几类可降阶高阶微分方程17页PPT

合集下载

第三节 可降阶的高阶微分方程

第三节 可降阶的高阶微分方程

例5
求方程 yy′′ − y′2 0 的通解 。 =
dp 解 令 p = y′ ,则 y′′ = p 。 dy dp yp − p2 = 0 。 于是, 于是,原方程化为 dy dy = 0 ,故此时有解 y = C 。 若 p = 0 ,则 dx dp dy = 。 若 p ≠ 0 ,则原方程化为 p y dy p = 0 对应于 C1 = 0 = p = C1 y 。 两边积分,得 两边积分, dx y = C2 eC1x。 运用分离变量法, 运用分离变量法,得此方程的通解为
2 2
(***)
此处取负号是因为物体运动的方向与y轴的正向相反. 在(***)中令 y=R,就得到物体到达地面时的速度为
2 gR(l − R) v=− l
最后求物体落到地面所需的时间. 由(***)式有
1 1 dy = v = −R 2g − , y l dt
分离变量,得
1 l y dt = − dy. R 2g l − y
1 y′′ = 1 + y ′2 a
取原点 O 到点 A 的距离为定值 a ,即 |OA|= a ,则初始条件为:
y x =0 = a, y′ x =0 = 0.
故初值问题为
′′ 1 y = 1 + y ′2 , a y x = 0 = a, y ′ x = 0 = 0
′′ 1 y = 1 + y ′2 , a y x = 0 = a, y ′ x = 0 = 0
令 y ′ = p,
y′′ = p′ 代入上方程,得
dx = a 1 + p2 dp
1 2 p′ = 1+ p . a
x ln( p + 1 + p ) = + C1 a

可降阶的高阶微分方程

可降阶的高阶微分方程

f1
α
f 2与 N 保持平衡, f1和 R 之合力 F = f1 − R = mg (sin α − µ cos α ) 使物体沿斜面运动。设 物体移动的距离 s = s (t ),则由 Newton d 2s 第二定律,有: mg (sin α − µ cos α ) = m 2 dt d 2 s(2) 即: 2 = g (sin α − µ cos α ) — —此为 s (t )应满足的微分方程 dt
3. 例子: 7-17 例
dy 解:积分一次得: = x(ln x − 1) + c1 dx 1 2 3 再积分一次得:y = x (ln x − ) + c1 x + c2 2 2 即为所求之通解。
上一页 下一页
d y 求 = ln x 的通解 2 dx
2
可降阶方程第一型举例(续1)
例7-18 质量为m的物体,以初速度v0从一斜面上滑下。如斜面的倾角为
上一页
下一页
三、 y′′ = f ( y,y′)型
1. 形式:
y′′ = f ( y,y′)
(7)
(即含有未知函数y, 不含自变量x)
2. 解法: 令y ′ = f ′( x ),视 x为未知函数, y为自变量,两边对 y求导:
dp ====================================== d ( y ′) d [ f ′( x )] dx d 2 y 1 1 = = ⋅ = 2⋅ = y ′′ ⋅ dy dy dx dy dx dy p dx (*) dp df (u ) df (u ) du ∴ y ′′ = p ⋅ ∵ = • dy dx du dx
继续下一节(Continue) 下一页

常微分方程课件--可降阶的高阶方程

常微分方程课件--可降阶的高阶方程

x 的方
dy 程,令 p 则方程(1.7.17)化为 dx dp w 1 ( p) 2 dx H
分离变量,积分得:

w dx c1 H 1 p2
dp
x ln( p 1 ( p) ) c1 (1.7.18) 即 a H 式中 a .把初始条件 y(0) 0 代入 w (1.7.18)上式得:1 0 ,故(1.7.18)变为 c
x x
x
x
积分上式,得:
a a x a y (e e ) c2 ach( ) c2 2 a 把初始条件 y(0) b 代入上式得 c2 b a
H .此时 c2 0,从而 为简单起见,假设b a w
得绳索的方程:
x a a y ach( ) (e e a ) a 2 x x
dx d n 1 x 方程,但乘以一个合适的因子 (t , x, , n 1 ) dt dt 后就成为全微分方程. 称其为方程(1.7.4)的积分
因子.
d 2 x dx 2 例 求解方程 x ( ) 0 2 dt dt
解:原方程可以写成 d ( xx ' ) 0 dt 故有 xx c
又由于
dS dy 2 1 ( ) dx dx

dW dy 2 w 1 ( ) dx dx d2y w dy 2 1 ( ) 2 dx H dx
从而方程(1.7.16)化为: (1.7.17)
记 b 为绳索最低点C到坐标原点的距离, 则有: y(0) b, y(0) 0 (1.7.17)是一个不显含自变量
原方程可以写成dtdtxxdt积分后得通解为故有dtdtdtdt可降阶的高阶方程的应用举例速度v运动方向永远指向p点求m点的运动例1追线问题平面上另有一点m它以常正向移动

