四面体外接球表面积公式
四面体外接球的球心、半径求法

四面体外接球的球心、在立体几何中,几何体外接球是一个常考的知识点,对于学生来说这是一个难点,一方面图形不会画,另一方面在画出图形的情况下无从下手,不知道球心在什么位置,半径是多少而无法解题。
本文章在给出图形的情况下解决球心位置、半径大小的问题。
、出现“墙角”结构利用补形知识,联系长方体。
【原理】:长方体中从一个顶点出发的三条棱长分别为a,b,c,则体对角线长为________ / 2 . b2 + ~2I = J a2+b2+C2,几何体的外接球直径2R为体对角线长I即R = ---------- --【例题】:在四面体ABCD中,共顶点的三条棱两两垂直, 其长度分别为1, V6,3,若该四面体的四个顶点在一个球面上,求这个球的表面积。
解:因为:长方体外接球的直径为长方体的体对角线长所以:四面体外接球的直径为AE的长即:4R2=AB2+AC2+AD2C 4R2 =12+32+ 府=16 所以R =2球的表面积为S=4;IR2=16;I二、出现两个垂直关系,利用直角三角形结论。
【原理】:直角三角形斜边中线等于斜边一半。
球心为直角三角形斜边中点。
【例题】:已知三棱锥的四个顶点都在球0的球面上,AB丄BC且PA =7,PB=5, PC =751,AC =10,求球0 的体积。
解:AB 丄BC 且PA =7,PB=5,P C=妬,AC =10,!_ 2因为=102所以知AC2=PA2+ PC2设球心坐标为O(x, y,z)贝U AO=BO=CO =DO ,由空间两点间距离公式知x 2 +y 2 +z 2 =(x -1)2 +(y -73)2 +z 2J 3解得 “1 y=- z =1所以PA 丄PC 所以可得图形为:在RtAABC 中斜边为AC 在RU PAC 中斜边为AC取斜边的中点0 , 在 RUABC 中 0A = 0B = 0C在 RtiPAC中 OP = OB =OC 所以在几何体中OP = OB =OC =OA ,即O 为该四面体的外接球的球心1R = — AC = 52 所以该外接球的体积为V 丄职―500工3 3 【总结】斜边一般为四面体中除了直角顶点以外的两个点连线。
几何体外接球表面积及体积的求法有答案

几何体外接球表面积及体积的求法答案1.D【考点】由三视图求面积、体积.【专题】数形结合;转化法;空间位置关系与距离.【分析】根据三视图得出该几何体是圆柱,求出圆柱体的表面积和它外接球的表面积即可得出结论.【解答】解:根据三视图得,该几何体是底面半径为3,高为4的圆柱体,所以该圆柱体的表面积为S1=2π×32+2π×3×8=66π;根据球与圆柱的对称性,得它外接球的半径R满足(2R)2=62+82=100,所以外接球的表面积为S2=4πR2=100π;所以剩余几何体的表面积是S=S1+S2=66π+100π=166π.故选:D.【点评】本题考查了三视图的应用问题,也考查了利用三视图研究直观图的性质,球与圆柱的接切关系,球的表面积计算问题,是基础题目.2.D【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.【解答】解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.【点评】本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.3.C【考点】球内接多面体;球的体积和表面积.【专题】空间位置关系与距离.【分析】先画出图形,正四棱锥外接球的球心在它的底面的中心,然后根据勾股定理列方程,解出球的半径即可.【解答】解:如图,设正四棱锥底面的中心为E,过点A,B,C,D,S的球的球心为O,半径为R,则在直角三角形AEO中,AO=R,AE=BD=4,OE=SE﹣AO=8﹣R由AO2=AE2+OE2得R2=42+(8﹣R)2,解得R=5球半径R=5,故选C.【点评】本题主要考查球,球的内接体问题,考查计算能力和空间想象能力,属于中档题.4.D考点:球的体积和表面积.专题:计算题.分析:由AB=BC=CA=2,求得△ABC的外接圆半径为r,再由R2﹣(R)2=,求得球的半径,再用面积求解.解答:解:因为AB=BC=CA=2,所以△ABC的外接圆半径为r=.设球半径为R,则R2﹣(R)2=,所以R2=S=4πR2=.故选D点评:本题主要考查球的球面面积,涉及到截面圆圆心与球心的连垂直于截面,这是求得相关量的关键.5.C【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V三棱锥S﹣ABC==.故选:C.【点评】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点S到面ABC的距离.6.C【考点】球的体积和表面积.【专题】空间位置关系与距离.【分析】将四面体补成长方体,通过求解长方体的对角线就是球的直径,然后求解外接球的表面积.【解答】解:由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以,,为三边的三角形作为底面,且以分别x,y,z长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,并且x2+y2=29,x2+z2=34,y2+z2=37,则有(2R)2=x2+y2+z2=50(R为球的半径),得R2=,所以球的表面积为S=4πR2=50π.故选:C.【点评】本题考查几何体的外接球的表面积的求法,割补法的应用,判断外接球的直径是长方体的对角线的长是解题的关键之一.7.B【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,然后解答即可.【解答】解:三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,d==,它的外接球半径是外接球的表面积是4π()2=14π故选:B.【点评】本题考查球的表面积,考查学生空间想象能力,是基础题.8.B【考点】球内接多面体.【专题】计算题;方程思想;综合法;空间位置关系与距离.【分析】三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,然后解答即可.