第二章 距离空间

合集下载

高中数学必修二课件:第2章 空间两点间的距离公式 参考课件

高中数学必修二课件:第2章 空间两点间的距离公式 参考课件

O
y
第九页,编辑于星期日:二十三点 四十九分。
3.3空间两点间的距离公式
问题1:长方体的对角线是长方体中的那一条线段?
问题2:怎样测量长方体的对角线的长? 问题3:已知长方体的长、宽、高分别是a、b、c,则对
角线的长
d
a2 b2 c2
第十页,编辑于星期日:二十三点 四十九分。
问题4:给出空间两点A(x1,y1,z1),P(x2,y2,z2) 可否类比得到一个距离公式?
z
1、设O(0,0,0),P(x0,y0,z0)则
OP
OA 2 OB 2 OC 2 A o
x02 y02 z02
x
P C y
B
第十一页,编辑于星期日:二十三点 四十九分。
设M 1(x 1,y 1,z 1)、M 2(x 2,y 2,z 2)为空间两点.
作一个以M 1和M 2为对角线顶 点的长方体,使其三个相邻的面 分别平行于三个坐标面. z
z
M1 P
O
M2
Qy
与z 轴平行的边的边长为|z 2z 1|.
x
因为 | M1M2 | 2 = | M1Q | 2 + | M2Q | 2 = | M1P | 2 + | PQ | 2 + | M2Q | 2 .
所以 d | M1M2 |
第十五页,编辑于星期日:二十三点 四十九分。
例1 求空间两点A(3,-2,5), B(6,0,-1)的距离AB
第一页,编辑于星期日:二十三点 四十九分。
卦 限: 三个坐标面把 空间分成八个部分, 每一部分叫做卦限.
x
z 第一卦限
O
y
第二页,编辑于星期日:二十三点 四十九分。

高中数学 第二章 空间向量与立体几何 2.6 距离的计算 2.6.2 直线到平面的距离、平面到平面的

高中数学 第二章 空间向量与立体几何 2.6 距离的计算 2.6.2 直线到平面的距离、平面到平面的
2.6.Biblioteka 直线到平面的距离、平面到平 面的距离
1.理解直线到平面的距离、平面到平面的距离的概念. 2.通过转化,会利用空间向量解决距离问题.
1.直线到平面的距离
当直线与平面平行时,直线上任一点到该平面的距离,叫直线到
平面的距离.
求直线到平面的距离时,一般转化为点到平面的距离.
说明:如果直线l平行于平面α,即l∥α,求直线l到α的距离可以转化
2.平面到平面的距离 当两平面平行时,一个平面内任一点到另一平面的距离,叫平面 到平面的距离. 求平面到平面的距离时,一般也是转化成点到平面的距离. 说明:如果两个平面α,β互相平行,即α∥β,求α与β之间的距离可以 转化为求平面α上任意一点P到平面β的距离,即点到平面的距离.
3.两条异面直线间的距离 (1)与两异面直线垂直且相交的直线叫作异面直线的公垂线,夹在 两交点之间的线段叫作公垂线段.两异面直线的距离是指公垂线段 的长度. (2)用向量法求异面直线距离的步骤:先求两条异面直线的公垂线 的方向向量,再求两条异面直线上两点的连线段在公垂线的方向向 量上的投影的大小.如图,a,b是两条异面直线,n是a和b的公垂线的 方向向量,点E∈a,F∈b,则异面直线a与b间的距离 d=|������|������������·|������|.
设 F(0,m,0),则������������=(-a,m-a,0),������������=(-a,-a,a).
∵PC⊥CF,∴������������ ⊥ ������������,∴������������ ·������������=(-a)·(-a)+(-a)·(m-a)+0·a
=a2-a(m-a)=0,
∴������������1=(1,1,1)为 AD1和 A1B 的公垂线的方向向量,d=|���������|������1������·������1������|���1| =

数值分析-第二章-距离空间

数值分析-第二章-距离空间

a
b g(x) q dx 1/ q
a
其中 f (x) p , g(x) q在[a,b]上可积分。
特别的 p=q=2 时,称为 Cauchy 不等式
特别的,当 n=1 时, (x, y) x y , 当 n=2 时, (x, y) (x1 y1)2 (x2 y2 )2
如果在 R2 中,定义 d(x, y) x1 y1 x2 y2 ,
例2 有理数空间 Q 按欧氏距离是不完备的距离空间。
例 3 距离空间l2 和 L2[a,b]按通常意义下的距离是完备的。
例 4 C[a,b]按 (x, y) max x(t) y(t) 是完备的距离空间; t[ a ,b ]
C[a,b]按
1(x,
y)
b
a
x(t)
y(t ) dt
是不完备的距离空间
间 Q 是等距同构的,所以实数空间 R1 是有理数空间 Q
的完备化空间。
例2
C[a,b]按距离
(x,
y)
b
a
x(t)
y(t)
dt
是不完备的,
但C[a,b] L1[a,b],且C[a,b]在L1[a,b]中稠密,故 L1[a,b]是
C[a,b]的完备化距离空间。
同理,C[a,b]按距离
( x,
y)
则l p 是距离空间,常称为 p 方可和的空间。
特别的,当 p=2,l 2 称为平方可和距离空间。
§2.2 收敛概念
1) 定义(收敛点列) 设 X 是一个距离空间,{x n}是
X 中点列, x X 。若 n 时, (xn, x) 0 (即 0, N, 当n N时, (xn, x) )
补充不等式
1)Minkowski 不等式

泛函分析

泛函分析
(2)若B在A中稠,则对任意的 0 ,必有
( x) A
xB
反之亦然
( x) 表示以x为中心,以 为半径的小球。
第一章 距离空间
可分性:
定义:距离空间R称为可分的,是指在E中存在一 个稠密的可列子集。
第一章 距离空间
问题:
1、写出三维空间的几种距离
2、距离空间中的开集、闭集?
( x(t ), y(t )) [a x(t ) y(t ) dt]
2
b
1/ 2
第一章 距离空间
例5:l 2 表示满足 | xi |2 的实数列的全体,则其
i 1
中任意两点
x ( x1 , x2 ,, xn ), y ( y1 , y2 ,, yn )
n
(c), (d)说明,在赋范线性空间中,线性运算对范 数收敛是连续的。
第二章 赋范线性空间
2.3 有限维赋范线性空间
1、定义:若赋范线性空间E存在有限个线性无关
的元素 e1 , e2 ,, en ,使任意的 x E
都有
x xi ei
i 1
n
则称E为有限维赋范线性空间,称 {e1 , e2 ,, en }
n
( x, y ) [ | xi yi |2 ]1/ 2
1 ( x, y) max | xi yi |
1i n
i 1
第二章 赋范线性空间
例2: C[ a ,b ]
其中可定义范数
|| x || max | x(t ) |
a i b
并由它导出距离
( x, y) max | x(t ) y(t ) |
a i b
第二章 赋范线性空间

