程x 2+y 2-4x +1=0.(1)求y x 的最大值和最小值;(2)求y -x 的最大值和最小值; (3)求x 2+y 2的最大值和最小值.。
2015届高考数学(人教,理科)大一轮配套练透:第8章 平面解析几何 第3节
[课堂练通考点]1.若点(2a ,a +1)在圆x 2+(y -1)2=5的内部,则a 的取值范围是( ) A .-1<a <1 B .0<a <1 C .-1<a <15D .-15<a <1解析:选A ∵点(2a ,a +1)在圆x 2+(y -1)2=5的内部, ∴(2a )2+a 2<5,解得-1<a <1.2. 若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+()y -12=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D.()x -32+(y -1)2=1解析:选A 由于圆心在第一象限且于x 轴相切,故设圆心为(a,1),又圆与直线4x -3y =0相切可得|4a -3|5=1,解得a =2,故圆的标准方程为(x -2)2+(y -1)2=1.3.圆(x +2)2+y 2=5关于直线y =x 对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=5解析:选D 由题意知所求圆的圆心坐标为(0,-2),所以所求圆的方程为x 2+(y +2)2=5.4. 已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.解析:l AB :x -y +2=0,圆心(1,0)到l 的距离d =32, 则AB 边上的高的最小值为32-1. 故△ABC 面积的最小值是12×22×⎝⎛⎭⎫32-1=3- 2.答案:3- 25. 已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1), 即x +y -3=0.(2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.① 又∵直径|CD |=410,∴|P A |=210, ∴(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2). ∴圆P 的方程为(x +3)2+(y -6)2=40 或(x -5)2+(y +2)2=40.[课下提升考能]第Ⅰ组:全员必做题1. (2014·郑州第一次质检)以抛物线y 2=4x 的焦点为圆心,且过坐标原点的圆的方程为( )A .x 2+y 2+2x =0B .x 2+y 2+x =0C .x 2+y 2-x =0D .x 2+y 2-2x =0解析:选D 抛物线y 2=4x 的焦点坐标为(1,0),选项A 中圆的圆心坐标为(-1,0),排除A ;选项B 中圆的圆心坐标为(-0.5,0),排除B ;选项C 中圆的圆心坐标为(0.5,0),排除C.2. (2013·东城二模)已知圆(x +1)2+(y -1)2=1上一点P 到直线3x -4y -3=0距离为d ,则d 的最小值为( )A .1 B.45 C.25D .2解析:选A ∵圆心C (-1,1)到直线3x -4y -3=0距离为|3×(-1)-4-3|5=2,∴d min=2-1=1.3. (2014·温州模拟)已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 为切点,若四边形P ACB 的最小面积是2,则k 的值为( )A .4B .3C .2D. 2解析:选C 圆C 的方程可化为x 2+(y -1)2=1,因为四边形P ACB 的最小面积是2,且此时切线长为2,故圆心(0,1)到直线kx +y +4=0的距离为5,即51+k 2=5,解得k =±2,又k >0,所以k =2.4.已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段弧长比为1∶2,则圆C 的方程为 ( )A.⎝⎛⎭⎫x ±332+y 2=43B.⎝⎛⎭⎫x ±332+y 2=13C .x 2+⎝⎛⎭⎫y ±332=43D .x 2+⎝⎛⎭⎫y ±332=13解析:选C 由已知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为23π,设圆心(0,a ),半径为r ,则r sin π3=1,r cos π3=|a |,解得r =23,即r 2=43,|a |=33,即a =±33,故圆C 的方程为x 2+⎝⎛⎭⎫y ±332=43.5.已知两定点A (-2,0),B (1,0),如果动点P 满足|P A |=2|PB |,则点P 的轨迹所包围的图形的面积等于( )A .πB .4πC .8πD .9π解析:选B 设P (x ,y ),由题意知有,(x +2)2+y 2=4[(x -1)2+y 2],整理得x 2-4x +y 2=0,配方得(x -2)2+y 2=4.可知圆的面积为4π.6. (2014·金华十校联考)已知圆C 的半径为1,圆心在第一象限,与y 轴相切,与x 轴相交于点A 、B ,且AB =3,则该圆的标准方程是________.解析:依题可设⊙C :(x -1)2+(y -b )2=1(b >0),且⎝⎛⎭⎫322+b 2=1,可解得b =12,所以⊙C 的标准方程为(x -1)2+⎝⎛⎭⎫y -122=1. 答案:(x -1)2+⎝⎛⎭⎫y -122=1 7.已知圆C 的圆心与点M (1,-1)关于直线x -y +1=0对称,并且圆C 与x -y +1=0相切,则圆C 的方程为________.解析:所求圆的圆心为(-2,2),设圆的方程为(x +2)2+(y -2)2=r 2(r >0),则圆心(-2,2)到直线x -y +1=0的距离为r ,得r =322,故圆C 的方程为(x +2)2+(y -2)2=92.