【高数(下)课件】10-3可降阶的高阶微分方程

【高数(下)课件】10-3可降阶的高阶微分方程

可降阶的高阶微分方程
2 y 2 2 x
2 1 2x y dx ln C1 2 2 x 2 2x
再由初始条件 y(1) 2 ,知
C1 2[1 ln( 1 2 )]
故所求解为
1 2x y ln 2[1 ln( 2 1)] 2 2x
可降阶的高阶微分方程
可降阶的高阶微分方程
3 x 2 y y 1 x 3
y
x 0
1, y x0 4
3
dy 4(1 x )dx y x 4 x C2
4
再由初始条件 y x0 1, 知C2 = 1 故所求解为
y x4 4 x 1可降阶的高阶微分方程可降阶的高阶微分方程
求微分方程 y 2 y 1 0 的积分曲线, 使该 1 积分曲线过点 0, , 且在该点的切线斜率为2. 2 解 方程 y 2 y 1 0 属y f ( y, y)型
1 p2 C1 y p C1 y 1
dy 即 C1 y 1 dx
属y f ( y, y)型
可分离变量方程
可降阶的高阶微分方程
dy dy dx C1 y 1 C1 y 1 dx
2 C1 y 1 x C 2 C1
三、y f ( y, y) 型的方程
特点 方程缺自变量x dy p p( y ) 解法 设 y dx 2 d p dp d y dp d y 则 y 2 p , 方程变成 d x dy d x dy dx dp p f ( y , p).这是关于变量y , p 的一阶方程. dy 设它的通解为 y p ( y, C1 ). 分离变量并积分, dy x C2 得通解为 ( y , C1 )

第五节可降阶的高阶微分方程

第五节可降阶的高阶微分方程
解法:设 y p( y) 则 y dp dy p dP ,
dy dx dy
代入原方程得到新函数P( y)的一阶方程, dy p( y) f ( y, p), dx 先求出P( y),然后求通解y.
例 4 求方程 yy y2 0 的通解.
解1 设 y p( y), 则 y p dP , dy
代入原方程得 y P dP P 2 0, 即 P( y dP P) 0,
dy
dy
由 y dP P 0, dy
可得 P C1 y,
dy dx
C1
y,
原方程通解为 y C2e c1x .
解2 原方程变为 y y , y y
两边积分,得 ln y ln y ln C1, 即 y C1 y,
当y 0,设y p,
y R2 (x C1 )2 C2 . (x C1 )2 ( y C2 )2 R2 .
四、小结
解法 通过代换将其化成较低阶的方程来求解.
补充题: 求方程 xyy xy2 yy 的通解.
解 xyy xy2 yy 同除以y 2得
yy xy2
x(
y2
)
y y
例 6 求曲线,它在任意点处的曲率都等于常数
K( 0). 解 设曲线y y( x),
当y 0,设y p,
则 | y | [1 ( y)2 ]3/2
K,
代入原方程得
dp (1 p2 )3/2
Kdx,
p
1
p2
K(x C1),
p
x C1
,
R2 (x C1)2
R 1 . K
y R2 (x C1)2 C2 .
5. xy y 2 xy .
练习答案
1. y3 y 1 0 .