【解答】解:三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,d==,它的外接球半径是,外接球的表面积是4π()2=14π故选:B.【点评】本题考查球的表面积,考查学生空间想象能力,是基础题.9.D【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】设该球的半径为R,则AB=2R,2AC=AB=,故AC=R,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,由此能求出球的体积.【解答】解:设该球的半径为R,则AB=2R,2AC=AB=,∴AC=R,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,在Rt△ABC中,由勾股定理,得:BC2=AB2﹣AC2=R2,所以Rt△ABC面积S=×BC×AC=,又PO⊥平面ABC,且PO=R,四面体P﹣ABC的体积为,∴V P﹣ABC==,即R3=9,R3=3,所以:球的体积V球=×πR3=×π×3=4π.故选D.【点评】本题考查四面体的外接球的体积的求法,解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题.10.B【考点】球的体积和表面积;球内接多面体.【专题】计算题;空间位置关系与距离.【分析】以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P﹣ABC外接球.算出长方体的对角线即为球直径,结合球的表面积公式,可算出三棱锥P﹣ABC外接球的体积.【解答】解:以PA、PB、PC为过同一顶点的三条棱,作长方体如图则长方体的外接球同时也是三棱锥P﹣ABC外接球.∵长方体的对角线长为2,∴球直径为2,半径R=,因此,三棱锥P﹣ABC外接球的体积是πR3=π×()3=4π故选:B.【点评】本题给出三棱锥的三条侧棱两两垂直,求它的外接球的表面积,着重考查了长方体对角线公式和球的表面积计算等知识,属于基础题.11.D12.考点:球的体积和表面积;球内接多面体.专题:空间位置关系与距离.分析:求出BC,利用正弦定理可得△ABC外接圆的半径,从而可求该三棱锥的外接球的半径,即可求出三棱锥的外接球表面积.解答:解:∵AC=2,AB=1,∠BAC=120°,∴BC==,∴三角形ABC的外接圆半径为r,2r=,r=,∵SA⊥平面ABC,SA=2,由于三角形OSA为等腰三角形,则有该三棱锥的外接球的半径R═=,∴该三棱锥的外接球的表面积为S=4πR2=4π×()2=.故选:D.点评:本题考查三棱锥的外接球表面积,考查直线和平面的位置关系,确定三棱锥的外接球的半径是关键.12.A考点:球内接多面体;棱柱、棱锥、棱台的体积.专题:压轴题.分析:先确定点S到面ABC的距离,再求棱锥的体积即可.解答:解:∵△ABC是边长为1的正三角形,∴△ABC的外接圆的半径∵点O到面ABC的距离,SC为球O的直径∴点S到面ABC的距离为∴棱锥的体积为故选A.点评:本题考查棱锥的体积,考查球内角多面体,解题的关键是确定点S到面ABC的距离.13.【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S 在“最高点”,也就是说H为AB中点时,SH最大,棱锥S﹣ABC的体积最大.【解答】解:由题意画出几何体的图形如图由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥S﹣ABC的体积最大.∵△ABC是边长为2的正三角形,所以球的半径r=OC=CH=.在RT△SHO中,OH=OC=OS∴∠HSO=30°,求得SH=OScos30°=1,∴体积V=Sh=××22×1=.故答案是.【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键.考查空间想象能力、计算能力.14.12π【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球O的表面积.【解答】解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为: =.所以球O的表面积为4π×3=12π.故答案为:12π.【点评】本题考查球的表面积的求法,考查空间想象能力、计算能力.15.【考点】球的体积和表面积.【专题】计算题.【分析】正方体的内切球的直径为正方体的棱长,外接球的直径为正方体的对角线长,设出正方体的棱长,即可求出两个半径,求出两个球的面积之比.【解答】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为:a,正方体的内切球与外接球的面积之比:==.故答案为:.【点评】本题是基础题,考查正方体的外接球与内切球的面积之比,求出外接球的半径,是解决本题的关键.16.16π【考点】球的体积和表面积.【专题】计算题;方程思想;数形结合法;立体几何.【分析】正四棱锥P﹣ABCD的五个顶点在同一球面上,则其外接球的球心在它的高PO1上,记为O,如图.求出AO1,OO1,解出球的半径,求出球的表面积.【解答】解:正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,PO=AO=R,PO1=3,OO1=3﹣R,在Rt△AO1O中,AO1=AC=,由勾股定理R2=3+(3﹣R)2得R=2,∴球的表面积S=16π故答案为:16π.【点评】本题考查球的表面积,球的内接体问题,解答关键是确定出球心的位置,利用直角三角形列方程式求解球的半径.需具有良好空间形象能力、计算能力.17.36π【考点】球的体积和表面积.【专题】计算题.【分析】由题意推出MN⊥平面SAC,即SB⊥平面SAC,∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的表面积.【解答】解:∵三棱锥S﹣ABC正棱锥,∴SB⊥AC(对棱互相垂直)∴MN⊥AC,又∵MN⊥AM而AM∩AC=A,∴MN⊥平面SAC即SB⊥平面SAC,∴∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,∴2R=2 ,∴R=3,∴S=4πR2=4π•(3)2=36π,故答案为:36π.【点评】本题是中档题,考查三棱锥的外接球的表面积,考查空间想象能力;三棱锥扩展为正方体,它的对角线长就是外接球的直径,是解决本题的关键.18.;。