答案: (x +2)2+(y -2)2=928. (创新题)已知直线2ax +by =1(a ,b 是实数)与圆O :x 2+y 2=1(O 是坐标原点)相交于A ,B 两点,且△AOB 是直角三角形,点P (a ,b )是以点M (0,1)为圆心的圆M 上的任意一点,则圆M 的面积的最小值为________.解析:因为直线与圆O 相交所得△AOB 是直角三角形,可知∠AOB =90°,所以圆心O 到直线的距离为12a 2+b 2=22,所以a 2=1-12b 2≥0,即-2≤b ≤ 2.设圆M 的半径为r ,则r =|PM |=a 2+(b -1)2=12b 2-2b +2=22(2-b ),又-2≤b ≤2,所以2+1≥|PM |≥2-1,所以圆M 的面积的最小值为(3-22)π.答案:(3-22)π9. 在直角坐标系xOy 中,以O 为圆心的圆与直线x -3y =4相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A ,B 两点,圆内的动点P 使|P A |,|PO |,|PB |成等比数列,求PA ·PB的取值范围.解:(1)依题设,圆O 的半径r 等于原点O 到直线x -3y =4的距离,即r =|-4|1+3=2,所以圆O 的方程为x 2+y 2=4. (2)由(1)知A (-2,0),B (2,0).设P (x ,y ),则由|P A |,|PO |,|PB |成等比数列得, (x +2)2+y 2·(x -2)2+y 2=x 2+y 2, 即x 2-y 2=2.PA ·PB=(-2-x ,-y )·(2-x ,-y )=x 2-4+y 2=2(y 2-1),由于点P 在圆O 内,故⎩⎪⎨⎪⎧x 2+y 2<4,x 2-y 2=2,由此得y 2<1,所以PA ·PB的取值范围为[-2,0). 10. (2014·蚌埠质检)已知矩形ABCD 的对角线交于点P (2,0),边AB 所在直线的方程为x -3y -6=0,点(-1,1)在边AD 所在的直线上.(1)求矩形ABCD 的外接圆的方程;(2)已知直线l :(1-2k )x +(1+k )y -5+4k =0(k ∈R ),求证:直线l 与矩形ABCD 的外接圆恒相交,并求出相交的弦长最短时的直线l 的方程.解:(1)∵l AB :x -3y -6=0且AD ⊥AB , ∴k AD =-3,点(-1,1)在边AD 所在的直线上, ∴AD 所在直线的方程是y -1=-3(x +1), 即3x +y +2=0.由⎩⎪⎨⎪⎧x -3y -6=0,3x +y +2=0得A (0,-2). ∴|AP |= 4+4=22,∴矩形ABCD 的外接圆的方程是(x -2)2+y 2=8.(2)证明:直线l 的方程可化为k (-2x +y +4)+x +y -5=0,l 可看作是过直线-2x +y +4=0和x +y -5=0的交点(3,2)的直线系,即l 恒过定点Q (3,2),由|QP |2=(3-2)2+22=5<8知点Q 在圆P 内,所以l 与圆P 恒相交,设l 与圆P 的交点为M ,N ,|MN |=28-d 2(d 为P 到l 的距离),设PQ 与l 的夹角为θ,则d =|PQ |·sin θ= 5sin θ,当θ=90°时,d 最大,|MN |最短.此时l 的斜率为PQ 的斜率的负倒数,即-12,故l 的方程为y -2=-12(x -3),即l :x +2y -7=0. 第Ⅱ组:重点选做题1.(2013·石家庄模拟)已知两点A (0,-3)、B (4,0),若点P 是圆Cx 2+y 2-2y =0上的动点,则△ABP 面积的最小值为( )A .6 B.112 C .8D.212解析:选B 如图,过圆心C 向直线AB 作垂线交圆于点P ,这时△ABP 的面积最小.直线AB 的方程为x 4+y-3=1,即3x -4y-12=0,圆心C 到直线AB 的距离为d =|3×0-4×1-12|32+(-4)2=165,∴△ABP 的面积的最小值为12×5×⎝⎛⎭⎫165-1=112. 2.(2014·北京东城区模拟)已知圆x 2+y 2=9与圆x 2+y 2-4x +4y -1=0关于直线l 对称,则直线l 的方程为________.解析:由题易知,直线l 是两圆圆心连线构成线段的垂直平分线,两圆的圆心坐标分别是(0,0),(2,-2),于是其中点坐标是(1,-1),又知过两圆圆心的直线的斜率是-1,所以直线l 的斜率是1,于是可得直线l 的方程为:y +1=x -1,即x -y -2=0.答案:x -y -2=0。
2015年高考数学总复习(人教A版,理科)配套教案:第八章 立体几何 8.4
§8.4直线、平面垂直的判定与性质1.直线与平面垂直(1)判定直线和平面垂直的方法①定义法.②利用判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也垂直于这个平面.(2)直线和平面垂直的性质①直线垂直于平面,则垂直于平面内任意直线.②垂直于同一个平面的两条直线平行.③垂直于同一条直线的两平面平行.2.斜线和平面所成的角斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角.3.平面与平面垂直(1)平面与平面垂直的判定方法①定义法.②利用判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.(2)平面与平面垂直的性质两平面垂直,则一个平面内垂直于交线的直线垂直于另一个平面.4.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:二面角棱上的一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α. (×)(2)若直线a ⊥平面α,直线b ∥α,则直线a 与b 垂直. ( √ ) (3)异面直线所成的角与二面角的取值范围均为(0,π2].