湖北省武汉市部分学校2019-2020学年下学期八年级数学暑假假期综合复习卷五
湖北省武汉市汉阳区2019-2020学年八年级(下)期中数学试卷(含解析)(精校版)

2019-2020学年湖北省武汉市汉阳区八年级(下)期中数学试卷一、选择题(每题3分,共30分)1.(3分)要使代数式有意义,则x的()A.最大值是B.最小值是C.最大值是D.最小值是2.(3分)若=3﹣b,则b满足的条件是()A.b>3 B.b<3 C.b≥3D.b≤33.(3分)下列根式中,不能与合并的是()A.B.C.D.4.(3分)如图,Rt△ABC中,∠ACB=90°,若AB=15cm,则正方形ADEC和正方形BCFG 的面积和为()A.150cm2B.200cm2C.225cm2D.无法计算5.(3分)满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3 B.三边长的平方之比为1:2:3C.三边长之比为3:4:5 D.三内角之比为3:4:56.(3分)一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动()A.9分米B.15分米C.5分米D.8分米7.(3分)一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是()A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.88°,92°,88°8.(3分)数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否互相平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量三个角是否为直角9.(3分)如图,已知四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长与点P的位置有关10.(3分)如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.1 B.C.2 D.+1二、填空题(每题3分,共18分)11.(3分)在实数范围内分解因式:x2﹣3=.12.(3分)平行四边形ABCD的周长是18,三角形ABC的周长是14,则对角线AC的长是.13.(3分)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.14.(3分)如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于.15.(3分)已知a,b为实数,且﹣(b﹣1)=0,则a2015﹣b2016的值为.16.(3分)△ABC中,AB=15,AC=13,高AD=12.则△ABC的面积为.三、解答题(共8题,共72分)17.(8分)计算(1)4+﹣(2)÷×.18.(8分)先化简,再求值÷(﹣),其中x=+,y=﹣.19.(8分)如图,在▱ABCD中,E、F分别是AB、DC边上的点,且AE=CF,(1)求证△ADE≌△CBF;(2)请你添加一个条件,使四边形DEBF是矩形(不用证明).20.(8分)如图在10×10的正方形网格中,△ABC的顶点在边长为1的小正方形的顶点上.(1)计算AC,AB,BC的长度,并判定△ABC的形状;(2)若在网格所在的坐标平面内的点A,C的坐标分别为(0,0),(﹣1,1).请你在图中找出点D,使以A、B、C、D四个点为顶点的四边形是平行四边形,直接写出满足条件的D 点的坐标.21.(8分)(1)以a,b为直角边,c为斜边作两个全等的Rt△ABE与Rt△FCD拼成如图1所示的图形,使B,E,F,C四点在一条直线上(此时E,F重合),可知△ABE≌△FCD,AE⊥DF,请你证明:a2+b2=c2;(2)在(1)中,固定△FCD,再将△ABE沿着BC平移到如图2的位置(此时B,F重合),请你重新证明:a2+b2=c2.22.(10分)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=5,求BN的长;(2)如图2,在Rt△ABC中,AC=BC,点M,N在斜边AB上,∠MCN=45°,求证:点M,N是线段AB的勾股分割点.23.(10分)如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M 作ME⊥CD于点E,∠BAC=∠CDF.(1)求证:BC=2CE;(2)求证:AM=DF+ME.24.(12分)如图,在矩形ABCD中,E是BC上一动点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G,AB=3,AD=4.(1)如图1,当∠DAG=30°时,求BE的长;(2)如图2,当点E是BC的中点时,求线段GC的长;(3)如图3,点E在运动过程中,当△CFE的周长最小时,直接写出BE的长.参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)要使代数式有意义,则x的()A.最大值是B.最小值是C.最大值是D.最小值是【解答】解:∵代数式有意义,∴2﹣3x≥0,解得x≤.故选:A.2.(3分)若=3﹣b,则b满足的条件是()A.b>3 B.b<3 C.b≥3D.b≤3【解答】解:∵=3﹣b,∴3﹣b≥0,解得:b≤3.故选:D.3.(3分)下列根式中,不能与合并的是()A.B.C.D.【解答】解:A.∵,∴可以与合并;B.