立体几何专题:外接球问题中常见的8种模型(学生版)

立体几何专题:外接球问题中常见的8种模型1.知识梳理一、墙角模型适用范围:3组或3条棱两两垂直;可在长方体中画出该图且各顶点与长方体的顶点重合直接用公式(2R )2=a 2+b 2+c 2,即2R =a 2+b 2+c 2,求出R【补充】图1为阳马,图2和图4为鳖臑二、麻花模型适用范围:对棱相等相等的三棱锥对棱相等指四面体的三组对棱分别对应相等,且这三组对棱构成长方体的三组对面的对角线。
推导过程:三棱锥(即四面体)中,已知三组对棱分别相等,(AB =CD ,AD =BC ,AC =BD )第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为a ,b ,c ,AD =BC =x ,AB =CD =y ,AC =BD =z ,列方程组,a 2+b 2=x 2b 2+c 2=y 2c 2+a 2=z 2⇒(2R )2=a 2+b 2+c 2=x 2+y 2+z 22,补充:V A −BCD =abc −16abc ×4=13abc 第三步:根据墙角模型,2R =a 2+b 2+c 2=x 2+y 2+z 22,R 2=x 2+y 2+z 28,R =x 2+y 2+z 28,求出R .三、垂面模型适用范围:有一条棱垂直于底面的棱锥。
推导过程:第一步:将ABC 画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O .第二步:O 1为ABC 的外心,所以OO 1⊥平面ABC ,算出小圆O 1的半径O 1D =r(三角形的外接圆直径算法:利用正弦定理a sin A =b sin B=csin C =2r ,OO 1=12PA .第三步:利用勾股定理求三棱锥的外接球半径:(1)(2R )2=PA 2+(2r )2⇔2R =PA 2+(2r )2;(2)R 2=r 2+OO 21⇔R =r 2+OO 21.公式:R 2=r 2+h 24四、切瓜模型适用范围:有两个平面互相垂直的棱锥推导过程:分别在两个互相垂直的平面上取外心O 1、O 2过两个外心做两个垂面的垂线,两条垂线的交点即为球心0,取B C 的中点为E ,连接OO 1、OO 2、O 2E 、O 1E 为矩形由勾股可得|OC |2=|O 2C |2+|OO 2|2=|O 2C |2+|O 1C |2-|CE |2∴R 2=r 21+r 22-l 24公式:R 2=r 21+r 22-l 24五、斗笠模型适用于:顶点的投影在底面的外心上的棱锥推导过程:取底面的外心01,连接顶点与外心,该线为空间几何体的高h ,在h 上取一点作为球心0,根据勾股定理R 2=(h -R )2+r 2⇔R =r 2+h 22h公式:R =r 2+h 22h六、矩形模型适用范围:两个直角三角形的斜边为同一边,则该边为球的直径推导过程:图中两个直角三角形ΔPAB 和ΔQAB ,其中∠APB =∠AQB =90°,求外接圆半径取斜边AB 的中点O ,连接OP ,OQ ,则OP =12AB =OA =OB =OQ 所以O 点即为球心,然后在ΔPOQ 中解出半径R 公式:R 2=l22(l 为斜边长度)七、折叠模型适用范围:两个全等三角形或等腰三角形拼在一起,或菱形折叠.推导过程:两个全等的三角形或者等腰拼在一起,或者菱形折叠,设折叠的二面角∠A EC =α,CE =A E =h .如图,作左图的二面角剖面图如右图:H 1和H 2分别为△BCD ,△A BD 外心,分别过这两个外心做这两个平面的垂线且垂线相交于球心O CH 1=r =BD 2sin ∠BCD,EH 1=h -r ,OH 1=(h -r )tanα2由勾股定理可得:R 2=OC 2=OH 21+CH 21=r 2+(h -r )2tan 2α2.公式:R 2=r 2+(h -r )2tan 2α2八、鳄鱼模型适用范围:所有二面角构成的棱锥,普通三棱锥方法:找两面外接圆圆心到交线的距离m ,n ,找二面角α,找面面交线长度l 推导过程:取二面角两平面的外心分别为O 1,O 2并过两外心作这两个面的垂线,两垂线相交于球心O ,取二面角两平面的交线中点为E ,则O ,O 1,E ,O 2四点共圆,由正弦定理得:OE =2r =O 1O 2sin α①在ΔO 1O 2E 中,由余弦定理得:O 1O 2 2=O 1E 2+O 2E 2-2O 1E O 2E cos α②由勾股定理得:OD 2=O 1O 2+O 1D 2③由①②③整理得:OD2=O 1O 2+O 1D 2=OE 2-O 1E 2+O 1D 2=O 1O 2sin α2-O 1E 2+O 1D 2=O 1E2+O 2E 2-2O 1E O 2E cos αsin 2α-O 1E 2+O 1D 2=O1E2+O2E2-2O1EO2Ecosαsin2α-O1E2+O1B2记O1E=m,O2E=n,AB=l,则R2=m2+n2-2mn cosαsin2α+l22公式:R2=m2+n2-2mn cosαsin2α+l222.常考题型3.题型精析题型一:墙角模型1(2023·高一单元测试)三棱锥A-BCD中,AD⊥平面BCD,DC⊥BD,2AD=BD=DC=2,则该三棱锥的外接球表面积为()A.3π2B.9π2C.9πD.36π1.(2022秋·陕西西安·高一统考期末)在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.已知在鳖臑A-BCD中,满足AB⊥平面BCD,且AB=BD=5,BC=3,CD=4,则此鳖臑外接球的表面积为()A.25πB.50πC.100πD.200π2.(2023·高一课时练习)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年.在《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图P-ABCD是阳马,PA⊥平面ABCD,PA=5,AB=3,BC=4.则该阳马的外接球的表面积为()A.1252π3B.50πC.100πD.500π33.(2023·广西南宁·统考二模)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A -BCD 中,AB ⊥平面BCD ,CD ⊥AD ,AB =BD =2,已知动点E 从C 点出发,沿外表面经过棱AD 上一点到点B 的最短距离为10,则该棱锥的外接球的体积为.4.