( × ) (4)直线a ⊥α,b ⊥α,则a ∥b . ( √ ) (5)若α⊥β,a ⊥β⇒a ∥α. ( × ) (6)a ⊥α,a ⊂β⇒α⊥β.( √ )2.(2013·广东)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( ) A.若α⊥β,m ⊂α,n ⊂β,则m ⊥n B.若α∥β,m ⊂α,n ⊂β,,则m ∥n C.若m ⊥n ,m ⊂α,n ⊂β,则α⊥β D.若m ⊥α,m ∥n ,n ∥β,则α⊥β 答案 D解析 A 中,m 与n 可垂直、可异面、可平行;B 中m 与n 可平行、可异面;C 中若α∥β,仍然满足m ⊥n ,m ⊂α,n ⊂β,故C 错误;故D 正确.3.设a ,b ,c 是三条不同的直线,α,β是两个不同的平面,则a ⊥b 的一个充分条件是( ) A.a ⊥c ,b ⊥c B.α⊥β,a ⊂α,b ⊂β C.a ⊥α,b ∥αD.a ⊥α,b ⊥α答案 C解析 对于选项C ,在平面α内作c ∥b ,因为a ⊥α,所以a ⊥c ,故a ⊥b ;A ,B 选项中,直线a ,b 可能是平行直线,也可能是异面直线;D 选项中一定有a ∥b .4.将图1中的等腰直角三角形ABC 沿斜边BC 的中线折起得到空间四面体ABCD (如图2),则在空间四面体ABCD 中,AD 与BC 的位置关系是( )A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直答案 C解析 在题图1中的等腰直角三角形ABC 中,斜边上的中线AD 就是斜边上的高,则AD ⊥BC ,翻折后如题图2,AD 与BC 变成异面直线,而原线段BC 变成两条线段BD 、CD ,这两条线段与AD 垂直,即AD ⊥BD ,AD ⊥CD ,故AD ⊥平面BCD ,所以AD ⊥BC .5.α、β是两个不同的平面,m、n是平面α及β之外的两条不同的直线,给出四个论断:①m⊥n;②α⊥β;③n⊥β;④m⊥α,以其中三个论断作为条件,剩余的一个论断作为结论,写出你认为正确的一个命题:____________________________.答案可填①③④⇒②与②③④⇒①中的一个题型一直线与平面垂直的判定与性质例1如图所示,在四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.思维启迪第(1)问通过DC⊥平面P AC证明;也可通过AE⊥平面PCD得到结论;第(2)问利用线面垂直的判定定理证明直线PD与平面ABE内的两条相交直线垂直.证明(1)在四棱锥P—ABCD中,∵P A⊥底面ABCD,CD⊂平面ABCD,∴P A⊥CD.∵AC⊥CD,P A∩AC=A,∴CD⊥平面P AC.而AE⊂平面P AC,∴CD⊥AE.(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.由(1),知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.而PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,∴P A⊥AB.又∵AB⊥AD且P A∩AD=A,∴AB⊥平面P AD,而PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.思维升华(1)证明直线和平面垂直的常用方法:①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性质.(2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.(3)线面垂直的性质,常用来证明线线垂直.如图,在△ABC中,∠ABC=90°,D是AC的中点,S是△ABC所在平面外一点,且SA=SB=SC.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明(1)因为SA=SC,D是AC的中点,所以SD⊥AC.在Rt△ABC中,AD=BD,又SA=SB,SD=SD,所以△ADS≌△BDS,所以SD⊥BD.又AC∩BD=D,所以SD⊥平面ABC.(2)因为AB=BC,D为AC的中点,所以BD⊥AC.由(1)知SD⊥BD,又SD∩AC=D,所以BD⊥平面SAC.题型二平面与平面垂直的判定与性质例2(2013·北京)如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD、PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.思维启迪(1)平面P AD⊥底面ABCD,可由面面垂直的性质证P A⊥底面ABCD;(2)由BE∥AD可得线面平行;(3)证明直线CD⊥平面BEF.证明(1)∵平面P AD∩平面ABCD=AD.又平面P AD⊥平面ABCD,且P A⊥AD.∴P A⊥底面ABCD.(2)∵AB∥CD,CD=2AB,E为CD的中点,∴AB∥DE,且AB=DE.∴四边形ABED为平行四边形.∴BE∥AD.又∵BE⊄平面P AD,AD⊂平面P AD,∴BE∥平面P AD.(3)∵AB⊥AD,且四边形ABED为平行四边形.∴BE⊥CD,AD⊥CD.由(1)知P A⊥底面ABCD,则P A⊥CD,∴CD⊥平面P AD,从而CD⊥PD,又E、F分别为CD、CP的中点,∴EF∥PD,故CD⊥EF.由EF,BE在平面BEF内,且EF∩BE=E,∴CD⊥平面BEF.∴平面BEF⊥底面PCD.思维升华(1)判定面面垂直的方法:①面面垂直的定义;②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.(2012·江西)如图所示,在梯形ABCD中,AB∥CD,E、F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=42,DE=4.