∵=,∴可以与合并;C.∵=,∴不可以与合并;D.∵=2,∴可以与合并;故选:C.4.(3分)如图,Rt△ABC中,∠ACB=90°,若AB=15cm,则正方形ADEC和正方形BCFG 的面积和为()A.150cm2B.200cm2C.225cm2D.无法计算【解答】解:正方形ADEC的面积为:AC2,正方形BCFG的面积为:BC2;在Rt△ABC中,AB2=AC2+BC2,AB=15,则AC2+BC2=225cm2.故选:C.5.(3分)满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3 B.三边长的平方之比为1:2:3C.三边长之比为3:4:5 D.三内角之比为3:4:5【解答】解:A、根据三角形内角和公式,求得各角分别为30°,60°,90°,所以此三角形是直角三角形;B、三边符合勾股定理的逆定理,所以其是直角三角形;C、32+42=52,符合勾股定理的逆定理,所以是直角三角形;D、根据三角形内角和公式,求得各角分别为45°,60°,75°,所以此三角形不是直角三角形;故选:D.6.(3分)一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动()A.9分米B.15分米C.5分米D.8分米【解答】解:如下图所示:AB相当于梯子,△ABO是梯子和墙面、地面形成的直角三角形,△OCD是下滑后的形状,∠O=90°,即:AB=CD=25分米,OB=7分米,AC=4分米,BD是梯脚移动的距离.在Rt△ACB中,由勾股定理可得:AB2=AC2+BC2,AC==24分米.∴OC=AC﹣AC=24﹣4=2分米,在Rt△COD中,由勾股定理可得:CD2=OC2+OD2,OD=15分米,BD=OD﹣OB=15﹣7=8分米,故选:D.7.(3分)一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是()A.88°,108°,88°B.88°,104°,108°C.88°,92°,92° D.88°,92°,88°【解答】解:两组对角分别相等的四边形是平行四边形,故B不是;当三个内角度数依次是88°,108°,88°时,第四个角是76°,故A不是;当三个内角度数依次是88°,92°,92°,第四个角是88°,而C中相等的两个角不是对角故C错,D中满足两组对角分别相等,因而是平行四边形.故选:D.8.(3分)数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否互相平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角 D.测量三个角是否为直角【解答】解:A、对角线是否相互平分,只能判定平行四边形;B、两组对边是否分别相等,只能判定平行四边形;C、一组对角是否都为直角,不能判定形状;D、其中四边形中三个角都为直角,能判定矩形.故选:D.9.(3分)如图,已知四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长与点P的位置有关【解答】解:因为AR的长度不变,根据中位线定理可知,EF平行与AR,且等于AR的一半.所以当点P在CD上从C向D移动而点R不动时,线段EF的长不变.故选:C.10.(3分)如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.1 B.C.2 D.+1【解答】解:∵四边形ABCD是菱形,∴AD∥BC,∵∠A=120°,∴∠B=180°﹣∠A=180°﹣120°=60°,作点P关于直线BD的对称点P′,连接P′Q,P′C,则P′Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP′⊥AB时PK+QK的值最小,在Rt△BCP′中,∵BC=AB=2,∠B=60°,∴P′Q=CP′=BC•sinB=2×=.故选:B.二、填空题(每题3分,共18分)11.(3分)在实数范围内分解因式:x2﹣3=(x+)(x﹣).【解答】解:x2﹣3=x2﹣()2=(x+)(x﹣).12.(3分)平行四边形ABCD的周长是18,三角形ABC的周长是14,则对角线AC的长是5.【解答】解:∵平行四边形ABCD的周长是18∴AB+BC=18÷2=9∵三角形ABC的周长是14∴AC=14﹣(AB+AC)=5故答案为5.13.(3分)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为3.【解答】解:∵四边形ABCD是矩形,∴OA=OC,∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,,∴△AOE≌△COF,∴S△AOE=S△COF,∴图中阴影部分的面积就是△BCD的面积.S△BCD=BC×CD=×2×3=3.故答案为:3.14.(3分)如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于 3.5.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=AB=×7=3.5.故答案为:3.5.15.(3分)已知a,b为实数,且﹣(b﹣1)=0,则a2015﹣b2016的值为﹣2.【解答】解:∵﹣(b﹣1)=0,∴+(1﹣b)=0,∵1﹣b≥0,∴1+a=0,1﹣b=0,解得a=﹣1,b=1,∴a2015﹣b2016=(﹣1)2015﹣12016=﹣1﹣1=﹣2.