点集拓扑21n维欧氏空间度量空间拓扑空间的概念定义

点集拓扑21n维欧氏空间度量空间拓扑空间的概念定义

第二章 点 集 拓 扑§2.1. n 维欧氏空间、度量空间、拓扑空间的概念定义2.1.1.) , ,(n 1ξξ =x ,nR y ∈=) , ,(n 1ηη ,定义 R R R d nn →⨯: 为 ∑=-=n12)()y ,(i i i x d ηξ. 称d 为nR 上的Euclid 距离. 易证距离d 满足:01.y x 0)y ,( ,0)y ,(=⇔=≥x d x d ; 02.) x ,()y ,(y d x d =;03.)z ,()y ,()z ,(y d x d x d +≤, )R z y, ,(n∈x .定义2.1.2.( 距离空间,Metrical Space ) X 为非空集合,二元函数 R X X d →⨯: 满足:01.非负性:y x 0)y ,( ,0)y ,(=⇔=≥x d x d ; 02.对称性:) x ,()y ,(y d x d =;03.三角不等式:)z ,()y ,()z ,(y d x d x d +≤ )R z y, ,(∈x .称d 为X 上的一个距离,)d ,(X 为距离空间或度量空间.如 X A ⊂,称)d ,(A 为距离子空间.0r ,>∈X x ,开球:} ) ,({)r ;(r x y d X y x B <∈=; 闭球:} ) ,({)r ;(r x y d X y x S ≤∈=.开集:X A ⊂.A x ∈,∃球 A x B ⊂)r ;(,称x 为A 的一个内点.如A 中每个点都是内点,则称A 为开集.开球是开集;2R 中第一象限区域(不含坐标轴)是开集. 记)d ,(A 中开集全体为τ,则有如下结论. 定理2.1.1.(1)τφ∈X ,; (2) ττ∈⇒∈)( ,2121G G G G ; (3) τλτλλλ∈⇒Λ∈∈Λ∈ )( G G .例:(1) 离散空间.φ≠X ,定义 ) X y x,( yx ,1yx ,0)y ,(∈⎩⎨⎧≠==x d . 称X 为离散距离空间.(2) ] ,[b a C 空间.} b] [a, )( )({] ,[上连续函数为t x t x b a C =.] ,[y(t)y ),(b a C t x x ∈==, 定义y(t)x(t) max )y ,( -=≤≤bt a x d ,d 是距离.(3) 有界函数空间)(X B .φ≠X ,} X )( )({)(上有界函数为t x t x X B =. 定义 y(t)x (t) sup )y ,( -=∈Xt x d ,()(y ,X B x ∈),d 是距离.称)(X B 为有界函数空间. 取+=N X ,记} )( )( {)(有界 n n x l X B ξξ===∞.)(y ),(n ηξ==n x ,n n sup )y ,(ηξ-=∈Nn x d .定义2.1.3.设φ≠X ,)(X P ⊂τ 满足:(1) τφ∈X ,; (2) τ对于有限交运算封闭:ττ∈⎪⎪⎭⎫⎝⎛⇒∈= n 1 i i n 1G G , ,G ;(3) τ对于任意并运算封闭:τλτλλλ∈⎪⎪⎭⎫ ⎝⎛⇒Λ∈∈Λ∈ G )( G . 称τ为X 上的一个拓扑( Topology ),X 上安装了拓扑τ,) ,(τX 是拓扑空间( Topological Space ). 每个τ∈G 称为开集. 如 X A ⊂, 令} {ττ∈=G A G A , 称) ,(A τA 为(拓扑)子空间.例:(1) 度量空间)d ,(X 是拓扑空间,称为由距离d 诱导的拓扑τ. (2) 设 φ≠X ,}{X ,φτ=,称) ,(τX 是平凡拓扑空间. (3) 设φ≠X ,)(X P =τ,称) ,(τX 是离散拓扑空间.(4) } n, , 2, 1, ,0{ ==N X ,令}{} )\( {φτ为有限集 A X X A ⊂=,则) ,(τX 成为拓扑空间.§2.2. 拓扑空间中的基本概念设),(τX 是拓扑空间,X A ⊂.定义:(1) 若 c A 是开集,称A 为闭集. (2) A 的闭包闭F F,A F⊂∆=A (包含A 的最小闭集).(3) 若G x ∈,G 是开集,称G 为x 的一个邻域.∃∈ ,A x 邻域G ,使A G x ⊂∈,称x 为A 的内点.A 的内点全体称为A 的核(内部),记0A 为. (书15P (3)错) (4) x X, x ,∀∈⊂X A 的邻域G ,有φ≠A G ,φ≠cA G ,称x 为A 的边界点.A 的边界点全体称为A的边界,记为 A ∂.显然,0A ,A ∂,0)(c A 互不相交,o c o A A A X)( ∂=.(5) x X,A ,∀⊂∈X x 的邻域G ,有 φ≠A x G }){\(,称x 为A 的聚点.A 的聚点全体称为A 的导集,记A '. (6))A \A ('∈x ,称x 为A 的孤立点.(7) 若 A A '=,称A 为完全集(完备集). (8) 若 ()φ=oA ,称A 为疏朗集(无处稠密集). A 不在任何开集中稠密.(9)X B ,⊂A ,若B A ⊃,称A 在B 中稠密.它等价于: Ay y B ∈⊂>∀);(B 0, εε.(10)-σF 型集A : +∞==1nF n A ,n F (闭集);-δG 型集B : +∞==1n G n B ,n G (开集).(11) 设B 在A 中稠密,0ℵ≤B ,称A 为可分集.若X 可分,称X 为可分空间. (12) 若 +∞==1nEn A ,n E (疏朗),称A 为第一纲集;否则称A 为第二纲集.(13) 设)d ,(X 为度量空间,X A ⊂.若存在球 )r ;(0x B ,使)r ;(0x B A ⊂,称A 为有界集.设 0 , ,>⊂εX B A .若 Bx x B A ∈⊂)(ε;,称B 为A 的一个网-ε.若0 >∀ε,A 具有有限的网-ε B ,称A 为完全有界集.注:可取有限的网-ε A B ⊂. 如:球n R x B ⊂)r ;(0 是完全有界集.(14) 设X x n ⊂}{, 若∃X x ⊂, 使 0 x),d(x lim n =+∞→n . 称}{n x 收敛于x , 记 x x lim n =+∞→n 或)(n x x n +∞→→.极限是唯一的; 收敛点列是有界集. (15) 设 )d ,(X 为度量空间,X A ⊂.若A 中任一点列都存在收敛于X 中点的子列,称A 为列紧集.如:欧氏空间n R 中的有界集是列紧集. (16) 设X A ⊂,Λ∈λλ}{G 是开集族.若 Λ∈⊂G λλA ,称Λ∈λλ}{G 为A 的一个开覆盖.若A 的任一开覆盖Λ∈λλ}{G ,存在有限子覆盖: n1iG =⊂i A λ,称A 为紧集. 若空间X 紧,称X 为紧空间.(17) 设)d ,(X 为度量空间,εε<>>∃>∀⊂) x ,d(x N n m , 0,N 0, }{n m 时,有当,X x n ,则称}{n x 为Cauchy 序列(基本列). 若X 中每个基本列均收敛,称X 是完备的度量空间. 如:收敛点列必是基本列. nR 是完备的度量空间.以下假设),(τX 是拓扑空间. 定理2.2.1.(闭集的性质)(1) X ,φ是闭集; (2) 有限个闭集之并是闭集; (3) 任意多个闭集之交是闭集. 定理2.2.2.(1) o A 是A 的最大开子集; A 为开集 o A A =⇔.