现将△ADE,△CFB分别沿DE,CF折起,使A,B两点重合于点G,得到多面体CDEFG.(1)求证:平面DEG⊥平面CFG;(2)求多面体CDEFG的体积.(1)证明因为DE⊥EF,CF⊥EF,所以四边形CDEF为矩形.由GD=5,DE=4,得GE=GD2-DE2=3.由GC=42,CF=4,得FG=GC2-CF2=4,所以EF =5.在△EFG 中,有EF 2=GE 2+FG 2, 所以EG ⊥GF .又因为CF ⊥EF ,CF ⊥FG ,所以CF ⊥平面EFG . 所以CF ⊥EG ,所以EG ⊥平面CFG .又EG ⊂平面DEG ,所以平面DEG ⊥平面CFG . (2)解 如图,在平面EGF 中, 过点G 作GH ⊥EF 于点H , 则GH =EG ·GF EF =125.因为平面CDEF ⊥平面EFG , 所以GH ⊥平面CDEF ,所以V 多面体CDEFG =13S 矩形CDEF ·GH =16.题型三 直线、平面垂直的综合应用例3 如图所示,在四棱锥P —ABCD 中,平面P AD ⊥平面ABCD , AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,AB =2DC =4 5. (1)设M 是PC 上的一点,求证:平面MBD ⊥平面P AD ; (2)求四棱锥P —ABCD 的体积.思维启迪 (1)因为两平面垂直与M 点位置无关,所以在平面MBD 内 一定有一条直线垂直于平面P AD ,考虑证明BD ⊥平面P AD . (2)四棱锥底面为一梯形,高为P 到面ABCD 的距离. (1)证明 在△ABD 中,∵AD =4,BD =8,AB =45, ∴AD 2+BD 2=AB 2.∴AD ⊥BD .又∵面P AD ⊥面ABCD ,面P AD ∩面ABCD =AD , BD ⊂面ABCD ,∴BD ⊥面P AD . 又BD ⊂面MBD , ∴面MBD ⊥面P AD .(2)解 过P 作PO ⊥AD , ∵面P AD ⊥面ABCD , ∴PO ⊥面ABCD ,即PO 为四棱锥P —ABCD 的高. 又△P AD 是边长为4的等边三角形, ∴PO =2 3.在底面四边形ABCD 中,AB ∥DC ,AB =2DC , ∴四边形ABCD 为梯形.在Rt △ADB 中,斜边AB 边上的高为4×845=855,此即为梯形的高. ∴S 四边形ABCD =25+452×855=24. ∴V P —ABCD =13×24×23=16 3.思维升华 垂直关系综合题的类型及解法(1)三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化. (2)垂直与平行结合问题,求解时应注意平行、垂直的性质及判定的综合应用.(3)垂直与体积结合问题,在求体积时,可根据线面垂直得到表示高的线段,进而求得体积.(2013·江西)如图,直四棱柱ABCD -A 1B 1C 1D 1中,AB ∥CD ,AD ⊥AB ,AB =2,AD =2,AA 1=3,E 为CD 上一点,DE =1,EC =3. (1)证明:BE ⊥平面BB 1C 1C ; (2)求点B 1到平面EA 1C 1的距离.(1)证明 过B 作CD 的垂线交CD 于F ,则 BF =AD =2,EF =AB -DE =1,FC =2. 在Rt △BFE 中,BE = 3. 在Rt △CFB 中,BC = 6.在△BEC 中,因为BE 2+BC 2=9=EC 2,故BE ⊥BC .由BB 1⊥平面ABCD 得BE ⊥BB 1, 所以BE ⊥平面BB 1C 1C .(2)解 三棱锥E -A 1B 1C 1的体积V =13AA 1·S △A 1B 1C 1= 2.在Rt △A 1D 1C 1中,A 1C 1=A 1D 21+D 1C 21=3 2.同理,EC 1=EC 2+CC 21=32,A 1E =A 1A 2+AD 2+DE 2=2 3.故E C A S 11∆=3 5.设点B 1到平面A 1C 1E 的距离为d , 则三棱锥B 1-A 1C 1E 的体积 V =13·d ·E C A S 11∆=5d , 从而5d =2,d =105. 题型四 线面角、二面角的求法例4 如图,在四棱锥P —ABCD 中,P A ⊥底面ABCD ,AB ⊥AD , AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点. (1)求PB 和平面P AD 所成的角的大小; (2)证明:AE ⊥平面PCD ; (3)求二面角A —PD —C 的正弦值.思维启迪 (1)先找出PB 和平面P AD 所成的角,线面角的定义要能灵活运用;(2)可以利用线面垂直根据二面角的定义作角. (1)解 在四棱锥P —ABCD 中,因为P A ⊥底面ABCD ,AB ⊂平面ABCD , 故P A ⊥AB .又AB ⊥AD ,P A ∩AD =A , 从而AB ⊥平面P AD ,故PB 在平面P AD 内的射影为P A , 从而∠APB 为PB 和平面P AD 所成的角.在Rt △P AB 中,AB =P A ,故∠APB =45°. 所以PB 和平面P AD 所成的角的大小为45°. (2)证明 在四棱锥P —ABCD 中, 因为P A ⊥底面ABCD ,CD ⊂平面ABCD , 故CD ⊥P A .由条件CD ⊥AC ,P A ∩AC =A , ∴CD ⊥平面P AC .又AE ⊂平面P AC ,∴AE ⊥CD .由P A =AB =BC ,∠ABC =60°,可得AC =P A . ∵E 是PC 的中点,∴AE ⊥PC .又PC ∩CD =C ,综上得AE ⊥平面PCD .(3)解 过点E 作EM ⊥PD ,垂足为M ,连接AM ,如图所示. 由(2)知,AE ⊥平面PCD ,AM 在平面PCD 内的射影是EM , 则可证得AM ⊥PD .因此∠AME 是二面角A —PD —C 的平面角. 