(2023春·辽宁朝阳·高二北票市高级中学校考阶段练习)已知四棱锥P -ABCD 的外接球O 的表面积为64π,PA ⊥平面ABCD ,且底面ABCD 为矩形,PA =4,设点M 在球O 的表面上运动,则四棱锥M -ABCD 体积的最大值为.题型二:麻花模型1(2023春·广东梅州·高二统考期中)已知三棱锥S -ABC 的四个顶点都在球O 的球面上,且SA =BC =2,SB =AC =7,SC =AB =5,则球O 的体积是()A.83π B.3223π C.423π D.823π1.(2022春·江西景德镇·高一景德镇一中校考期中)在△ABC 中,AB =AC =2,cos A =34,将△ABC 绕BC 旋转至△BCD 的位置,使得AD =2,如图所示,则三棱锥D -ABC 外接球的体积为.2.(2023秋·吉林·高一吉林一中校考阶段练习)如图,在△ABC 中,AB =25,BC =210,AC =213,D ,E ,F 分别为三边中点,将△BDE ,△ADF ,△CEF 分别沿DE ,EF ,DF 向上折起,使A ,B ,C 重合为点P ,则三棱锥P -DEF 的外接球表面积为()A.72π B.7143π C.14π D.56π3.(2023·江西·统考模拟预测)在三棱锥P -ABC 中,已知PA =BC =213,AC =BP =41,CP =AB =61,则三棱锥P -ABC 外接球的表面积为()A.77πB.64πC.108πD.72π4.(2022·全国·高三专题练习)已知四面体ABCD 的棱长满足AB =AC =BD =CD =2,BC =AD =1,现将四面体ABCD 放入一个轴截面为等边三角形的圆锥中,使得四面体ABCD 可以在圆锥中任意转动,则圆锥侧面积的最小值为.题型三:垂面模型1(2023·高一单元测试)在三棱锥P -ABC 中,PA ⊥平面ABC ,PA =6,BC =3,∠CAB =π6,则三棱锥P -ABC 的外接球半径为()A.3B.23C.32D.61.(2023·全国·高一专题练习)已知A ,B ,C ,D 在球O 的表面上,△ABC 为等边三角形且边长为3,AD ⊥平面ABC ,AD =2,则球O 的表面积为()A.4πB.8πC.16πD.32π2.(2020春·天津宁河·高一校考期末)在三棱锥P -ABC 中,AP =2,AB =3,PA ⊥面ABC ,且在△ABC 中,C =60°,则该三棱锥外接球的表面积为()A.20π3B.8πC.10πD.12π3.(2023·全国·高一专题练习)已知A ,B ,C ,D 在球O 的表面上,△ABC 为等边三角形且其面积为334,AD ⊥平面ABC ,AD =2,则球O 的表面积为()A.πB.2πC.4πD.8π4.(2022春·山东聊城·高一山东聊城一中校考阶段练习)在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD 为矩形,BC =2,PC 与平面PAB 所成的角为30o ,则该四棱锥外接球的体积为()A.433π B.43πC.823πD.833π题型四:切瓜模型1(2023·贵州贵阳·校联考模拟预测)在三棱锥A -BCD 中,已知AC ⊥BC ,AC =BC =2,AD =BD =6,且平面ABD ⊥平面ABC ,则三棱锥A -BCD 的外接球表面积为()A.8πB.9πC.10πD.12π1.(2023·四川达州·统考二模)三棱锥A -BCD 的所有顶点都在球O 的表面上,平面ABD ⊥平面BCD ,AB =AD =6,AB ⊥AD ,∠BDC =2∠DBC =60°,则球O 的体积为()A.43πB.32π3C.49π3D.323π2.(2023春·陕西西安·高一长安一中校考期中)在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =BC =AA 1=4,点P 为B 1C 1的中点,则四面体PABC 的外接球的体积为()A..41416π B.41413π C.41412π D.4141π3.(2022·高一单元测试)四棱锥P -ABCD 的顶点都在球O 的表面上,△PAD 是等边三角形,底面ABCD 是矩形,平面PAD ⊥平面ABCD ,若AB =2,BC =3,则球O 的表面积为()A.12πB.16πC.20πD.32π4.(2021·高一课时练习)在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,∠DPA =π2,AD =23,AB =2,PA =PD ,则四棱锥P -ABCD 的外接球的体积为()A.163π B.323π C.643π D.16π5.(2023春·全国·高一专题练习)在四棱锥P-ABCD中,ABCD是边长为2的正方形,AP=PD=10,平面PAD⊥平面ABCD,则四棱锥P-ABCD外接球的表面积为()A.4πB.8πC.136π9D.68π3题型五:斗笠模型1(2023·全国·高一专题练习)正四面体S-ABC内接于一个半径为R的球,则该正四面体的棱长与这个球的半径的比值为()A.64B.33C.263D.31.(2022·高一专题练习)已知正四棱锥P-ABCD(底面四边形ABCD是正方形,顶点P在底面的射影是底面的中心)的各顶点都在同一球面上,底面正方形的边长为10,若该正四棱锥的体积为50 3,则此球的体积为()A.18πB.86πC.36πD.323π2.(2022·全国·高一专题练习)某四棱锥的底面为正方形,顶点在底面的射影为正方形中心,该四棱锥内有一个半径为1的球,则该四棱锥的表面积最小值是()A.16B.8C.32D.243.(2022春·安徽·高三校联考阶段练习)在三棱锥P-ABC中,侧棱PA=PB=PC=10,∠BAC=π4,BC=22,则此三棱锥外接球的表面积为.题型六:矩形模型1(2022春·全国·高一期末)已知三棱锥A-BCD中,CD=22,BC=AC=BD=AD=2,则此几何体外接球的表面积为()A.2π3B.2π C.82π3D.8π1.(2022春·广东惠州·高一校考期中)在矩形ABCD中,AB=6,BC=8,现将△ABC沿对角线AC翻折,得到四面体DABC,则该四面体外接球的体积为()A.1963π B.10003π C.4003π D.5003π2.