故答案为:﹣2.16.(3分)△ABC中,AB=15,AC=13,高AD=12.则△ABC的面积为24或84.【解答】解:分两种情况考虑:①当△ABC为锐角三角形时,如图1所示,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD+DC=9+5=14,则S△ABC=BC•AD=84;②当△ABC为钝角三角形时,如图2所示,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD﹣DC=9﹣5=4,则S△ABC=BC•AD=24.综上,△ABC的面积为24或84.故答案为:24或84.三、解答题(共8题,共72分)17.(8分)计算(1)4+﹣(2)÷×.【解答】解:(1)原式=4+2﹣3=3;(2)原式==.18.(8分)先化简,再求值÷(﹣),其中x=+,y=﹣.【解答】解:原式=×=﹣×=﹣当x=+,y=﹣xy=1,x+y=2∴原式=﹣19.(8分)如图,在▱ABCD中,E、F分别是AB、DC边上的点,且AE=CF,(1)求证△ADE≌△CBF;(2)请你添加一个条件,使四边形DEBF是矩形(不用证明).【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).(2)添加∠DEB=90°,理由如下:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴BE=DF,∴四边形DEBF是平行四边形,∵∠DEB=90°,∴四边形DEBF是矩形.20.(8分)如图在10×10的正方形网格中,△ABC的顶点在边长为1的小正方形的顶点上.(1)计算AC,AB,BC的长度,并判定△ABC的形状;(2)若在网格所在的坐标平面内的点A,C的坐标分别为(0,0),(﹣1,1).请你在图中找出点D,使以A、B、C、D四个点为顶点的四边形是平行四边形,直接写出满足条件的D点的坐标.【解答】解:(1)∵小正方形的边长为1,∴AC==,BC==3,AB==2,∴AC2+BC2=AB2,∴△ABC为直角三角形;(2)∵A,C的坐标分别为(0,0),(﹣1,1),∴点C为坐标原点,如图,分别过A作BC的平行线,过B作AC的平行线,过C作AB的平行线,∴满足条件的点D的坐标为(3,3)或(1,5)或(﹣3,﹣3).21.(8分)(1)以a,b为直角边,c为斜边作两个全等的Rt△ABE与Rt△FCD拼成如图1所示的图形,使B,E,F,C四点在一条直线上(此时E,F重合),可知△ABE≌△FCD,AE⊥DF,请你证明:a2+b2=c2;(2)在(1)中,固定△FCD,再将△ABE沿着BC平移到如图2的位置(此时B,F重合),请你重新证明:a2+b2=c2.【解答】(1)证明:连接AD,如图1所示:则四边形ABCD是直角梯形,∴四边形ABCD的面积=(a+b)(a+b)=(a+b)2,∵四边形ABCD的面积=△ABE的面积+△FCD的面积+△ADE的面积,即(a+b)2=ab×2+c2,化简得:(a+b)2=2ab+c2,∴a2+b2=c2;(2)证明:连接AD、DE,如图2所示:则四边形ABCD的面积=四边形ABED的面积+△DCE的面积,即(a+b)×a=c2+b(a﹣b),化简得:ab+a2=c2+ab﹣b2,∴a2+b2=c2.22.(10分)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=5,求BN的长;(2)如图2,在Rt△ABC中,AC=BC,点M,N在斜边AB上,∠MCN=45°,求证:点M,N是线段AB的勾股分割点.【解答】(1)解:当MN最长时,BN=4;当BN最长时,BN==;(2)证明:如图,过点A作AD⊥AB,且AD=BN∵AD=BN,∠DAC=∠B=45°,AC=BC,∴△ADC≌△BNC,∴CD=CN,∠ACD=∠BCN,∵∠MCN=45°,∴∠DCA+∠ACM=∠ACM+∠BCN=45°∴∠MCD=∠BCM,∴△MDC≌△MNC,∴MD=MN在Rt△MDA中,AD2+AM2=DM2,∴BN2+AM2=MN2,∴点M,N是线段AB的勾股分割点.23.(10分)如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M 作ME⊥CD于点E,∠BAC=∠CDF.(1)求证:BC=2CE;(2)求证:AM=DF+ME.【解答】证明:(1)∵四边形ABCD为菱形,∴AB∥CD,且BC=CD,∴∠BAC=∠ACD,且∠BAC=∠CDF,∴∠ACD=∠CDF,∴CM=DM,∵ME⊥CD,∴CE=DE,∴BC=CD=2CE;(2)如图,分别延长AB,DF交于点G,∵AB∥CD,∴∠G=∠CDF=∠BAC,∴MG=MA,在△CDF和△BGF中∴△CDF≌△BGF(AAS),∴GF=DF,在△CEM和△CFM中∴△CEM≌△CFM(SAS),∴ME=MF,∴AM=GM=GF+MF=DF+ME.24.(12分)如图,在矩形ABCD中,E是BC上一动点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G,AB=3,AD=4.(1)如图1,当∠DAG=30°时,求BE的长;(2)如图2,当点E是BC的中点时,求线段GC的长;(3)如图3,点E在运动过程中,当△CFE的周长最小时,直接写出BE的长.