(2)A 是包含A 的最小闭集; A 为闭集A A =⇔.(3) A 为闭集A A ⊂'⇔. (4) A A A '= . (5) A A A o∂= . (6) )d ,(X 为度量空间,则X A ⊂为闭集A ⇔中取极限运算封闭.(7) A 为度量空间X 中闭集 ⇔若 A x 0)y ,(inf )A ,( ∈==∈∆则,x d x d Ay .选证:(1) 记} {Λ∈λλG 为A 的全体开子集所成之集族.则⎪⎪⎭⎫⎝⎛∈⇔∈Λ∈∃⇔∈Λ∈ G x G x , λλλλ使oA x ,于是 Λ∈=λλG A o是开集,且是A 的最大开子集. 故A 为开集A A o =⇔. (3) 若A 为闭集,则c A 为开集,且φ=cA A .由聚点定义,c c A x A x )( '∈⇒∈,即c c A A )('⊂,A A ⊂'.反之, 设A A ⊂',则cc A x A x )( '∈⇒∈, 故存在x 的某个邻域G , 满足 c A x .)}{\(∈=而φA x G ,∴ φ=A G ,即cAG x ⊂∈,说明x 是c A 的内点,c A 是开集,A 是闭集.(6) 设点列A x n ⊂}{,X x x n ∈→.若}{n x 有无穷多项互异,则A x '∈;否则A x ∈.从而总有A x ∈.由(2) 得证.例1. 0.5] [0,E );5.0 ,0(E ,)5.0 ,0[0='==则Z E ; Z E E E ]5.0 ,0[='=.由于E E ⊂'不成立,E 不是闭集.例2. 2R X =, } 0 R,x ) ,{(≥∈=y y x A . 则 A A ='; } R x,0 ) ,{(∈>=y y x A o. A A A A ='= ; } )0 ,{(R x x A ∈=∂.例3. 证明R A ⊂的导集A '是闭集. 证:需要证c) A ('是开集.x,)A ( x c '∈∀不是A 的聚点,存在x 的邻域 ) ,(δx U ,) ,(δx U 中不存在异于x 的A 中的点,故),(δx U 中的每个点均不是A 的聚点.于是 cA x U ) () ,('⊂δ,c) A (' 是开集.定理2.2.3.X A = ∀⇔ 非空开集 X G ⊂,有 φ≠G A . 证:设X A =. 若开集G 满足φ=G A . 则 c G ( ,c G A ⊂为闭).由Th2.2.2.(2) 得 c G A ⊂, 于是,φ==⊂c c X A G )(.反之,由于c cA A A )( )(且φ= 为开集,由条件,φ=c A )(,得 X A =.定理2.2.4.( 疏朗集的三种等价描述)(1) φ=oA )(; (2) ∀非空开集φ≠⇒c )A (G G ;(3) ∀非空开集G ,必含有非空开子集 G G ⊂0,满足φ=0G A .证:(1)⇒(2).若开集G 满足φ=c)A (G ,则A G ⊂, 于是φφ==⊂G ,)A (G o. (2)成立.(2)⇒(3).∀非空开集G ,令0c0G ,)A (G G = 为G 的非空开子集, 且φ=⊂cA A 0G A .(3)⇒(1).反证法.假设 φ≠oA )(,由(3),存在非空开集oA G )(0⊂,满足φ=0G A ,即c )(G A 0⊂ (闭集),c G A0⊂,c 0)A (G ⊂ (开集), 从而 φ==00)(G G A c( A ⊂0G ).矛盾. (18P 错)定理2.2.5.在度量空间中,完全有界集是有界的可分集.证:设X A ⊂为完全有界集,存在X 中有限多个球 n k x B 1)}1 ;({,使 n1)1 ;(=⊂k kx B A . 固定 X x ∈0,记 ∑=+=n10k) x ,d(x1r k . 1) x d(x , 1), ;B(x x k, A, x k k <∈∃∈∀即使, 故r ) x ,d(x ) x d(x ,) x d(x ,0k k 0<+≤ ,即 )r ;(0x B A ⊂, A 有界.对于kk 1=ε,存在有限多个以A 中点)(k j x 为中心的球⎪⎭⎫⎝⎛k 1;)(k j x B ) n , 2, ,1(k =j ,使 kn 1 )(k 1 ;=⎪⎭⎫ ⎝⎛⊂j k j x B A .记{}3, 2, 1,k ;n , 2, ,1 k)( ===j x D k j ,则 D 是A 的至多可数子集.εε<∃>∀k1 ,0.于是,()Dx j k j j k j x B x B A n 1 )(n 1 )() B(x; ;k 1 ;kk∈==⊂⊂⎪⎭⎫⎝⎛⊂εε, D 在A 中稠密,A 为可分集.定理2.2.6.在度量空间中,列紧集是完全有界集.证:反证法.假设X A ⊂是列紧集,但A 不是完全有界集,A ,0 0>∃ε没有有限的0ε-网.A A ∈∃∈∀21 x , x ,使021) ,(ε≥x x d .同理,} x ,{21x 不是A 的0ε-网,A ∈∃3 x ,使) 2 1,i ( ,) ,(03=≥εx x d i .继续下去,得到A x n ⊂}{,满足:) j i ( ,) ,(0≠≥εj i x x d .显然,点列}{n x 无收敛子列,A 非列紧.定理2.2.7.在度量空间中,A 为紧集A ⇔为列紧的闭集.证:只需证明:A 为紧集 A ⇔中每个点列均有收敛于A 中点的子列.“⇒”. 反证法.假设存在点列A x n ⊂}{无收敛于A 中点的子列.则y y y N n ,0N 0 A,y >>>∃∈∀当及δ时,有 ) ;(y δy B x n ∉.现A y y B y )} ;({∈δ为紧集A 的一个开覆盖, 存在 m1 y )} ;({k =k k y B δ 满足m1y ) ;(k =⊂k k y B A δ.令k y mk N N max 1≤≤=,则当 时,N n > m1y ) ;(k=∉k k n y B x δ. 从而 A x n ∉. 矛盾.“⇐”. 设 A 为列紧闭集,则A 为完全有界集.要证A 是紧集,只要证明,对于A 的任一开覆盖Λ∈ }{λλG ,λδλδG ) B(x ; , , x 0, ⊂Λ∈∃∈∀>∃使A . ( 因为 A 具有有限的δ-网 ).采用反证法.假设不然,存在A 的一个开覆盖Λ∈ }{λλG , 满足Λ∈∀∈∃∈∀λ , x N,n n A , 有φλ≠c n G )1;B(x n.对A x n ⊂}{, 因A 为列紧闭集,存在子列 Λ∈⊂∈→ 0λλG A x x k n . 0r , 00>∃Λ∈∃λ,使0 G )r ;B(x 00λ⊂(开集). 而当k 充分大时,有 0 G )r ;B(x )n 1;B(x 00kn λ⊂⊂. 矛盾. 定理2.2.8.设) ,(d X 是度量空间,则以下三条等价: (1) X 是完备的度量空间; (2) 非空闭集列X F n ⊂满足0y) d(x , sup lim )(lim ), 3, 2, 1,(n ,nF y x,n 1===⊂∈+∞→+∞→+n n n n F d F F ,则∃唯一的 +∞=∈1n0Fn x .(3) X 中的完全有界集是列紧集.证:(1)⇒(2). 取) 3, 2, 1,n ( =∈n n F x .当 N p ∈ 时,n p n pn F F x ⊂∈++,0)d(F ) x ,d(x n n p n →≤+,)(n +∞→. }{n x 为完备空间X 中的基本列.