(2022春·河北沧州·高一校考阶段练习)矩形ABCD中,AB=4,BC=3,沿AC将三角形ABC折起,得到的四面体A-BCD的体积的最大时,则此四面体外接球的表面积值为()A.25πB.30πC.36πD.100π3.(2022春·四川成都·高一统考期末)在矩形ABCD 中,AB =6,AD =8,将△ABC 沿对角线AC 折起,则三棱锥B -ACD 的外接球的表面积为()A.36πB.64πC.100πD.与二面角B -AC -D 的大小有关题型七:折叠模型1(2022春·陕西西安·高一长安一中校考期末)已知菱形ABCD 的边长为3,∠ABC =60°,沿对角线AC 折成一个四面体,使平面ACD 垂直平面ABC ,则经过这个四面体所有顶点的球的体积为().A.5152π B.6πC.515πD.12π1.已知等边△ABC 的边长为2,将其沿边AB 旋转到如图所示的位置,且二面角C -AB -C 为60°,则三棱锥C -ABC 外接球的半径为2.(2023·广西南宁·统考二模)蹴鞠,又名“蹴球”“蹴圈”等,“蹴”有用脚蹴、踢的含义,鞠最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,类似今日的足球,现已知某“鞠”的表面上有四个点A ,B ,C ,D 满足AB =BC =CD =DA =DB =433cm ,AC =23cm ,则该“鞠”的表面积为cm 2.3.(2022秋·福建泉州·高三校考开学考试)在三棱锥S -ABC 中,SA =SB =AC =BC =2,SC =1,二面角S -AB -C 的大小为60°,则三棱锥S -ABC 的外接球的表面积为.4.(2022秋·山东德州·高二统考期中)已知在三棱锥中,S -ABC 中,BA ⊥BC ,BA =BC =2,SA =SC =22,二面角B -AC -S 的大小为5π6,则三棱锥S -ABC 的外接球的表面积为()A.56π3B.58π3C.105π4D.124π9题型八:鳄鱼模型1(2022春·四川成都·高一树德中学校考期末)已知在三棱锥S-ABC中,AB⊥BC,AB=BC=2,SA =SC=22,二面角B-AC-S的大小为2π3,则三棱锥S-ABC的外接球的表面积为()A.124π9B.105π4C.105π9D.104π91.(2023春·全国·高一专题练习)如图,在三棱锥P-ABC,△PAC是以AC为斜边的等腰直角三角形,且CB=22,AB=AC=6,二面角P-AC-B的大小为120°,则三棱锥P-ABC的外接球表面积为()A.5103π B.10π C.9π D.4+23π2.(2023·陕西榆林·统考三模)在三棱锥A-BCD中,AB⊥BC,BC⊥CD,CD=2AB=2BC= 4,二面角A-BC-D为60°,则三棱锥A-BCD外接球的表面积为()A.16πB.24πC.18πD.20π3.(2023春·安徽阜阳·高三阜阳市第二中学校考阶段练习)如图1,四边形ABCD中,AB=AD =2,CB=CD=2,AB⊥AD,将△ABD沿BD翻折至△PBD,使二面角P-BD-C的正切值等于2,如图2,四面体PBCD的四个顶点都在同一个球面上,则该球的表面积为()A.4πB.6πC.8πD.9π4.(2023·江西南昌·校联考模拟预测)在平面四边形ABCD中,AD=CD=3,∠ADC=∠ACB =90°,∠ABC=60°,现将△ADC沿着AC折起,得到三棱锥D-ABC,若二面角D-AC-B的平面角为135°,则三棱锥D-ABC的外接球表面积为.5.(2023春·广东广州·高三统考阶段练习)在三棱锥P-ABC中,△ABC为等腰直角三角形,AB=AC=2,△PAC为正三角形,且二面角P-AC-B的平面角为π6,则三棱锥P-ABC的外接球表面积为.。
内接球和外接球半径计算公式

内接球和外接球半径计算公式
内接球和外接球是几何学中的概念,它们分别是指一个多面体内部最大的(最小的)球和一个多面体外部最小的(最大的)球。
下面是内接球和外接球的半径计算公式。
(以下解释中,我们以正四面体为例)
内接球半径计算公式:
正四面体的内接球是四面体内部最大的球,它的半径可以通过正四面体的棱长计算得出。
设正四面体的棱长为a,则正四面体的内接球半径R为:
R = a / (2√3)
其中√3表示根号下3,也就是3的平方根。
该公式适用于所有正多面体内接球的半径计算。
外接球半径计算公式:
正四面体的外接球是四面体外部最小的球,它的半径可以通过正四面体的边长计算得出。
设正四面体的边长为a,则正四面体的外接球半径r为:
r = a / (2√6)
其中√6表示根号下6,也就是6的平方根。
该公式同样适用于所有正多面体外接球的半径计算。
需要注意的是,以上公式仅适用于正多面体,对于其他不规则多面体,内接球和外接球的半径计算需要用到其他方法。
空间几何体的表面积与体积公式大全,DOC

空间几何体的表面积与体积公式大全一、全(表)面积(含侧面积)1、①棱柱②圆柱2、①②3、①②4、①球:②③二、1、①棱柱②圆柱2、①棱锥②圆锥3、①棱台②圆台4、①球:②③三、1、2、则+=即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式:)(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。
延长两侧棱相交于一点P 。
则∴V 即:)(33)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S S S S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。
这些圆柱的高为nr,则:每个圆柱的体积h S V i i ==nrr i 2π……=2r nr ⨯π=[3r n n π=[3r n n π当→n ∴V 半球5、 ∴S =球6、(1则其体积为:a V 3=正方体四个角上切下的每一个三棱锥体积为:中间剩下的正四面体的体积为:a a a a hSV 322231]60sin 21[3131)32232()2()2(=-⨯︒⨯⨯⨯==⨯⨯正三棱锥这样一个即:61(2 (a)(b)(c)(d)(e)(3(a ) 正方体内切球直径=正方体棱长(b ) 正方体内切球与正四面体的四条棱相切。
(c ) 与正四面体四条棱相切的球半径=正方体棱长的一半 (d ) 设正四面体棱长为a ,则与其棱都相切的球半径为r 1有:aar 422211=⨯= 7、利用祖暅原理推导球体体积。