【解答】解:(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵∠DAG=30°,∴∠BAG=60°由折叠知,∠BAE=∠BAG=30°,在Rt△BAE中,∠BAE=30°,AB=3,∴BE=(2)如图,连接GE,∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵在矩形ABCD中,∴∠C=90°,∴∠EFG=90°,∵在Rt△GFE和Rt△GCE中,,∴Rt△GFE≌Rt△GCE(HL),∴GF=GC;设GC=x,则AG=3+x,DG=3﹣x,在Rt△ADG中,42+(3﹣x)2=(3+x)2,解得x=.(3)如图1,由折叠知,∠AFE=∠B=90°,EF=BE,∴EF+CE=BE+CE=BC=AD=4,∴当CF最小时,△CEF的周长最小,∵∠AFE=90°,∴点A,F,C在同一条直线上时,CF最小,由折叠知,AF=AB=3,在Rt△ABC中,AB=3,BC=AD=4,∴AC=5,∴CF=AC﹣AF=2,在Rt△CEF中,EF2+CF2=CE2,∴BE2+CF2=(4﹣BE)2,∴BE2+22=(4﹣BE)2,∴BE=.。
湖北省武汉市部分学校2018-2019学年度八年级数学(上)第11章《三角形》周测(一)(含答案)

八年级数学(上)第11章《三角形》周测(一)(考试范围:11.1与三角有关的线段~11.2与三角形有关的角 参考时间:90分钟,满分:120分)一、选择题(每小题3分,共30分)1.下列图形中,作△ABC 中AC 边上的高正确的是( )DCB AA BCEABCEA BCEECBA2.下列各组数据中,能构成三角形的是( ) A .1cm 、2cm 、3cm B .2cm 、3cm 、4cm C .4cm 、9cm 、4cmD .2cm 、1cm 、4cm 3.下列图形中具有稳定性的是( )A .正三角形B .正方形C .正五边形D .正六边形 4.在△ABC 中,∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 为( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形 5.能够把三角形的面积分成相等的两份的线段是( )A .角平分线B .高C .中线D .以上都不是 6.如图,△ABC 中,∠A =30°,点D 为AB 延长线上一点,且∠CBD =130°,则∠C =( ) A .40°B .60°C .80°D .100° 7.在△ABC 中,∠A +∠B =∠C ,则下列结论中不一定成立的是( ) A .∠A 与∠B 互余 B .∠C =90°C .∠B >45°D .△ABC 为直角三角形 8.如图,BD 平分∠ABC ,CD ⊥BD ,D 为垂足,∠C =55°,则∠ABC 的度数是( )A .35°B .55°C .60°D .70°DCABDC AB2x°+20°AB CD第6题图第8题图 第9题图 9.如图,在△ABC 中,∠C =70°,∠B =x °,外角∠DAC =2x °+20°,则∠BAC 的度数为( ) A .50°B .60°C .70°D .80°10.周长为27的三角形中,最短边长为x ,另有一边长为(2x -5),则x 的取值范围是( ) A .5≤x ≤8B .5≤x <374C .376<x <374D .376<x ≤8 二、填空题(每小题3分,共18分)11.三角形的两边为2和4,则第三边a 的取值范围是 .12.等腰三角形的两条边长分别为3cm ,7cm ,则等腰三角形的周长为 cm .13.如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B =35°,∠ACE =60°,则∠A = .35°60°ABCDEP21ABC BACE D第13题图第14题图第16题图14.如图,在△ABC 中,∠ACB =86°,若P 为△ABC 内一点,且∠1=∠2,则∠BPC = . 15.三角形的三个内角的比为1∶3∶5,它的三个外角的比为 .16.如图,△ABC 中,D 是AC 边上一点,BE 平分∠ABD ,∠A =(2x +10)°,∠BDC =(150-2x )°,则∠BEC 的度数为 .三、解答题(共8题,共72分)17.(本题8分)如图,在△ABC 中,AE 是中线,AD 是角平分线,AF 是高,填空:(1)BE = =12; (2)∠BAD = =12; (3)∠AFB = =90°;(4)AECS= .18.(本题8分)在△ABC 中,若∠A =12∠B =13∠C ,试判断这个三角形的形状.19.(本题8分)如图,∠B =30°,∠ACE =35°,CE 平分∠ACB ,求∠A 的度数.BA CE20.(本题8分)如图,CE 是△ABC 外角∠BCD 的平分线,CE ∥AB ,求证:∠A =∠B .FBACE DAEBCD21.(本题8分)在△ABC 中,AD ⊥BC ,BE 平分∠ABC 交AD 于F ,交AC 于E ,∠ABE =23°.求∠AFE 的度数.FDAE BC22.(本题10分)如图,△ABC 的周长为11,AD 为中线,△ABD 的周长为8,△ACD 的周长为7,求AD 的长.ABDC23.(本題10分)如图,在△ABC 中,∠BAC 的平分线交BC 于点D .(1)如图1,若∠B =68°,∠C =32°,AE ⊥BC 于点E ,∠EAD 的度数为 ;(2)如图2,若点F 是AD 延长线上的一点,∠BAF ,∠BDF 的平分线交于点G ,∠B =x °,∠C =y °(x >y ),求∠G 的度数.图1ABDCE图2ABDCGF24.