记 ) (n ,0+∞→→x x n ,n F 闭, +∞=∈1n 0F n x . 0x 的唯一性显然. (2)⇒(3).设X A ⊂为完全有界集,点列A x n ⊂}{.由完全有界集的定义,∃∈∀ N,k 有限个以 k 21为半径的闭球所成之集族kn m k m k S F 1}{== 覆盖A .于是,存在1)1(F S∈ 含有}{n x 中的无限多项;又存在2)2(F S ∈ ,使得)2()1(S S 含有}{n x 中的无限多项 ; . 一般地, , N k ∈∀k k F S ∈∃)( ,使得kj j k S F 1)( =∆=含有}{n x 中的无限多项. 由此知,存在}{n x 的子列}{k n x 满足k n F x k ∈,) 3, 2, ,1 ( =k .非空集列}{k F 满足k k F F ⊂+1,且 0 1)(→=k F d k .由(2),存在 +∞=∈1k 0F k x ,且)d(F ) x ,d(x k 0n k ≤0k1→=,即0n x x k →,A 为列紧集.(3)⇒(1).设}{n x 为X 中基本列,记} {N n x A n ∈=.εε<≥>∃>∀) x ,d(x N n 0,N 0, N n 时,当.从而, N1k) ;B(x=⊂k A ε, A 为完全有界集⇒ A 为列紧集. 故}{n x 有收敛子列 0n x x k → ) (+∞→k . 显然0n x x → ) (+∞→n . X 为完备空间.定理2.2.9.设) ,(d X 是完备的度量空间,则子空间X M ⊂是完备的 M ⇔是闭集. 定理2.2.10.(Baire 纲定理) 完备的度量空间X 必是第二纲集. 证:采用反证法.假设X 是第一纲集,则 n 1nE ,E+∞==n X 为疏朗集. 由Th2.2.4.(3) 知:对于∃ ,1E 直径小于1的非空闭球φ=111E S , 使S ; 对于∃ ,2E 直径小于21的非空闭球1012S S S ⊂⊂,使φ=22E S ; ; 对于∃+ ,1n E 直径小于11+n 的非空闭球φ=⊂⊂+++1n 1n 01E S , 使n n n S S S .得非空闭球套+∞1}{n S . X 完备, +∞=∈∃1n 0S n x . 这样,X N n E x n ∉∈∉00 x ),( . 矛盾.定理 2.2.11.(完备化定理) 对于度量空间) ,(d X ,必存在一个完备的度量空间)~,~(d X ,使得) ,(d X 等距于)~ ,~(d X 的一个稠密子空间.在等距意义下,空间)~,~(d X 是唯一的. 称空间)~ ,~(d X 为) ,(d X 的完备化空间.(证明的思想方法与Cantor 实数理论中,把无理数加到有理数域中的方法相同). 等距映射:) ,(1d X ,) ,(2d Y 是距离空间, 存在一一映射Y X →:ϕ 满足 ))( ),(() ,(21y x d y x d ϕϕ=)X y x,(∈∀,称ϕ为等距映射,空间X 与Y 等距.例:取nR X =,d 为欧氏距离. )r ;(0x B A = (开球,0>r ).则A 为完全有界集;X 完备,A 也是列紧集.作为距离子空间,A 不完备,其完备化距离空间为 )r ;(~0x S A = (闭球).§2.3. 连 续 映 射定义2.3.1.(连续映射)(A) ) ,(1d X 与) ,(2d Y 是距离空间,映射 . x ,:0X Y X f ∈→) ;( x 0, 0, 0δδεx B ∈>∃>∀当时,) );(((x )0εx f B f ∈,称f 在0x 处连续. 若f 在X 的每一点连续,称f 是X 到Y (B) ) ,(1τX 与) ,(2τY 是拓扑空间,映射. x ,:0X Y X f ∈→ 020 x , )( ∃∈∀τV x f 的邻域 的邻域1τ∈U ,使(V ))f U ( ,(U)1-⊂⊂即V f ,称f 为在0x 处连续. 若f 在X 的每一点连续,称f 是X 到Y 的连续映射.例1. (1) 距离空间 21d ,d R,Y ),1 ,0(==X 为欧氏距离. 则 x y sin =是)d ,()d ,(21Y X → 的连续映射(函数).(2) 取 }X ,{ ),1 ,0(1φτ==X 为X 中离散拓扑; 2 ,τR Y = 为Y 中欧氏拓扑.则 x y sin =不是Y X →的连续映射.因为,X ∈∀0 x ,对于Y 中)(0x f 的邻域 Y ) ),(21(0⊂∞+=x f V ,不存在0x 的邻域X U ⊂,使V U f ⊂)(. 定理2.3.1. 设X ,Y 是拓扑空间,Y X f →:. (A) f 连续 ⇔ f 反射开集:X (V )f 1⊂⇒⊂∀-Y V 开集 是开集;(B) f 连续 ⇔ f 反射闭集:X (F)f 1⊂⇒⊂∀-Y F 闭集 是闭集.证:(A) “⇒”.V f(x ) (V ),fx 1∈∈∀-即 .由f 在x 处连续,存在x 的邻域 X U ⊂, 使(V )f U (U)1-⊂⊂.即V f . x 是内点,(V )f 1-是开集.“⇐”. 若f 反射开集,Y V f(x ) X x ⊂∈∀的邻域及, 则 X (V)f 1⊂=-∆U 为x 的邻域,且V (V )][f f f(U)1⊂=-,故)(x f 在x 处连续.(B) 注意到 c c F f F f)]([)(11--=,证(B).定理2.3.2. 设X ,Y 是度量空间,映射Y X f →:.则f 在0x 处连续0n n X,}{ x x x →⊂∀⇔)()f( 0n x f x →⇒, )(n +∞→. (证明同数学分析)定理2.3.3. (连续函数的延拓)设E 是度量空间X 中的闭集,R E g →: 是连续函数,则存在连续函数R X f →: 满足: (1) E ),()(∈=x x g x f ; (2) )( sup )(sup ),( inf )(inf x g x f x g x f Ex Xx Ex Xx ∈∈∈∈==.(证略)定理2.3.4. (压缩映射原理,Banach 不动点定理)设)d ,(X 是完备的距离空间,映射X X T :是压缩映射, 即 y) d(x , Ty) d(Tx , 1,0 θθ≤<≤∃使 , X y x,∈∀. 则 T 有唯一的不动点X x ∈:x x T = .证:取初值 ,0X x ∈ 迭代格式:,01Tx x = ,12Tx x =, ,1 n n Tx x =+.下证}{n x 是Cauchy 序列:)Tx ,d(Tx ) x ,d(x ) ,() ,(2n 1n 1n n 11----+=≤=θθn n n n Tx Tx d x x d ) x ,d(x ) x ,d(x 02n 1n 21n θθ≤≤≤-- .) x ,d(x ) x ,d(x ) ,() ,(n n 2p n 1p n 11+-+-+-++++++≤ p n p n n p n x x d x x d()) ,( 0121x x d np n p n θθθ+++≤-+-+ ),(1),(1)1(0101x x d x x d np n θθθθθ-≤--=,∴0),(lim =++∞→n p n n x x d . 而X 完备, x x ,x n →∈∃使 X . T 连续, 故 x x T = .唯一性:若 y T y =. 