由已知,可得∠CAD =30°. 设AC =a ,可得P A =a ,AD =233a ,PD =213a ,AE =22a .在Rt △ADP 中,∵AM ⊥PD ,∴AM ·PD =P A ·AD , 则AM =P A ·AD PD =a ·233a 213a =277a .在Rt △AEM 中,sin ∠AME =AE AM =144.所以二面角A —PD —C 的正弦值为144. 思维升华 求线面角、二面角的常用方法.(1)线面角的求法:找出斜线在平面上的射影,关键是作垂线,找垂足,要把线面角转化到一个三角形中求解.(2)二面角的大小求法:二面角的大小用它的平面角来度量.平面角的作法常见的有①定义法;②垂面法.注意利用等腰、等边三角形的性质.(2012·浙江)如图,在四棱锥P -ABCD 中,底面是边长为23的菱形,∠BAD =120°,且P A ⊥平面ABCD ,P A =26,M ,N 分别为PB ,PD 的中点.(1)证明:MN ∥平面ABCD ;(2)过点A 作AQ ⊥PC ,垂足为点Q ,求二面角A -MN -Q 的平面角的余弦值.(1)证明 连接BD ,因为M ,N 分别是PB ,PD 的中点,所以MN 是△PBD 的中位线,所以MN ∥BD .又因为MN ⊄平面ABCD ,BD ⊂平面ABCD ,所以MN ∥平面ABCD .(2)解 如图所示,在菱形ABCD 中,∠BAD =120°,得AC =AB =BC =CD =DA ,BD =3AB .又因为P A ⊥平面ABCD ,所以P A ⊥AB ,P A ⊥AC ,P A ⊥AD .所以PB =PC =PD .所以△PBC ≌△PDC .而M ,N 分别是PB ,PD 的中点,所以MQ =NQ ,且AM =12PB =12PD =AN .取线段MN 的中点E ,连接AE ,EQ ,则AE ⊥MN ,QE ⊥MN ,所以∠AEQ 为二面角A -MN -Q 的平面角.由AB =23,P A =26,故在△AMN 中,AM =AN =3,MN =12BD =3,得AE =332. 在Rt △P AC 中,AQ ⊥PC ,得AQ =22,QC =2,PQ =4.在△PBC 中,cos ∠BPC =PB 2+PC 2-BC 22PB ·PC =56, 得MQ =PM 2+PQ 2-2PM ·PQ cos ∠BPC = 5.在等腰△MQN 中,MQ =NQ =5,MN =3,得QE =MQ 2-ME 2=112. 在△AEQ 中,AE =332,QE =112,AQ =22, 得cos ∠AEQ =AE 2+QE 2-AQ 22AE ·QE =3333. 所以二面角A -MN -Q 的平面角的余弦值为3333.立体几何证明问题中的转化思想典例:(12分)如图所示,M ,N ,K 分别是正方体ABCD —A 1B 1C 1D 1的棱AB ,CD ,C 1D 1的中点. 求证:(1)AN ∥平面A 1MK ;(2)平面A 1B 1C ⊥平面A 1MK .思维启迪 (1)要证线面平行,需证线线平行.(2)要证面面垂直,需证线面垂直,要证线面垂直,需证线线垂直.规范解答证明 (1)如图所示,连接NK .在正方体ABCD —A 1B 1C 1D 1中,∵四边形AA 1D 1D ,DD 1C 1C 都为正方形,∴AA 1∥DD 1,AA 1=DD 1,C 1D 1∥CD ,C 1D 1=CD .[2分]∵N ,K 分别为CD ,C 1D 1的中点,∴DN ∥D 1K ,DN =D 1K ,∴四边形DD 1KN 为平行四边形.[3分]∴KN ∥DD 1,KN =DD 1,∴AA 1∥KN ,AA 1=KN .∴四边形AA 1KN 为平行四边形.∴AN ∥A 1K .[4分]∵A 1K ⊂平面A 1MK ,AN ⊄平面A 1MK ,∴AN ∥平面A 1MK .[6分](2)如图所示,连接BC 1.在正方体ABCD —A 1B 1C 1D 1中,AB ∥C 1D 1,AB =C 1D 1.∵M ,K 分别为AB ,C 1D 1的中点,∴BM ∥C 1K ,BM =C 1K .∴四边形BC 1KM 为平行四边形.∴MK ∥BC 1.[8分]在正方体ABCD —A 1B 1C 1D 1中,A 1B 1⊥平面BB 1C 1C ,BC 1⊂平面BB 1C 1C ,∴A 1B 1⊥BC 1.∵MK ∥BC 1,∴A 1B 1⊥MK .∵四边形BB 1C 1C 为正方形,∴BC 1⊥B 1C .[10分]∴MK ⊥B 1C .∵A 1B 1⊂平面A 1B 1C ,B 1C ⊂平面A 1B 1C ,A 1B 1∩B 1C =B 1,∴MK ⊥平面A 1B 1C .又∵MK ⊂平面A 1MK ,∴平面A 1B 1C ⊥平面A 1MK .[12分]温馨提醒 (1)线面平行、垂直关系的证明问题的指导思想是线线、线面、面面关系的相互转化,交替使用平行、垂直的判定定理和性质定理;(2)线线关系是线面关系、面面关系的基础.证题中要注意利用平面几何中的结论,如证明平行时常用的中位线、平行线分线段成比例;证明垂直时常用的等腰三角形的中线等;(3)证明过程一定要严谨,使用定理时要对照条件、步骤书写要规范.方法与技巧1.证明线面垂直的方法(1)线面垂直的定义:a 与α内任何直线都垂直⇒a ⊥α;(2)判定定理1: ⎭⎪⎬⎪⎫m 、n ⊂α,m ∩n =A l ⊥m ,l ⊥n ⇒l ⊥α;(3)判定定理2:a ∥b ,a ⊥α⇒b ⊥α;(4)面面平行的性质:α∥β,a ⊥α⇒a ⊥β;(5)面面垂直的性质:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β.2.证明线线垂直的方法(1)定义:两条直线所成的角为90°;(2)平面几何中证明线线垂直的方法;(3)线面垂直的性质:a ⊥α,b ⊂α⇒a ⊥b ;(4)线面垂直的性质:a ⊥α,b ∥α⇒a ⊥b .3.证明面面垂直的方法(1)利用定义:两个平面相交,所成的二面角是直二面角;(2)判定定理:a ⊂α,a ⊥β⇒α⊥β.4.