(本題12分)如图1,点A ,B 分別为x 轴正半轴和y 轴正半轴上的两个定点,点C 为x 轴上的一个动点(与点O ,A 不重合)、分別作∠OBC 和∠ACB 的角平分线,两角平分线所在直线交于点E . (1)当点C 在x 轴的负半轴上运动时,∠BEC 的度数为 ;(2)当点C 在x 轴的正半轴上运动时,直接写出∠BEC 的度数及点C 所在的相应位置;(3)如图2,△FGH 的一个顶点F 在y 轴的负半轴上,射线FO 平分∠GFH ,过点H 的直线MN 交x 轴于点M ,満足∠MHF =∠GHN ,过点H 作HP ⊥MN 交x 轴于点P ,请探究∠MPH 与∠G 的数量关系.yx图1ABOyx 图1备用图ABO yxPNMH F图2OB G1-5ABABC 6-10DCDBD 11.2<a <6 12.17 13.85° 14.94° 15. 4∶3∶2 16. 80° 17.(1)BE = CE =12BC ; (2)∠BAD = ∠CAD =12∠BAC ; (3)∠AFB = ∠AFC =90°;(4)AECS = AEBS.18. 直角三角形.19解:80°. 20解:∠AFE =67° 21.解:∠AFE =67° 22.解:AD =2. 23.解:(1)18°;(2)∵∠B =x °,∠C =y °,∴∠BAC =180°-x °-y °,∵∠BAD =12∠BAC =12(180°-x °-y °),∠BAG =12∠BAD =14(180°-x °-y °),∵∠BDF =∠BAD +∠B ,∴∠G =12∠BDF -∠GAD =12x °. 24.解:(1)当点C 在x 轴负半轴上时,∠BEC =135°;(2)当点C 在OA 的延长线上时,∠BEC =135°;当点C 在线段OA 上(且与点O ,A 不重合)时,∠BEC =45°; (3)∠MPH 与∠G 的数量关系为:∠MPH =12∠G .提示:∠MPH =∠HOF -90°,∠HOF =90°+12∠G ,∴∠MPH =12G .。
湖北省武汉市武昌区2019-2020学年八年级(下)期中数学试卷(含解析)

2019-2020学年湖北省武汉市武昌区八年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.2.(3分)使二次根式有意义的x的取值范围是()A.x≠2 B.x>2 C.x≤2 D.x≥23.(3分)下列计算正确的是()A.﹣=B.+=C.3﹣=2D.2+=24.(3分)下列各组数中,以a、b、c为边的三角形不是直角三角形的是()A.a=1,b=,c=B.a=,b=2,c=C.a=,b=,c=D.a=7,b=24,c=255.(3分)在平行四边形ABCD中,∠A比∠B大40°,那么∠C的度数为()A.60°B.70°C.80°D.110°6.(3分)在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A.AB=BC,CD=DA B.AB∥CD,AD=BCC.AB∥CD,∠A=∠C D.∠A=∠B,∠C=∠D7.(3分)如图,正方体的棱长为2,B为一条棱的中点.已知蚂蚁沿正方体的表面从A点出发,到达B点,则它运动的最短路程为()A.B.4 C.D.58.(3分)菱形ABCD的边长为2,∠A=60°,点G为AB的中点,以BG为边作菱形BEFG,其中点E在CB的延长线上,点P为FD的中点,则PB=()A.B.C.D.9.(3分)将一个边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四个剪法中,裁剪线的长度所标的数据不可能的是()A.B.C.D.10.(3分)将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN为折痕,若正方形EFGH与五边形MCNGF的面积之比为4:5,则的值为()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)化简:+()2=.12.(3分)若a=2+,b=2﹣,则ab的值为.13.(3分)点D、E、F分别是△ABC三边的中点,若△ABC的周长是16,则△DEF 的周长是.14.(3分)如图,在3×3的正方形网格中,每个小正方形边长为1,点A,B,C 均为格点,以点A为圆心,AB长为半径作弧,交格线于点D,则CD的长为.15.(3分)△ABC中,AB=AC,∠BAC=90°,AD⊥BC于D,分别以AD、BD、CD为长对角线作全等的三个菱形,如图所示,若菱形较短的对角线的长为2,点G刚好在AE 的延长线上,则其中一个菱形AEDF的面积为.16.(3分)△ABC中,AD⊥BC于D,AB=m,AC=n,∠ACB=2∠BAD,用m、n表示AD的长为.三、解答题(共72分)17.(8分)计算下列各题:(1)﹣+(2)(3﹣2)÷18.(8分)已知:如图,点E、F分别是▱ABCD中AB、DC边上的点,且AE=CF,连接DE、EF.求证:四边形DEBF是平行四边形.19.(8分)已知:x=﹣1,求代数式x2+5x﹣6的值.20.(8分)如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上.(1)直接写出AC的长为,△ABC的面积为;(2)请在如图所示的网格中,用无刻度的直尺作出AC边上的高BD,并保留作图痕迹;(3)求BD的长.21.(8分)已知:如图,矩形ABCD的对角线交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.22.