由于 y 0)y ,( )y ,( )y T , ()y ,(=⇒=⇒≤=x x d x d x T d x d θ.误差估计:) x ,(1)x ,(00Tx d x d nn θθ-≤. 推论.设),(d X 是完备的距离空间,映射X X T :. 若 0n T 是X 上的压缩映射,则T 有唯一的不动点.证:0n T有唯一的不动点x :x x Tn =0.由, )() (00x T x T T x T T n n == 故x T 也是 0nT 的不动点. x x T =⇒ . 由于 T 的不动点也是0n T的不动点,故T 的不动点唯一. 压缩映射原理的应用例1.常微分方程解的存在唯一性.考虑初值问题:⎪⎩⎪⎨⎧==00)(),(x t x t x f dt dx,其中) ,(t x f 连续, 关于x 满足Lipschite 条件:0)(k,) ,() ,(2121>-≤-x x k t x f t x f . 则方程存在唯一解 )(t x x =.证:方程等价于[]⎰+=tt d x t x 00),x(f )(τττ.取 1k ,0<>δδ使.定义 ] t ,[] t ,[0000δδδδ+-+-t C t C T :为 []⎰+=tt d x t Tx 00),x(f ))((τττ,] t ,[00δδ+-∈t t .验证 T 是压缩映射:⎰-≤≤- t212100 ]),([]),([max ),(t t t d x f x f Tx Tx d τττττδ⎰-≤≤- t2100)()(max t t t d x x k τττδ021t t m ax )()( m ax 0-⋅-⋅≤≤-≤-δδτττt t t x x k ),( 21x x d k δ≤. )1(<δkT 在 ] t ,[00δδ+-t C 内具有唯一的不动点 )(t x x =:x Tx =. 重复利用定理将解延拓到实数域R 上.例2.线性方程组解的存在唯一性.线性方程组:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-=-∑∑∑===nj n j j n n n j j j nj j j b x a x b x a x b x a x 1 12221111,,,满足 ∑=≤≤<=nj ji n i a111max α, 则它具有唯一解 ) x , ,(n 1 x x =.证:在nR 中定义距离:ini y y x d -=≤≤i 11x max ),(,) x , ,(n 1 x x=,n R y y ∈=)y , ,(n 1 ,则 ) ,(1d R n 完备. 作映射 n n R R T : 为 ⎪⎪⎭⎫ ⎝⎛++=∑∑==n j n j j n j j b x a b x a x x 1 n 1 j 11n 1 , ,) x , ,( . 则∑=≤≤-=nj j j j i n i y x a Ty Tx d 1 11)( max ) ,(∑=≤≤-≤nj j j j i ni y x a 1 1 max ),(max 11 1y x d a n j j i n i ⎥⎦⎤⎢⎣⎡≤∑=≤≤) ,( 1y x d α=.T 是压缩的,有唯一不动点 ) x , ,(n 1 x x =.§2.4. R 中的开集及完全集的构造开区间) ,(b a 是R 中开集 (+∞≤<≤∞-b a ). 任意多个开区间之并是开集.另一方面,设开集R G ⊂.则G r) x r,(x 0,r G , x ⊂+->∃∈∀使.记 }G x),( , inf{⊂<=ααα且x a , }G ) ,( , sup{⊂>=βββx x b 且.开区间) ,(b a 具有性质:G b G,a ,) ,(∉∉⊂G b a .称) ,(b a 为开集G 的一个构成区间.于是,G 中每一点必在G 的一个构成区间.此外,G 的任何两个不同的构成区间必不相交.而R 中两两不交的开区间至多可列个. 定理2.4.1. (开集构造定理) 每个非空开集R G ⊂可表示为至多可列个两两不交的开区间之并: +∞==1 n n )b ,(a n G .根据完全集的定义 (15P )及Th2.2.3(3) 可知,完全集(A A '=)即为无孤立点的闭集.故有如下定理. 定理2.4.2. (R 中完全集的构造) 集R A ⊂是完全集 cA ⇔ 是两两不交并且无公共端点的开区间之并.Cantor 集P . [ ] [ ] [ ] [ ] [ ]构造过程: 0 231 23231 32 97 98 1第一步:将 ]1 ,0[三等分,挖去⎪⎭⎫ ⎝⎛=32 ,311J ,留下闭区间 ⎥⎦⎤⎢⎣⎡=31 ,00I ,⎥⎦⎤⎢⎣⎡=1 ,322I . 记 11J G =.第二步:对0I ,2I 分别三等分,挖去中间的开区间⎪⎭⎫ ⎝⎛=92 ,9101J 与 ⎪⎭⎫⎝⎛=98 ,9721J . 记 21012J J G =,留下4个闭区间⎥⎦⎤⎢⎣⎡91 ,0,⎥⎦⎤⎢⎣⎡31 ,92,⎥⎦⎤⎢⎣⎡97 ,32,⎥⎦⎤⎢⎣⎡1 ,98.第三步:对留下的4个闭区间施行同样过程.将挖去的4个开区间之并记为3G .如此继续下去.记 c1 n G P ), ,1()0 ,(G ∆+∞==∞+-∞⎪⎪⎭⎫ ⎝⎛= n G . (书25P 错) 据Th2.2.4 及Th2.4.2,Cantor 集P 是疏朗集、完全集.若采用三进制无穷小数表示]1 ,0[中数,则 xG 1n ⇔∈+∞= n x 中至少有一位是1,亦即:x ⇔∈P x 可表示为由0或2作为位数过构成的无穷小数.由Th1.3.4,ℵ=⎪⎪⎭⎫ ⎝⎛=∏∞+= 2} {0,1 n P ; ]1 ,0[~P .第二章习题26P .16.设}{n K 是度量空间X 中非空单调减紧集序列,证明:φ≠+∞= 1nKn .特别地,若 0)(→n K d ,则+∞=1nKn 为单点集.证:反证法.假设φ=+∞= 1 n K n , 即 ∞+=∞+==⎪⎪⎭⎫ ⎝⎛=⊂11 n 1K n c n cn K X K . 321 ⊃⊃⊃K K K , 321 ⊂⊂⊂cc c K K K . 1K 紧 φ=⊂=⇒=⊂⇒=cn c n ki c n kkiK K K K K kkkn 1n n 11K K K .矛盾.若 0)( lim =+∞→n n K d ,)(n 0)d(K y) d(x , K ,n 1n +∞→→≤⇒∈+∞= n y x . y x =∴.33.证明: x sup }{n⎭⎬⎫⎩⎨⎧+∞<==∈∞N n n x x l 是不可分的距离空间. 证明:距离:}{n x x =,}{n y y =,n n Nn y x y x d -=∈ sup ) ,( . 假设 ∞l 可分,据15P (11), (9),它有至多可列的稠密子集.对于 41=ε,存在可列多个球+∞1)} ;({εn x B , 使+∞=∞⊂1) ;(n n x B l ε.记{} }1 ,0{ }{ n ∈==x x x A n , 则 ∏+∞=1 1} {0,n A ~,ℵ=A . 但+∞=⊂1 ) ;(n n x B A ε, 存在球) ;(0εn x B , 至少包含A 中不同的两点 A y x ∈ ,. 这样,()212) ;(1) ,(0 =≤≤=εεn x B d y x d , 矛盾. 空间 ∞l 不可分.。