构造一个几何体,使其截面与半球截面处处相等,根据祖暅原理可得两物体体积相等。
证明:作如下构造:在底面半径和高都是r 的圆柱内挖去一个与圆柱等底等高的圆锥。
如图:R ,∴S 1π=即:S 1 8、 正方体与球(1) 正方体的内切球正方体的棱长=a 球体的直径d (2) 正方体的外接球正方体的体对角线=a 3球体的直径d(3) 规律:①正方体的内切球与外接球的球心为同一点; ②正方体的内切球与外接球的球心在体对角线上; ③正四面体的内切球与外接球的的半径之比为:3:1 ④正四面体内切球与外接球体积之比为:1:339(∴a h r 12641==即:a a r V 33321663434)126(πππ===球∴π3:18=V V 球正四机体: (2)正四面体的外接球 外接球的半径=)2332(224343a a⨯-⨯=⨯高=a 46 ∴2:33122:86:33ππ==aaV V 正四面体球 (310、 (1 球体直径、圆柱的高、圆柱底面直径构成直角三角形。
高中数学教师备课必备(空间几何体):专题八 球的切接问题 含解析

例1。
若棱长为3的正方体的顶点都在同一球面上,求该球的表面积和体积。
分析:①334R V π=球(R 为球半径) ②24R S π=球 (R 为球半径) 需要求出半径。
正方体的棱长为a ,则:正方体的内切球、棱切球、外接球半径分别为:a 21,a 22,a 23。
变式:一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为。
【解析】关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。
长方体体对角线长为14,故球的表面积为14π。
变式:(已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ).A 。
16π B 。
20π C 。
24π D 。
32π解题关键:通过多面体的一条侧棱和球心,或接点作出截面图。
棱锥与球例题:求棱长为1的正四面体ABCD 的外接球体积. 分析:作出合适的球的轴截面图,找准球心位置,构造三角形求解半径。
常用结论:正四面体外接球的球心在高线上,半径是正四面体高的43解法一、 解法二、如何求正四面体的外接球半径法1.补成正方体法2.勾股定理法例题:求棱长为a 的正四面体的内切球半径。
分析:并非所有多面体都有内切球,正多面体存在内切球,且正多面体的中心为内切球球心。
常用结论:正多面体内切球半径是高的41;31⋅⋅=内切表多R S V 1、正三棱锥的高为1,底面边长为62,内有一个球与它的四个面都相切.求:(1)外接球的表面积和体积;(2)内切球的表面积与体积.设正四面体的棱长为a ,则:正四面体的内切球、棱切球、外接球半径分别为: a 126、a 42、a 46. 构造长方体变式 P 、A 、B 、C 是球O 面上的四个点,PA 、PB 、PC 两两垂直,PA=PB=PC=a,求这个球的体积。
例 已知点A 、B 、C 、D 在同一个球面上,B BCD A ⊥平面,BC DC ⊥,若6,AC=213,AD=8AB =,则B 、C 两点间的球面距离是____。
2020年高一高二数学百所名校好题分项解析汇编专题04 空间几何体的外接球与内切球(必修2)(原卷版)

高一数学(必修2)百所名校速递分项汇编专题04 空间几何体的外接球与内切球一、选择题1.【2017-2018学年辽宁省抚顺二中高一(上)期末】在三棱锥中,,,则该三棱锥的外接球的表面积为A.B.C.D.【答案】D∴外接球的表面积为S=4π×DG2=43π.故选:D.2.【黑龙江省实验中学2017-2018学年高一下学期期末】四面体中,,,,则此四面体外接球的表面积为A.B.C.D.【答案】A【解析】由题意,△BCD中,CB=DB=2,∠CBD=60°,可知△BCD是等边三角形,BF=∴△BCD的外接圆半径r==BE,FE=∵∠ABC=∠ABD=60°,可得AD=AC=,可得AF=∴AF⊥FB∴AF⊥BCD,∴四面体A﹣BCD高为AF=.设:外接球R,O为球心,OE=m可得:r2+m2=R2……①,()2+EF2=R2……②由①②解得:R=.四面体外接球的表面积:S=4πR2=.故选:A.3.【四川省泸州市泸化中学2017-2018学年高一5月月考】三棱柱中,,、、,则该三棱柱的外接球的表面积为( )A.4πB.6πC.8πD.10π【答案】C【解析】由题意得三棱柱为直三棱柱,且正好是长方体切出的一半,所以外接球半径为,,选C.4.【四川省泸州市泸化中学2017-2018学年高一5月月考】三棱柱中,,、、,则该三棱柱的外接球的体积( )A.B.C.D.【答案】B【解析】为直角三角形,斜边为,球心与该斜边的中点的连线垂直于平面,故球的半径,故球的体积为,故选B.5.【2018年人教A版数学必修二】棱长分别为2、、的长方体的外接球的表面积为()A.B.C.D.【答案】B【解析】设长方体的外接球半径为,由题意可知:,则:,该长方体的外接球的表面积为.本题选择B选项.6.【浙江省嘉兴市第一中学2018-2019学年高二上学期期中】在四面体中,,二面角的余弦值是,则该四面体外接球的表面积是()A.B.C.D.【答案】C【解析】取中点,连接,,平面,为二面角,在中,,,取等边的中心,作平面,过作平面,(交于),因为二面角的余弦值是,,,点为四面体的外接球球心,其半径为,表面积为,故选C.7.【安徽省黄山市屯溪第一中学2018-2019学年高二上学期期中考试】三棱锥P ABC中,PA⊥平面ABC,Q是BC边上的一个动点,且直线PQ与面ABC所成角的最大值为则该三棱锥外接球的表面积为( )A.B.C.D.【答案】C【解析】三棱锥P﹣ABC中,PA⊥平面ABC,直线PQ与平面ABC所成角为θ,如图所示;则sinθ==,且sinθ的最大值是,∴(PQ)min=2,∴AQ的最小值是,即A到BC的距离为,∴AQ⊥BC,∵AB=2,在Rt△ABQ中可得,即可得BC=6;取△ABC的外接圆圆心为O′,作OO′∥PA,∴=2r,解得r=2;∴O′A=2,取H为PA的中点,∴OH=O′A=2,PH=,由勾股定理得OP=R==,∴三棱锥P﹣ABC的外接球的表面积是S=4πR2=4×=57π.故答案为:C8.【广东省佛山市第一中学2018-2019学年高二上学期第一次段考】三棱锥的三视图如图所示,则该三棱锥外接球的体积为()A.B.C.D.