(10分)在△ABC中,AB=AC=5.(1)若BC=6,点M、N在BC、AC上,将△ABC沿MN折叠,使得点C与点A重合,求折痕MN的长;(2)点D在BC的延长线上,且BC:CD=2:3,若AD=10,求证:△ABD是直角三角形.23.(10分)▱ABCD中,点E、F分别在AB、AD上,∠EAF=∠B=60°,AD=nAB.(1)当n=1时,求证:△AEF为等边三角形;(2)当n=时,求证:∠AFE=90°;(3)当CE=CF,DF=4,BE=3时,直接写出线段EF的长为.24.(12分)书籍和纸张的长与宽比值都有固定的尺寸,如常用的A3、A4、A5的纸张长与宽的比值都相等.一长方形纸张对折后的小长方形的长与宽的比值与原长方形的长与宽的比值相等.(1)求满足这样条件的长方形的长与宽的比值;(2)如图所示的长方形ABCD长与宽之比也满足以上条件,其中宽AB=2.①点P是AD上一点,将△BPA沿BP折叠得到△BPE,当BE垂直AC时,求AP的长;②若将长方形ABCD绕点B旋转得到长方形A1BC1D1,直线CC1交DD1于点M,N为BC 的中点,直接写出MN的最大值:.2019-2020学年湖北省武汉市武昌区八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【答案】B【解答】解:=2,=,=,只有为最简二次根式.故选:B.2.【答案】D【解答】解:∵二次根式有意义,∴x﹣2≥0,解得:x≥2,故选:D.3.【答案】C【解答】解:A、,错误,不符合题意;B、,错误,不符合题意;C、,正确,符合题意;D、,错误,不符合题意;故选:C.4.【答案】C【解答】解:A、12+()2=()2,符合勾股定理的逆定理,是直角三角形,故此选项错误;B、22+()2=()2,符合勾股定理的逆定理,是直角三角形,故此选项错误;C、()2+()2≠()2,不符合勾股定理的逆定理,不是直角三角形,故此选项正确;D、72+242=252,符合勾股定理的逆定理,是直角三角形,故此选项错误.故选:C.5.【答案】D【解答】解:画出图形如下所示:∵四边形ABCD是平行四边形,∴∠B=∠D,∠A+∠B=180°,又∵∠A﹣∠B=40°,∴∠A=110°,∠B=70°,∴∠C=∠A=110°.故选:D.6.【答案】C【解答】解:如图所示,根据平行四边形的判定,A、B、D条件均不能判定为平行四边形,C选项中,由于AB∥CD,∠A=∠C,所以∠B=∠D,所以只有C能判定.故选:C.7.【答案】C【解答】解:如图,它运动的最短路程AB==,故选:C.8.【答案】A【解答】解:如图,连接BF、BD,∵菱形ABCD的边长为2,∴AB=BC=CD=2,∵∠A=60°,∴△BCD是等边三角形,∴BD=BC=2,∠DBC=60°,∴∠DBA=60°,∵点G为AB的中点,∴菱形BEFG的边长为1,即BE=EF=BG=1,∵点E在CB的延长线上,∠GBE=60°,∴∠FBG=30°,连接EG,∴EG⊥FB于点O,∴OB=,∴FB=,∵∠DBF=∠DBA+∠FBG=90°,根据勾股定理,得DF==,∵点P为FD的中点,∴PB=DF=.故选:A.9.【答案】B【解答】解:对于A选项,,三角形为锐角三角形,合理;对于B选项,102+42<112,说明边长为11的边所对的角是钝角,这个时候三角形不可能完全处在正方形内,故不合理;对于C选项,,且,三角形为锐角三角形,合理;对于D选项,62+72<102,说明边长为10的边所对的角为钝角,合理.故选:B.10.【答案】A【解答】解:如图,连接HF,直线HF与AD交于点P,∵正方形EFGH与五边形MCNGF的面积之比为4:5,设正方形EFGH与五边形MCNGF的面积为4x2,5x2,∴GF2=4x2,∴GF=2x,∴HF==2x,由折叠可知:正方形ABCD的面积为:4x2+4×5x2=24x2,∴PM2=24x2,∴PM=2x,∴FM=PH=(PM﹣HF)=(2x﹣2x)=(﹣)x,∴==.故选:A.二、填空题(每小题3分,共18分)11.【答案】见试题解答内容【解答】解:原式=5+5=10.12.【答案】见试题解答内容【解答】解:∵a=2+,b=2﹣,∴ab=(2+)×(2﹣)=4﹣3=1.故答案为:1.13.【答案】见试题解答内容【解答】解:如图,∵D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴DF=BC,FE=AB,DE=AC;∴DF+FE+DE=BC+AB+AC=(AB+BC+CA)=×16=8,故答案为:8.14.【答案】见试题解答内容【解答】解:连接AB,AD,如图所示:∵AD=AB==2,∴DE==,∴CD=3﹣.故答案为:3﹣.15.【答案】见试题解答内容【解答】解:如图所示,连接HG,设EG交DH于点K,则HG=2,∵三个菱形全等,∴GD=ED,∠ADE=∠BDG,∵AD⊥BC于D,∴∠ADB=∠ADE+∠BDE=90°,∴∠GDE=∠BDG+∠BDE=90°,∴△GDE是等腰直角三角形,∴∠EGD=∠GED=45°,∵四边形AEDF为菱形,∴AE∥DF,∴∠EDF=∠GED=45°,∴∠GDK=45°,∴∠GKD=90°,设GK=DK=x,则GD=DH=x,HK=x﹣x,在Rt△GHK中,由勾股定理得:x2+=4,解得:x2=2+,∴菱形BGDH的面积为:DH•GK=x•x=x2=2+2,∴菱形AEDF的面积为:2+2.故答案为:2+2.16.