可降阶的高阶微分方程

可降阶的高阶微分方程
§10.3 可降阶的高阶微分方程
( n) y f ( x ) 型的微分方程 一.
二. y f ( x, y) 型的微分方程
三. y f ( y, y) 型的微分方程
教学目标
1. 掌握三种特殊高阶方程的求解方法.
机动
目录
上页
下页
返回
结束
从本节起,我们将讨论二阶及二阶以上的微分方程,即
y f ( x, y)
令 y p( x ), 则 y
dp dx
3.
y f ( y, y)
令 y p( y ),
dp 则 y p dy
16
机动 目录 上页 下页 返回 结束
2018/7/27
思考练习
1. 方程 y f ( y) 如何代换求解 ? 答: 令 y p( x ) 或 y p( y ) 均可. 一般说, 用前者方便些. 有时用后者方便 . 例如, y e
1 3 C1 ( x x ) C 2 3
以条件 y x0 1 , y x0 3 代入得 C1 3 , C2 1
故所求特解为 y x 3 3 x 1
19
机动 目录 上页 下页 返回 结束

p F ( x,C1 )
dy F ( x,C1 ) dx 这是个一阶微分方程,两端进行积分,便可得方程
(10.3.2)的通解为
y F ( x,C1 )dx C2
7
例2 求微分方程 xy y x 2 0 的通解. 解 由于方程中不显含未知函数 y ,是属于 y f ( x, y) 型. 设 y p, 则
y x 0 3 的特解.
解 令
p y 则原方程化为

《可降阶微分方程》课件

《可降阶微分方程》课件
非线性微分方程的解法通常包括迭代法、分步法、幂级数展开法和数值计 算方法等。
非线性微分方程在自然现象和社会现象中广泛存在,如生态学、化学反应 、经济学和气象学等。
微分方程的解与通解
微分方程的解是指满足方程的函数表达式。对于线性微分方程,解的形式通常是多项式函数、三角函 数和指数函数等。
通解是指满足微分方程的任意常数都可以代入得到的解,也称为一般解或全解。对于非线性微分方程, 通解通常很难找到,需要通过数值计算等方法求解。
01
线性微分方程是指方程中未知函数及其导数的项都 是一次的,没有高次项、指数项和幂次项。
02
线性微分方程的解法通常包括分离变量法、变量代 换法、常数变易法和特征根法等。
03
线性微分方程在物理、工程和经济等领域有广泛的 应用,如电路分析、控制系统和人口动态等。
非线性微分方程
非线性微分方程是指方程中含有未知函数的非线性项,如高次项、指数项 和幂次项等。
连续时间投资组合优化
描述投资者在连续时间内调整投资组合的微分方程,以实现最优 收益和风险控制。通过求解该方程,可以得到最优的投资策略。
供需关系模型
描述市场供需关系的微分方程,如商品价格和需求量的变化。 通过求解该方程,可以预测市场价格的走势和供需平衡状态。
生物问题中的应用
要点一
种群动态模型
描述生物种群数量变化的微分方程,如种群的增长率、出 生率和死亡率等。通过求解该方程,可以预测种群数量的 变化趋势和生态平衡状态。
在实际应用中,需要根据具体问题选择合适的解法来求解微分方程,并考虑初始条件和边界条件等因素 。
03
可降阶微分方程的求解方法
变量分离法
总结词
通过将方程转化为易于求解的形式,简化求解过程。

第六章 微分方程第三节 可降阶的高阶 微分方程

第六章 微分方程第三节   可降阶的高阶 微分方程
(t
2
故所求质点运动规律为
t
3
)
3T
-5-
第三节
可降阶的高阶微分方程
二、
y f ( x , y )
型的微分方程
原方程化为一阶方程
设 y p ( x ) ,
第 十 二 章 微 分 方 程
设其通解为 则得
p ( x , C1 ) y ( x , C1 )
再一次积分, 得原方程的通解
dp p

2 xdx (1 x )
2
2
ln | p | ln( 1 x ) ln | c | p c (1 x ) y c (1 x )
2 2

再次积分得通解
y cx
c 3
x c1
3
-7-
第三节
可降阶的高阶微分方程
例4
y 2 x y 2 x 3 求解 y x 0 1, y x 0 1
满足的方程 .
解:
在点 P(x, y) 处的切线倾角为 , 于是
y
S1
1 2
y cot
2
P(x, y)
S2
0
x
y
y( t ) d t
O
S2

S1
x x
y co t
- 16 -
第三节
可降阶的高阶微分方程
利用 两边对 x 求导, 得
第 定解条件为 十 二 令 y p ( y ), 章 微 分 方 程
y ( x , C1 ) d x C 2
-6-
第三节
可降阶的高阶微分方程
例3 求微分方程 ( 1 x 2 ) y 2 x y 的通解。 解 令p
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档