【答案】A则球的半径R为,所以球的体积为.本题选择A选项.9.【内蒙古鄂尔多斯市第一中学2018-2019学年高二上学期期中考试】已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球体积为()A.B.C.D.【答案】C【解析】由三视图知几何体是一个侧棱与底面垂直的三棱锥,底面是斜边上的高为的等腰直角三角形,与底面垂直的侧面是个等腰三角形,底边长为,高为,故三棱锥的外接球与以棱长为的正方体的外接球相同,其直径为,半径为三棱锥的外接球体积为故选10.【四川省遂宁市2017-2018学年高二上学期教学水平监测】已知长方体中,,则长方体外接球的表面积为A.B.C.D.【答案】C11.【山西省朔州市应县第一中学2018-2019学年高二上学期期中考试】在三棱锥中,三侧面两两互相垂直,侧面的面积分别为,则此三棱锥的外接球的表面积为()A.B.C.D.【答案】A【解析】由题意得,侧棱两两垂直,设,则都是以为直角顶点的直角三角形,得,解之得,即,侧棱两两垂直,以为过同一顶点的三条棱作长方体,该长方体的对角线长为,恰好等于三棱锥外接球的直径,由此可得外接球的半径,可得此三棱锥外接球表面积为,故选A.12.【重庆市铜梁一中2018-2019学年高二10月月考】棱长分别为2,,的长方体的外接球的表面积为( )A.B.C.D.【答案】B13.【黑龙江省大庆中学2018-2019学年高二10月月考】长方体的三个相邻面的面积分别为2,3,6,则该长方体外接球的表面积为A.B.C.D.【答案】C【解析】设长方体的棱长分别为,则,所以,于是,设球的半径为,则,所以这个球面的表面积为.本题选择C选项.14.【重庆市万州三中2018-2019学年高二上学期第一次月考】已知一个表面积为44的长方体,且它的长、宽、高的比为3 21,则此长方体的外接球的体积为()A.B.C.D.【答案】D【解析】设长方体的长、宽、高分别为,则,解得,即,即长方体的棱长分别为,所以长方体的对角线长为,所以球的半径为,即,所以球的体积为,故选D.二、填空题15.【江西省赣州市十四县(市)2018-2019学年高二上学期期中联考】在三棱锥中,,,,,,则三棱锥的外接球的表面积为_______________.【答案】【解析】由题意,在三棱锥中,平面,以为长宽高构建长方体,则长方体的外接球是三棱锥的外接球,所以三棱锥的外接球的半径为,所以三棱锥的外接球的表面积为.16.【贵州省遵义市南白中学2018-2019学年高二上学期第一次月考】正四面体内切球半径与外接球半径之比为__________.【答案】【解析】由正四面体的对称性可得正四面体的内切球与外接球球心重合且在正四面体的高上,设正四面体的内切球与外接球球心为,正四面体的高为,将正四面体分成以为顶点,以四面体的四个面为底面的四个正四棱锥,这四个正四棱锥的底面积是正四面体的底面积,高为内切球的半径,设四面体外接球半径为,则,由四个正四棱锥的体积和等于正四面体的体积可得,故答案为.17.【山西省长治市第二中学2017-2018学年高二下学期期末考试】已知三棱锥中,,,则三棱锥的外接球的表面积为________________.【答案】【解析】如图:∵AD=2,AB=1,BD=,满足AD2+AB2=SD2∴AD⊥AB,又AD⊥BC,BC∩AB=B,∴AD⊥平面ABC,∵AB=BC=1,AC=,∴AB⊥BC,∴BC⊥平面DAB,∴CD是三棱锥的外接球的直径,∵AD=2,AC=,∴CD=,∴三棱锥的外接球的表面积为4π()2=6π.故答案为:6π18.【高二人教版必修2 第一章本章能力测评】已知正六棱柱的底面边长为4,高为6,则它的外接球的表面积为__________.【答案】【解析】根据正六棱柱的对称性可得,正六棱柱的体对角线就是球的直径,由高为,底面边长为,结合正六边形的性质,可得,即,所以外接球的表面积为,故答案为.19.【江西省南昌市第十中学2017-2018学年高二下学期期末考试】在三棱锥中,,,,,且三棱锥的体积为,则该三棱锥的外接球半径是_________【答案】3【解析】取的中点,连接,因为,,,,所以,且,所以平面,且是外接球的直径,设,所以为正三角形,则,则,解得.20.【山东省潍坊市2017-2018学年高二5月份统一检测】如图,在三棱锥中,平面,,,,则三棱锥外接球的表面积为__________.【答案】。
高考数学多面体的外接球专题模型总结终极版(七大模型)

多面体的外接球专题模型总结终极版题型一、长方体的外接球1.长方体外接球半径R=√a2+b2+c22a2.正方体外接球半径R=√323.长方体外接球的切割体(从长方体八个顶点中任取四个顶点)(1)三条侧棱两两垂直的三棱锥简称墙角型(2)一条侧棱垂直于底面,底面是直角三角形的三棱锥(双垂直)(3)各棱相等的三棱锥(正四面体)(4)对棱相等的三棱锥专题练习例1.在三棱锥BCD A −中,侧棱AB 、AC 、AD 两两垂直,ABC ∆、ACD ∆、ADB ∆的面积分别为22、32、62,则三棱锥BCD A −的外接球的体积为( )A .6πB .26πC .36πD .46π例2. 如图所示,已知球O 的面上有四点A 、B 、C 、D ,2===⊥⊥BC AB DA BC AB ABC DA ,,面,则球O 的体积等于 .例 3.已知三棱锥BCD A −的所有棱长都为2,则该三棱锥外接球的体积为_________例4.四面体BCD A −中,5==CD AB ,34==BD AC ,41==BC AD ,则四面体BCD A −外接球的表面积为( )A .π50B .π100C .π150D .π200变式练习1.在三棱锥ABC P −中,4==BC PA ,5==AC PB ,11==AB PC ,则三棱锥ABC P −的外接球的表面积为( )A .π8B .π12C .π26D .π242.已知三棱锥ABC P −的顶点都在球O 的表面上,若PA ,PB ,PC 两两互相垂直,且2===PC PB PA ,则球O 的体积为( ) A .π312 B .π28 C .π34 D .π43.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥ABC P −为鳖臑,⊥PA 平面ABC ,2==AB PA ,4=AC ,三棱锥ABC P −的四个顶点都在球O 的球面上,则球O 的表面积为( ) A .