【答案】见试题解答内容【解答】解:延长BC至E,使CE=AC,连接AE,则∠CAE=∠E,∵∠ACB=∠CAE+∠E,∴∠CAE=∠E=∠ACB,∵∠ACB=2∠BAD,∴∠E=∠BAD,∵AD⊥BC,∴∠B+∠BAD=90°,∴∠B+∠E=90°,即∠BAE=90°,∴∠BAC+∠CAE=90°,∵∠B+∠E=90°,∠CAE=∠E,∴∠B=∠BAC,∴BC=AC=n,由勾股定理得,AE==,S=×AB×AE=×BE×AD,即m×=2n×AD,△BAE解得,AD=,故答案为:.三、解答题(共72分)17.【答案】见试题解答内容【解答】解:(1)原式=3﹣2+=;(2)原式=3﹣2=3﹣2.18.【答案】见试题解答内容【解答】证明:在▱ABCD中,则AB∥CD,AB=CD,∵AE=CF,∴AB﹣AE=CD﹣CF,∴BE=DF,∵BE∥DF,∴四边形DEBF是平行四边形.19.【答案】见试题解答内容【解答】解:当x=﹣1,x2+5x﹣6=(﹣1)2+5(﹣1)﹣6=5﹣2+1+5﹣5﹣6=3﹣5.20.【答案】见试题解答内容【解答】解:(1)AC==,S=4×5﹣×2×4﹣×2×5﹣×1×4=9,△ABC故答案为,9;(2)如图所示,BD即为所求,(3)∵S△ABC=AC•BD=BD=9,∴BD=.21.【答案】见试题解答内容【解答】证明:∵DE∥AC,即DE∥OC,CE∥BD,即CE∥OD.∴四边形OCED是平行四边形.又∵四边形ABCD是矩形,∴OC=AC,OD=BD,且AC=BD,∴OC=OD.∴四边形OCED是菱形.22.【答案】见试题解答内容【解答】解:(1)如图1,过A作AD⊥BC于D,∵AB=AC=5,BC=6,∴BD=CD=3,∴AD=4,∵将△ABC沿MN折叠,使得点C与点A重合,∴AM=CM,AN=AC=,设AM=CM=x,∴MD=x﹣3,∵AD2+DM2=AM2,∴42+(x﹣3)2=x2,解得:x=,∴MN===;(2)如图2,过A作AE⊥BC于E,∵AB=AC,∴BE=CE=BC,∵BC:CD=2:3,∴设BC=2t,CD=3t,AE=h,∴BE=CE=t,∵AB=5,AD=10,∴h2+t2=52,h2+(4t)2=102,联立方程组解得,t=(负值舍去),∴BD=5,∵AB2+AD2=52+102=125=(5)2=BD2,∴△ABD是直角三角形.23.【答案】见试题解答内容【解答】(1)证明:当n=1时,AD=AB,∴平行四边形ABCD为菱形,∴∠ACD=∠BCD=60°,∠CAB=60°,∴△ACD为等边三角形,∴AC=AD=AB,∵∠EAF=60°,∴∠FAE=∠CAB,∴∠FAC=∠EAB,在△FAC和△EAB中,,∴△FAC≌△EAB(ASA)∴AF=AE,又∵∠EAF=60°,∴△AEF为等边三角形;(2)证明:如图2,延长AF至N,使DN=AD,延长AF至P,使FP=AF,延长BC、NP交于点H,∵DN=AD,FP=AF,∴DF是△ANP的中位线,∴NP∥AB,又AN∥BH,∴四边形ABHN为平行四边形,∵AB=AN,∴平行四边形ABHN为菱形,由(1)可知,△APE为等边三角形,∵AF=FP,∴EF⊥AP,∴∠AFE=90°;(3)解:如图3,延长EF交AD的延长线于G,延长FE交AB的延长线于H,作DM ⊥FG于M,把△AFG绕点A顺时针旋转120°,得到△APH,∵CF=CE,∴∠CFE=∠CEF=30°,∵AG∥BC,∴∠G=∠CEF=30°,∴∠G=∠DFG,∴DG=DF,又DM⊥FG,∴GM=MF,在Rt△DMF中,∠DFM=30°,∴DM=DF=2,由勾股定理得,MF==2,∴GF=4,同理,∠BHE=30°,EH=3,∴∠PHN=60°,∴∠NPH=30°,∴NH=PH=2,∴EN=EH﹣NH=,由勾股定理得,PN==6,∴PE==,∵∠FAE=60°,∠BAD=120°,∴∠DAF+∠EAB=60°,∴∠HAP+∠EAB=60°,即∠EAP=60°,∴∠FAE=∠EAP,在△FAE和△PAE中,,∴△FAE≌△PAE(SAS)故答案为:.24.【答案】(1)(2)①2﹣2.②+1.【解答】解:(1)设长方形的长与宽分别为a,b.由题意:=,∴a2=2b2,∴=.(2)①如图1中,延长PE、BC交于点G,∵∠PEB=90°,∴PE⊥BE,∵BE⊥AC,BE⊥PE,∴PG∥AC,∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=2,AD∥BG,∠ABC=90°,∴四边形APGC是平行四边形,∴PG=AC===2,∵AD∥BC,∴∠APB=∠GBP,∵∠APB=∠GPB,∴∠GBP=∠GPB,∴GP=GB=2,∴AP=CG=BG=BC=2﹣2.②如图2中,连接BM,取BD的中点O,连接OM,ON,延长CC1到K,使得C1K=CC1在MK的延长线上取一点J,使得D1J=D1K,连接BD1.∵BC=BC1,∴∠BCC1=∠BC1C,∵∠BC1D1=∠BCD=90°,∴∠D1C1K+∠BC1C=90°,∠BCC1+∠DCC1=90°,∴∠D1C2K=∠DCC1,∵CD=C1D1,CC1=C1K,∴△DCC1≌△D1C1K(SAS),∴DC1=KD1=JD1,∠CC1D=∠C1KD1,∵∠JKD1+∠C1JKD1=180°,∠CC1D+∠DC1M=180°,∴∠DC1M=∠D1KJ,∵D1J=D1K,∴∠J=∠D1KJ,∴∠J=∠DC1M,∵∠D1MJ=∠DMC1,∴△D1MJ≌△DMC1(AAS),∴D1M=DM′,∵BD=BD1,∴BM⊥DD1,取BD的中点O,连接OM,ON,∵∠BMD=90°,∴OM=BD=,∵BO=OD,BN=CN,∴ON=CD=1,∵MN≤OM+ON,∴MN≤+1.∴MN的最大值为+1.故答案为+1.31 / 31。