信号与系统——泛函分析初步

信号与系统——泛函分析初步
例如,在电信领域,通常考虑能量有限信号,能量有限信号的全体 构成一个内积空间,其内积为,而且这个内积空间是一个Hilbert空间。
再如,若一个能量有限信号可以分解成无穷多个分量,即其各分量 平方可和
可证明,按内积构成的内积空间,也是一个Hilbert空间。 Cauchy-Schwarz不等式:为内积空间,,有
定义(和、直和,Sum、Direct sum):
设是的线性子空间,称为子空间的和。如果,即p个子空间彼此无 交集,则这些子空间的和称为直和,记为:。
定理:设是的线性子空间,则 (1)子空间的交也是的子空间; (2)子空间的和也是的子空间; (3)是直和 对于,可唯一表示成
,其中。
§2.3 距离空间(度量空间)
其中,为定义域,为值域。
图2-1 算子的映射作用 定义(数域,Number field):包括0、1且对四则运算封闭 的数集。 定义(泛函,Functional):值域是实/复数域的算子称为 泛函。 注:定积分,距离,范数,内积,函数(第三种定义),(普 通)函数均为泛函。 定义(线性算子):为线性空间,,若对,
Hilbert第六问题:任何物理学理论、物理定 律、实验结论,都可以从一组数学公理出发通
过演绎得到。
希尔伯特第六问题,体现了一种对于统一的追求。
泛函分析:属于基于公理的分析体系,不在于计算,
而着眼于概念演绎,更普适、更一般、更深刻地理
解、解释数学物理问题。
1. 内积空间:
定义(内积,Inner product):设为实或复线性空间,若对 (复数域),均有一实数或复数与之对应,记为,满足:
注意2:满足三条公里的距离定义可以有多种。因此,同一个集合
与不同定义的距离结合,构成不同的度量空间。

第2章 距离空间

第2章 距离空间
1 2
§2.1 定义和举例
1)定义(距离空间) 设 X 是非空集合,若
按一定 ∀x, y ∈ X ⎯⎯⎯ →∃ ρ(x, y)≥ 0,且满足(距离公理) 规则
距离 ρ(•, •)是集合 X×X (称为乘积空间或笛卡尔 积空间)到实数集合 R1 上的二元泛函(或称函数) 。
(1)非负性 ρ(x, y ) ≥ 0,当且仅当x = y时, ρ(x, y ) = 0 (2)对称性 ρ(x, y) = ρ(y, x) (3)三角不等式 ∀z ∈ X , 有
x (t ) − y (t ) 是完备的距离空间; 例 4 C [ a , b ] 按 ρ ( x, y ) = tmax ∈[ a ,b ]
例2 有理数空间 Q 按欧氏距离是不完备的距离空间。
C [ a , b ] 按 ρ1 ( x, y) = ∫a x(t ) − y(t ) dt 是不完备的距离空间
可见,同一空间可以定义不同的距离,从而形成不 同的距离空间。
5 6
2 - 1
第二章 距离空间
补充不等式 1)Minkowski 不等式
⎛ n ai + bi (1) ⎜ ⎜∑ ⎝ i =1
k
2)Holder 不等式
⎞ ⎟ ⎟ ⎠
1/ k
(1) ∑ aibi ≤ ⎜ ∑ ai ⎟
p
1/ k
n

n
⎞ ⎠
如果在 R 中,定义 d(x, y ) = x1 − y1 + x2 − y2 ,
2
ρ ( x, y ) = max x(t ) − y (t )
t∈[ a ,b ]
验证得知 R 按 d 也是距离空间,但与欧氏空间是不同
2
的度量空间。