转化思想:垂直关系的转化线线垂直判定性质线面垂直判定性质面面垂直在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.失误与防范1.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直的定义、判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.2.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可.A 组 专项基础训练(时间:40分钟)一、选择题判定 性质1.已知m是平面α的一条斜线,点A∉α,l为过点A的一条动直线,那么下列情形可能出现的是() A.l∥m,l⊥α B.l⊥m,l⊥αC.l⊥m,l∥αD.l∥m,l∥α答案 C解析设m在平面α内的射影为n,当l⊥n且与α无公共点时,l⊥m,l∥α.2.如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB的中点,PM垂直于△ABC所在平面,那么()A.P A=PB>PCB.P A=PB<PCC.P A=PB=PCD.P A≠PB≠PC答案 C解析∵M为AB的中点,△ACB为直角三角形,∴BM=AM=CM,又PM⊥平面ABC,∴Rt△PMB≌Rt△PMA≌Rt△PMC,故P A=PB=PC.3.在空间内,设l,m,n是三条不同的直线,α,β,γ是三个不同的平面,则下列命题中为假命题的是()A.α⊥γ,β⊥γ,α∩β=l,则l⊥γB.l∥α,l∥β,α∩β=m,则l∥mC.α∩β=l,β∩γ=m,γ∩α=n,若l∥m,则l∥nD.α⊥γ,β⊥γ,则α⊥β或α∥β答案 D解析对于A,∵如果两个相交平面均垂直于第三个平面,那么它们的交线垂直于第三个平面,∴该命题是真命题;对于B,∵如果一条直线平行于两个相交平面,那么该直线平行于它们的交线,∴该命题是真命题;对于C,∵如果三个平面两两相交,有三条交线,那么这三条交线交于一点或相互平行,∴该命题是真命题;对于D,当两个平面同时垂直于第三个平面时,这两个平面可能不垂直也不平行,∴D是假命题.综上所述,选D.4.正方体ABCD—A′B′C′D′中,E为A′C′的中点,则直线CE垂直于()A.A′C′B.BDC.A′D′D.AA′答案 B解析连接B′D′,∵B′D′⊥A′C′,B′D′⊥CC′,且A′C′∩CC′=C′,∴B′D′⊥平面CC′E.而CE⊂平面CC′E,∴B′D′⊥CE.又∵BD∥B′D′,∴BD⊥CE.5. 如图所示,直线P A垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面P AC的距离等于线段BC的长,其中正确的是()A.①②B.①②③C.①D.②③答案 B解析对于①,∵P A⊥平面ABC,∴P A⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面P AC,又PC⊂平面P AC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥P A,∵P A⊂平面P AC,∴OM∥平面P AC;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离,故①②③都正确.二、填空题6.已知P为△ABC所在平面外一点,且P A、PB、PC两两垂直,则下列命题:①P A⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC.其中正确的个数是________.答案 3解析如图所示.∵P A⊥PC、P A⊥PB,PC∩PB=P,∴P A⊥平面PBC.又∵BC⊂平面PBC,∴P A⊥BC.同理PB⊥AC、PC⊥AB.但AB不一定垂直于BC.7.在正三棱锥(底面为正三角形且侧棱相等)P-ABC中,D,E分别是AB,BC的中点,有下列三个论断:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE.其中正确论断的序号为________.答案①②解析如图,∵P-ABC为正三棱锥,∴PB⊥AC;又∵DE∥AC,DE⊂平面PDE,AC⊄平面PDE,∴AC∥平面PDE.故①②正确.8.正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的余弦值为________.答案6 3解析画出图形,如图,BB1与平面ACD1所成的角等于DD1与平面ACD1所成的角,在三棱锥D-ACD1中,由三条侧棱两两垂直得点D 在底面ACD1内的射影为等边三角形ACD1的垂心即中心H,连接D1H,DH,则∠DD1H为DD1与平面ACD1所成的角,设正方体的棱长为a,则cos∠DD1H=63aa=63.三、解答题9.在如图所示的几何体中,四边形ABCD 是直角梯形,AD ∥BC ,AB ⊥BC ,AD =2,AB =3,BC =BE =7,△DCE 是边长为6的正三角形.(1)求证:平面DEC ⊥平面BDE ;(2)求点A 到平面BDE 的距离.(1)证明 因为四边形ABCD 为直角梯形,AD ∥BC ,AB ⊥BC ,AD =2,AB =3,所以BD =13,又因为BC =7,CD =6,所以根据勾股定理可得BD ⊥CD ,因为BE =7,DE =6,同理可得BD ⊥DE .因为DE ∩CD =D ,DE ⊂平面DEC ,CD ⊂平面DEC ,所以BD ⊥平面DEC .因为BD ⊂平面BDE ,所以平面DEC ⊥平面BDE .(2)解 如图,取CD 的中点O ,连接OE ,因为△DCE 是边长为6的正三角形,所以EO ⊥CD ,EO =33,易知EO ⊥平面ABCD ,则V E -ABD =13×12×2×3×33=33, 又因为直角三角形BDE 的面积为12×6×13=313, 设点A 到平面BDE 的距离为h ,则由V E -ABD =V A -BDE ,得13×313h =33,所以h =33913, 所以点A 到平面BDE 的距离为33913. 