π8 B .π12 C .π20 D .π244.已知三棱锥ABC S −的各顶点都在一个半径为r 的球面上,且1===SC SB SA ,2===AC BC AB ,则球的表面积为( )A .π12B .π8C .π4D .π35.已知三棱锥ABC P −的各顶点都在同一球面上,且⊥PA 平面ABC ,若该棱锥的体积为332,2=AB ,1=AC ,︒=∠60BAC ,则此球的表面积等于( ) A .π5 B .π8 C .π16 D .π206.三棱锥ABC P −的四个顶点都在球O 的球面上,已知PA ,PB ,PC 两两垂直,1=PA ,4=+PC PB ,当三棱锥的体积最大时,球O 的体积为( ) A .π36 B .π9C .29π D .49π7.如图所示,平面四边形ABCD 中,2===CD AD AB ,22=BD ,CD BD ⊥,将其沿对角线BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,则该球的体积为( )A .π328B .π24C .π34题型二、上下对称几何体外接球(直棱柱)直棱柱外接球半径R=√r 2+h 24,其中r 是底面外接圆半径,h 是直棱柱的高 r =a 2sinA(正弦定理)例1.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A.πa 2B.73.πa 2 C. 113πa 2 D. 5πa 2例2.如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则该几何体的外接球的表面积为 .例3.如图,三棱锥的所有顶点都在一个球面上,在ABC ∆中,3=AB ,︒=∠60ACB ,︒=∠90BCD ,CD AB ⊥,22=CD ,则该球的体积为 .例4. 如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为( ) A .320πB .π8C .π9D .319π例5. 如图,某三棱锥的正视图、侧视图和俯视图分别是直角三角形、等腰三角形和等边三角形,若该三棱锥的顶点都在同一球面上,则该球的表面积为( ) A .π27 B .π48 C .π64D .π81变式练习1.已知A ,B ,C ,D 是同一球面上的四个点,其中ABC ∆是正三角形,⊥AD 平面ABC ,62==AB AD ,则该球的体积为( ) A .π332 B .π48 C .π24 D .π162.四面体ABCD 的四个顶点都在球O 的表面上,⊥AB 平面BCD ,三角形BCD 是边长为3的等边三角形,若4=AB ,则球O 的表面积为( ) A .π36B .π28C .π16D .π43.已知一个三棱锥的三视图如下图所示,其中俯视图是顶角为32π的等腰三角形,则该三棱锥外接球的表面积为( ) A .π20B .π17C .π16D .π8题型三、正N 棱锥外接球正N 棱锥外接球半径R=l 22ℎ,其中l 是侧棱长度,h 是正棱锥的高例1. 正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A.81π4B. 16πC. 9πD.27π4题型四、等腰三角形底边与一直角三角形斜边构成二面角的四面体如上图中,ABC △为等腰三角形,且AC AB =,DBC △是以BC 为斜边的△Rt ,D BC A −−二面角为α,令ABC △的外接圆半径为2r ,BC 边上的高为21h AO =,12r BC =,F 为ABC △的外心,则根据剖面图可知,外接球半径R 满足以下恒等式()21222221212sin r r h R E O OO OE +⎪⎭⎫ ⎝⎛−==+=α.例1在四面体ABC S −中,BC AB ⊥,2==BC AB ,SAC △为等边三角形,二面角B AC S −−的余弦值为33−,则四面体ABC S −的外接球表面积为 .CB图3图4图5作二面角剖面⇒例2.在四面体ABCD 中,AB=AD=2,∠BAD =60。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四面体外接球表面积公式
四面体是由四个面组成的立体图形,其中每个面都是一个三角形。
外接球是能够切过四面体的球,且球的表面刚好与四面体的每个面接触。
四面体外接球的表面积可以通过以下公式计算:
S = 4πR²
其中,S表示四面体外接球的表面积,π是圆周率(约等于
3.14),R是外接球的半径。
为了理解这个公式,我们需要了解四面体和外接球的几何性质。
首先,四面体有几个重要的性质:
1. 一个四面体有四个顶点、六条棱和四个面。
2. 如果一条线段既垂直于四面体的平面又垂直于四面体的一个面,那么这条线段称为四面体的高。
3. 四面体的高交于面的中心。
4. 四面体的三个面两两相交于一条线段,这些线段分别称为四面体的棱。
5. 四面体的棱的中点构成一个四面体的内接球的球心。
其次,我们需要了解外接球的性质:
1. 外接球的球心位于四面体的高交点。
2. 外接球的球心到四面体的顶点的距离相等,都等于外接球的半径R。
3. 外接球的球心到四面体的面的距离也相等,也等于外接球的半径R。
4. 外接球的球面刚好与四面体的每个面接触,即球面上的每个点都和四面体的一个面相接触。
根据四面体和外接球的性质,我们可以推导得到四面体外接球的表面积公式。
首先确定外接球的半径R,这个半径就等于外接球的球心到四面体任意一个顶点的距离。
由于这个距离相等,我们可以任选一个顶点,假设它到外接球的球心的距离为R。
然后,计算外接球的表面积S。
由于外接球的球面刚好与四面体的每个面接触,所以四面体的每个面的面积等于外接球的球面的一部分。
我们可以将每个三角形的面积进行求和,即可得到外接球的表面积。
由于四面体的每个面都是一个三角形,三角形的面积可以用以下公式计算:
A = 0.5 * a * h
其中,A表示三角形的面积,a表示三角形的底边长,h表示三角形的高。
我们已经知道四面体的每个面都是一个三角形,所以可以计算出每个面的面积。
接下来,计算外接球的表面积。
由于球面的面积可以用以下公式计算:
S = 4πR²
其中,R表示外接球的半径。
将R代入公式中,即可得到四面体外接球的表面积公式:
S = 4πR²
综上所述,四面体外接球的表面积公式为S = 4πR²,其中S表示四面体外接球的表面积,R表示外接球的半径。