高中数学 第二章 解析几何初步 学业分层测评24 空间两点间的距离公式 北师大版必修2

高中数学 第二章 解析几何初步 学业分层测评24 空间两点间的距离公式 北师大版必修2

【课堂新坐标】2016-2017学年高中数学 第二章 解析几何初步 学业分层测评24 空间两点间的距离公式 北师大版必修2(建议用时:45分钟)[学业达标]一、选择题1.若A (1,3,-2),B (-2,3,2),则A ,B 两点间的距离为( ) A.61 B .25C .5 D.57 【解析】 |AB |=1+22+3-32+-2-22=5.【答案】 C2.在长方体ABCD ­A 1B 1C 1D 1中,若D (0,0,0)、A (4,0,0)、B (4,2,0)、A 1(4,0,3),则对角线AC 1的长为( )A .9 B.29 C .5D .2 6【解析】 由已知可得C 1(0,2,3),∴|AC 1|=4-02+0-22+0-32=29.【答案】 B3.如图2­3­13,在空间直角坐标系中,有一棱长为a 的正方体ABCD ­A 1B 1C 1D 1,A 1C 的中点E 到AB 的中点F 的距离为( )图2­3­13A.2aB.22a C .aD.12a 【解析】 由题意得F ⎝ ⎛⎭⎪⎫a ,a2,0,A 1(a,0,a ),C (0,a,0),∴E ⎝ ⎛⎭⎪⎫a 2,a 2,a2,则|EF |= ⎝ ⎛⎭⎪⎫a -a 22+⎝ ⎛⎭⎪⎫a 2-a 22+⎝ ⎛⎭⎪⎫0-a 22=22a . 【答案】 B4.设点P 在x 轴上,它到P 1(0, 2,3)的距离为到点P 2(0,1,-1)的距离的两倍,则点P的坐标为( )A.(1,0,0) B.(-1,0,0)C.(1,0,0)或(0,-1,0) D.(1,0,0)或(-1,0,0)【解析】∵点P在x轴上,∴设点P的坐标为(x,0,0),由题意|PP1|=2|PP2|,∴x-02+0-22+0-32=2x-02+0-12+0+12,解得x=±1,∴所求点为(1,0,0)或(-1,0,0).【答案】 D5.已知点A(1,a,-5),B(2a,-7,-2)(a∈R),则|AB|的最小值是( )A.3 3 B.3 6C.2 3 D.2 6【解析】|AB|=1-2a2+a+72+-5+22=5a+12+54≥54=3 6.【答案】 B二、填空题6.点P(x,y,z)到点A(-1,2,3),B(0,0,5)两点的距离相等,则x、y、z满足______.【解析】由|PA|=|PB|,可得x+12+y-22+z-32=x2+y2+z-52,整理得2x-4y+4z-11=0.【答案】2x-4y+4z-11=07.已知正方体不在同一表面上的两顶点A(-1,2,-1),B(3,-2,3),则正方体的体积是________.【解析】设正方体棱长为a,则a2+a2+a2=|AB|=42+-42+42,所以a=4,V=43=64.【答案】648.在Rt△ABC中,∠BAC=90°,A(2,1,1),B(1,1,2),C(x,0,1),则x=________.【解析】由距离公式|AB|=2-12+1-12+1-22=2;|AC|=2-x2+1-02+1-12=2-x2+1;|BC|=1-x2+1-02+2-12=1-x2+2;∵∠BAC=90°,∴|BC|2=|AB|2+|AC|2,∴(1-x)2+2=2+(2-x)2+1,解得x=2.【答案】 2三、解答题9.如图2­3­14,在长方体ABCD­A1B1C1D1中,AD=2,DC=4,DD1=3,利用空间两点间的距离公式,求对角线AD1,AB1和AC1的长.【导学号:10690074】图2­3­14【解】以D为坐标原点,DA,DC和DD1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系.则D(0,0,0),A(2,0,0),D1(0,0,3),B1(2,4,3),C1(0,4,3),∴|AD1|=22+32=13,|AB1|=2-22+42+32=5,|AC1|=2-02+-42+-32=29.10.在xOy平面内的直线2x-y=0上确定一点M,使它到点P(-3,4,5)的距离最小,并求出最小值.【解】∵点M在xOy平面内的直线2x-y=0上,∴点M的坐标为(a,2a,0),则|MP|=a+32+2a-42+52=5a2-10a+50=5a-12+45,∴当a=1时,|MP|取最小值35,此时M(1,2,0).即M坐标为(1,2,0)时,|PM|最小,最小值为3 5.[能力提升]1.在空间直角坐标系中,与点A(3,1,2),B(4,-2,-2),C(0,5,1)等距离的点的个数为( )A.1 B.2C.3 D.无数【解析】 由两点间距离公式可得|AB |=26,|BC |=74,|AC |=26,易知A 、B 、C 三点不共线,故可确定一个平面.在△ABC 所在平面内可找到一点到A 、B 、C 距离相等,而过该点与面ABC 垂直的直线上的每一点到A 、B 、C 距离均相等.【答案】 D2.点P (x ,y ,z )的坐标满足x 2+y 2+z 2=1,点A (-2,3,3),则|PA |的最小值是( ) A .2 B .3 C .4D .5【解析】 x 2+y 2+z 2=1在空间中表示以坐标原点O 为球心、1为半径的球面,所以当O 、P 、A 三点共线时,|PA |最小,此时|PA |=|OA |-|OP |=|OA |-1=-22+32+32-1=4-1=3.【答案】 B3.(2016·徐州高一检测)对于任意实数x 、y 、z ,x 2+y 2+z 2+x +32+y +22+z -12的最小值为______.【解析】 结合空间直角坐标系中任意两点的距离公式,可得x 2+y 2+z 2+x +32+y +22+z -12表示的几何意义是空间内任意一点M (x ,y ,z )与原点O (0,0,0)及定点A (-3,-2,1)的距离之和,显然当O ,M ,A 三点共线时,|OM |+|MA |最小,最小值为|OA |=-3-02+-2-02+1-02=14.【答案】144.已知正三棱锥A ­BCD ,高为1,底面正三角形边长为3,建立适当坐标系写出A 、B 、C 、D 四点的坐标,并求侧棱AB 的长度.【解】 设O 为A 在底面BCD 上的射影,则O 为正三角形BCD 的中心. 如图以OB 所在直线为x 轴,以OA 所在直线为z 轴,以过O 与CD 平行的直线为y 轴,建立空间直角坐标系, 设CD 中点为E ,由BC =3,O 为△BCD 中心可知, |OB |=23|BE |=23·32|BC |=1,|OE |=12|OB |=12,∴B (1,0,0),E ⎝ ⎛⎭⎪⎫-12,0,0.又|CE |=|ED |=32,∴C ⎝ ⎛⎭⎪⎫-12,32,0,D ⎝ ⎛⎭⎪⎫-12,-32,0. 又∵A 在z 轴上,且|AO |=1,∴A (0,0,1). 由两点间的距离公式|AB |=1-02+0-02+0-12=2,∴各点坐标为A (0,0,1),B (1,0,0),C ⎝ ⎛⎭⎪⎫-12,32,0,D ⎝ ⎛⎭⎪⎫-12,-32,0,侧棱AB 长为 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同理,点列{xn}
{(1
1)n}是
n
Q
中的
Cauchy
点列,但
不是收敛点列。