10.(2012·江苏)如图,在直三棱柱ABC -A 1B 1C 1中,A 1B 1=A 1C 1,D ,E分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F 为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1;(2)直线A 1F ∥平面ADE .证明(1)因为ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.又AD⊂平面ABC,所以CC1⊥AD.又因为AD⊥DE,CC1,DE⊂平面BCC1B1,CC1∩DE=E,所以AD⊥平面BCC1B1.又AD⊂平面ADE,所以平面ADE⊥平面BCC1B1.(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1.因为CC1⊥平面A1B1C1,且A1F⊂平面A1B1C1,所以CC1⊥A1F.又因为CC1,B1C1⊂平面BCC1B1,CC1∩B1C1=C1,所以A1F⊥平面BCC1B1.由(1)知AD⊥平面BCC1B1,所以A1F∥AD.又AD⊂平面ADE,A1F⊄平面ADE,所以A1F∥平面ADE.B组专项能力提升(时间:30分钟)1.已知平面α与平面β相交,直线m⊥α,则()A.β内必存在直线与m平行,且存在直线与m垂直B.β内不一定存在直线与m平行,不一定存在直线与m垂直C.β内不一定存在直线与m平行,但必存在直线与m垂直D.β内必存在直线与m平行,不一定存在直线与m垂直答案 C解析如图,在平面β内的直线若与α,β的交线a平行,则有m与之垂直.但却不一定在β内有与m平行的直线,只有当α⊥β时才存在.2.(2012·江苏)如图,在长方体ABCD-A1B1C1D1中,AB=AD=3cm,AA1=2 cm,则四棱锥A-BB1D1D的体积为________ cm3.答案 6解析连接AC交BD于O,在长方体中,∵AB =AD =3,∴BD =32且AC ⊥BD .又∵BB 1⊥底面ABCD ,∴BB 1⊥AC .又DB ∩BB 1=B ,∴AC ⊥平面BB 1D 1D ,∴AO 为四棱锥A -BB 1D 1D 的高且AO =12BD =322. ∵D D BB S 11矩形=BD ×BB 1=32×2=62,∴VA -BB 1D 1D =13D D BB S 11矩形·AO =13×62×322=6(cm 3).3.如图,已知六棱锥P-ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).答案①④解析由P A⊥平面ABC,AE⊂平面ABC,得P A⊥AE,又由正六边形的性质得AE⊥AB,P A∩AB=A,得AE⊥平面P AB,又PB⊂平面P AB,∴AE⊥PB,①正确;∵平面P AD⊥平面ABC,∴平面ABC⊥平面PBC不成立,②错;由正六边形的性质得BC∥AD,又AD⊂平面P AD,BC⊄平面P AD,∴BC∥平面P AD,∴直线BC∥平面P AE也不成立,③错;在Rt△P AD中,P A=AD=2AB,∴∠PDA=45°,∴④正确.4.如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC=2,等边三角形ADB以AB为轴转动.(1)当平面ADB⊥平面ABC时,求CD的长;(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.解(1)取AB的中点E,连接DE,CE.∵△ADB是等边三角形,∴DE⊥AB.当平面ADB⊥平面ABC时,∵平面ADB∩平面ABC=AB,∴DE⊥平面ABC,可知DE⊥CE.由已知可得DE=3,EC=1.在Rt△DEC中,CD=DE2+EC2=2.(2)当△ADB以AB为轴转动时,总有AB⊥CD.证明如下:①当D在平面ABC内时,∵AC=BC,AD=BD,∴C,D都在线段AB的垂直平分线上,即AB⊥CD.②当D不在平面ABC内时,由(1)知AB⊥DE.又∵AC=BC,∴AB⊥CE.又DE,CE为相交直线,∴AB⊥平面CDE.由CD⊂平面CDE,得AB⊥CD.综上所述,总有AB⊥CD.5.如图1所示,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED,如图2所示.(1)求证:BD⊥平面POA;(2)当PB取得最小值时,求四棱锥P-BDEF的体积.(1)证明因为菱形ABCD的对角线互相垂直,所以BD⊥AC.所以BD⊥AO.因为EF⊥AC,所以PO⊥EF.因为平面PEF⊥平面ABFED,平面PEF∩平面ABFED=EF,且PO⊂平面PEF,所以PO⊥平面ABFED.因为BD⊂平面ABFED,所以PO⊥BD.因为AO∩PO=O,所以BD⊥平面POA.(2)解设AO∩BD=H.因为∠DAB=60°,所以△BDC为等边三角形.故BD=4,HB=2,HC=2 3.设PO=x,则OH=23-x,OA=43-x.连接PH,OB,由OH⊥BD,得OB2=(23-x)2+22. 又由(1)知PO⊥平面BFED,则PO⊥OB.所以PB=OB2+OP2=(23-x)2+22+x2=2(x-3)2+10.当x=3时,PB min=10,此时PO=3=OH,所以V四棱锥P-BDEF=13×S梯形BDEF×PO=13×(34×42-34×22)×3=3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节空间简单几何体的表面积和体积
1.若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸多面体的体积为( )
A.
2
6
B.
2
3
C.
3
3
D.
2
3
答案:B
2.如图所示,是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )
A.9π B.10π
C.11π D.12π
解析:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面积为S=4π×12+π×12×2+2π×1×3=12π.故选D.
答案:D
3.(2013·江门一模)如图是某个四面体的三视图,该四面体的体积为( )
A .72
B .36
C .24
D .12
解析:由题意可知,几何体是三棱锥,底面三角形的一边长为6,底面三角形的高为3,棱锥的一条侧棱垂直底面,且过底面三角形的一个顶点,棱锥的高为4.
所以几何体的体积:13×1
2
×6×4×3=12.故选D.
答案:D
4.(2013·广州二模)一个圆锥的正(主)视图及其尺寸如图所示.若一个平行于圆锥底面的平面将此圆锥截成体积之比为1∶7的上、下两部分,则截面的面积为( )
A.14π B .π C.9
4π D .4π
解析:设小锥体的底面半径为r ,大锥体的底面半径为3,利用一个锥体被平行于底面的截面所截得的小锥体与原锥体体
积之比等于相似比的立方, V 上V 下+V 上=18=r 3
33,所以r =3
2
,截面的
面积为π
×⎝ ⎛⎭
⎪⎪⎫322=94π.故选C.
答案:C
5.(2013·辽宁卷)已知直三棱柱ABCA 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )
A.3172 B .210 C.132 D .310
解析:因为AB ⊥AC ,且AA 1⊥底面ABC ,将直三棱柱补成内
接于球的长方体,则长方体的对角线l =32+42+122
=2R ,R =132
. 答案:C
6.(2013·湖北卷)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V 1,V 2,V 3,V 4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )
A .V 1<V 2<V 4<V 3
B .V 1<V 3<V 2<V 4
C .V 2<V 1<V 3<V 4
D .V 2<V 3<V 1<V 4
解析:由柱体和台体的体积公式计算可知选项C 正确. 答案:C
7.(2013·佛山一模)一个直棱柱被一平面截去一部分所得几何体的三视图如下,则几何体的体积为( )
A .8
B .9
C .10
D .11
解析:三视图复原的几何体是底面边长为2的正方形,棱长垂直底面的四棱柱,其高为3,从该四棱柱中去掉一个三棱锥,
该三棱锥的底面是面积为1
2
×2×1=1的直角三角形,高为3,所
以几何体的体积是:2×2×3-13×3×1
2
×2×1=11,故选D.
答案:D
8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为__________.
解析:因为半圆面的面积为12
πl 2=2π,所以l 2
=4,即l
=2,即圆锥的母线为l =2,底面圆的周长2πr =πl =2π,所
以圆锥的底面半径r =1,所以圆锥的高h =l 2-r 2
=3,所以
圆锥的体积为13πr 2
h =13π×3=3π3.
答案:3π
3
9.(2013·江苏卷)如图,在三棱柱A 1B 1C 1ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥FADE 的体积为V 1,三棱柱A 1B 1C 1ABC 的体积为V 2,则V 1V 2=________.
解析:V 1=13S △ADE h 1=13×14S △ABC ×12h 2=124V 2,所以V 1V 2=1
24
.
答案:1
24
10.如图所示,已知一个半径为1的半球形容器①及容器②的三视图,侧视图矩形的宽为5,俯视图是边长为1的正三角形.
(1)请画出容器②的直观图(简图,尺寸不作严格要求),并回答:它是什么几何体?
(2)若把容器①中盛满的水全部注入容器②中,水是否会从容器②中溢出?为什么?(参考数据:3≈1.732)
解析:(1)容器②的直观图如右图所示,它是正三棱柱.
(2)∵V 半球=12×43π×13
=2π3≈2.094,
V 三棱柱=Sh =53
4
≈2.165.
∴V 半球<V 三棱柱,∴水不会从三棱柱容器里溢出.
11.如图,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体DABC ,如图所示.
(1)求证:BC ⊥平面ACD ; (2)求几何体DABC 的体积.
(1)证明:在平面图中,可得AC =BC =22,
从而AC 2+BC 2=AB 2
,故AC ⊥BC .
取AC 的中点O ,连接DO ,则DO ⊥AC . 又平面ADC ⊥平面ABC ,
平面ADC ∩平面ABC =AC ,DO ⊂平面ADC , 从而DO ⊥平面ABC ,∴DO ⊥BC . 又AC ⊥BC ,AC ∩DO =O , ∴BC ⊥平面ACD . (2)解析:由(1)可知BC 为三棱锥BACD 的高,BC =22,S △ACD
=2,
∴V BACD =13S △ACD ·BC =13×2×22=42
3
,
由等体积性可知,几何体DABC 的体积为42
3
.。