2,设空间
X=(0,
1),则点列{xn}
{ 1 } n 1
X
按定义
(x, y) x y 是 X 中的 Cauchy 列,但在 X 中不收
特别的,当 p=2 时, L2[a,b]称为平方可积的空间。
例 5 设l p (P 1) 是所有 p 方可和的数列所成的集合,
即x { xi } 满足 xi p , i 1
p 1/ p
对于 x {xi}, y {yi}l p ,定义(x, y) i1 xi yi ,
则l p 是距离空间,常称为 p 方可和的空间。
如果在 R2 中,定义 d(x, y) x1 y1 x2 y2 ,
验证得知 R2 按 d 也是距离空间,但与欧氏空间是不同
的度量空间。
例3 设C[a,b]表示定义在[a,b]上的所有连续函数的
全体。x(t), y(t)C[a,b],定义
(x, y) max x(t) y(t) t[ a ,b ]
空间
可见,同一空间可以定义不同的距离,从而形成不 同的距离空间。
例 2 设 Rn 是 n 维向量全体构成的空间,
x (x1, x2, , xn ), y ( y1, y2, , yn ) R n
n
定义 (x, y) (xi yi )2 i 1
证明:Rn 在 下为距离空间,即通常意义下的欧氏空间。
Cauchy 点列;反之,Cauchy 点列不一定是收敛点列
证明:设 n 时, (xn, x) 0,
(xn, xm ) (xn, x) (xm, x)
则 n,m 时, (xn, xm ) 0 。 例 1 在有理数空间 Q 中,点列
1, 1.4, 1.41, 1.414, 1.4142, … 2 Q 是 Q 中的 Cauchy 点列,但不是收敛点列;
(即 n 时, (xn, x) 0)
则称点列 x n 在 X 中按距离 收敛于 x,记作
lim
n
xn
x
或 xn
x(n
)
此时,称 x n 为收敛点列,x 为 x n 的极限点。
定理 1(极限唯一性)在距离空间 X 中,收敛点列 x n 的极限是唯一的。
定理 2(极限存在的有界性)在距离空间 X 中的收敛 点列 x n 必有空间。
Remarks: 对不同的对象(集合),应根据对象的性质定义适当 的、有意义的距离。 对同一个集合定义不同的距离,构成不同的距离空 间。
§2.2 收敛概念
1) 定义(收敛点列) 设 X 是一个距离空间,{x n}是 X
中点列, x X 。若
0, N, 当n N时, (xn, x)
则 C[a, b]是距离空间。
例4 设 Lp[a,b] (P 1) 表示[a,b]上 p 方可积的所有函数的
全体,即
Lp
[a,
b]
x(t
)
b a
x(t)
p
dt

x(t), y(t) Lp , 定义 (x, y) b x(t) y(t) p dt 1/ p a
则 Lp[a,b]是距离空间,常称为 p 方可积的空间。
2)举例 例 1 设 R1 是非空实数集合,x, y R1,
① 若定义 (x, y) x y ,
验证知三条距离公理成立,则 R1 按定义 为距
离空间,即通常意义下的距离空间,常称欧氏空间。

若定义
1(x,
y
)
1
x
x
y
y
,验证知三条距离公理
成立,所以,R1 按定义 1也是距离空间
③ 若定义 2(x, y) x y2 , 验证不满足第三条公理,所以 R1 按定义 2 不是距离
Rn , x (x1, x2, , xn ) , y ( y1, y2,
3(x, y)
max
1in
xi
yi

4(x, y)
min
1in
xi
yi
, yn ) Rn
思考: 4 (x, y)能否定义 Rn 上的距离?
特别的,当 n=1 时, (x, y) x y , 当 n=2 时, (x, y) (x1 y1)2 (x2 y2 )2
(x, y) (x, z) (z, y)
则称实数 (x, y)为元素 x 与 y 之间的距离,称 X 为距 离空间或度量空间,记作(X , )或 X 。距离空间中的元 素也称为“点”,用“·”表示。
距离 (•,•)是集合 X×X(称为乘积空间或笛卡尔
积空间)到实数集合 R1 上的二元泛函(或称函数)。
第2章 距离空间
§2.1 定义和举例 §2.2 收敛概念 §2.3 稠密性与完备性 §2.4 可分性与列紧性 §2.5 连续映射
在数学分析中 研究对象——函数 基本工具——极限,是分析理论的基础 定义极限的基础——距离
在泛函分析中将上述内容推广 研究对象——算子、泛函 (空间到空间的映射) 首先引入度量工具——距离 然后在度量空间中——定义极限,建立相应的理
论,进一步对每一个具体空间引入相应的结论。
§2.1 定义和举例
1)定义(距离空间) 设 X 是非空集合,若 x, y X 按规一则定 (x, y) 0,且满足(距离公理)
(1)非负性 (x, y) 0,当且仅当x y时, (x, y) 0 (2)对称性 (x, y)(y, x) (3)三角不等式 x, y, z X , 有
则称 x n 为基本点列或 Cauchy 点列。 例如在 R1 中,点列{xn} {1n},是 Cauchy 列,也是收敛 点列。
注:R1 中有结论:{x n}是收敛数列 {x n}是 Cauchy 数列。
但在一般的距离空间中,该结论不成立。
定理 若{x n}是(X , )中的收敛点列,则{x n}一定是
即 x0 X , 及实数r 0, 使得xn, 都有(xn, x0 ) r
定理 3(距离的连续性)在距离空间 X 中,距离 (x, y)
是两个变元 x, y 的连续泛函。即当 xn x0, yn y0 时 (xn, yn ) (x0, y0 )(n )
2) 柯西点列(Cauchy)
定义 设{x n}是距离空间 X 中的一个点列,若 0, N, 当n, m N时, (xn, xm ) (即 n, m 时,(xn, xm) 0)
相关文档
最新文档