2019-2020学年湖北省武汉市江夏一中八年级(下)期中数学试卷

2019-2020学年湖北省武汉市江夏一中八年级(下)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)(2014•湘潭)式子有意义,则x的取值范围是()A.x>1B.x<1C.x≥1D.x≤12.(3分)(2020春•潮阳区期末)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣3.(3分)(2020春•江夏区校级期中)已知△ABC的三边为a,b,c,下列条件不能判定△ABC为直角三角形的是()A.a=7,b=24,c=25B.a=,b=4,c=5C.a=,b=1,c=D.a=40,b=50,c=604.(3分)(2020春•泗水县期末)对甲、乙、丙、丁四名选手进行射击测试,每人射击10次,平均成绩均为9.5环,且他们的方差如下表所示:选手甲乙丙丁方差 1.560.60 2.500.40则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁5.(3分)(2019春•凤凰县期末)下面给出的四边形ABCD中,∠A、∠B、∠C、∠D的度数之比,其中能判定四边形ABCD是平行四边形的条件是()A.3:4:3:4B.3:3:4:4C.2:3:4:5D.3:4:4:3 6.(3分)(2020春•通山县期末)已知一个直角三角形的两边长分别为3和5,则第三边长为()A.4B.4或34C.16或34D.4或7.(3分)(2020春•江夏区校级期中)周长为16的菱形ABCD中,有一个角为45°,则菱形ABCD的面积为()A.8B.16C.8D.48.(3分)(2019春•息县期末)点O是矩形ABCD的对角线AC的中点,E是BC边的中点,AD=8,OE=3,则线段OD的长为()A.5B.6C.8D.109.(3分)(2007•茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13 10.(3分)(2020•长汀县一模)如图,∠MON=90°,矩形ABCD在∠MON的内部,顶点A,B分别在射线OM,ON上,AB=4,BC=2,则点D到点O的最大距离是()A.2﹣2B.2+2C.2﹣2D.二、填空题(共6小题,每小题3分,共18分)11.(3分)(2020春•江夏区校级期中)化简:=;=;=.12.(3分)(2020春•思明区校级期末)数据0,2,3,3,1的平均数为;中位数;众数为.13.(3分)(2020春•思明区校级期末)在△ABC中,AB=AC=2,∠ACB=30°,则边BC 的长为.14.(3分)(2020春•思明区校级期末)若菱形两条对角线长分别为10和24,那么此菱形的高为.15.(3分)(2020春•思明区校级期末)如图,Rt△ABC中,O为斜边中点,CD为斜边上的高,若OC=,DC=,则△ABC的面积是.16.(3分)(2020春•思明区校级期末)如图,矩形ABCD中,AB=12,点E是AD上的一点,AE=6,BE的垂直平分线交BC的延长线于点F,连接EF交CD于点G.若G是CD的中点,则BC的长是.三、解答题(共7题,共72分)17.(8分)(2020春•江夏区校级期中)计算:(1)2﹣6+;(2)+6.18.(8分)(2020春•大余县期末)如图,在▱ABCD中,E、F分别是AB、CD的中点,求证:四边形EBFD是平行四边形.19.(8分)(2020春•江夏区校级期中)如图,已知AB=5,BC=12,CD=13,DA=10,AB⊥BC,求四边形ABCD的面积.20.(8分)(2019春•武昌区期末)国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“每天在校体育活动时间”的问题随机抽样调查了321名初中学生.根据调查结果将学生每天在校体育活动时间t(小时)分成A,B,C,D四组,并绘制了统计图(部分).A组:t<0.5B组:0.5≤t<1C组:1≤t<1.5D组:t≥1.5请根据上述信息解答下列问题:(1)C组的人数是;(2)本次调查数据的中位数落在组内;(3)若该市约有12840名初中学生,请你估算其中达到国家规定体育活动时间的人数大约有多少.21.(10分)(2020春•江夏区校级期中)已知a=+1,b=﹣1.(1)求a2+b2的值;(2)求+的值.22.(8分)(2016春•潮南区期末)如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.(1)猜想线段GF与GC有何数量关系?并证明你的结论;(2)若AB=3,AD=4,求线段GC的长.23.(10分)(2018•金牛区校级自主招生)在菱形ABCD中,∠BAD=60°.(1)如图1,点E为线段AB的中点,连接DE、CE、若AB=4,求线段EC的长;(2)如图2,M为线段AC上一点(不与A、C重合),以AM为边向上构造等边三角形AMN,线段MN与AD交于点G,连接NC、DM,Q为线段NC的中点,连接DQ、MQ,判断DM与DQ的数量关系,并证明你的结论;(3)在(2)的条件下,若AC=,请你直接写出DM+CN的最小值.24.(12分)(2020春•江夏区校级期中)如图1,在平面直角坐标系中,A(a,b),B(c,0)是x轴正半轴上一点,∠ABO=30°,若与|2﹣a|互为相反数.(1)求c的值;(2)如图2,AC⊥AB交x轴于C,以AC为边的正方形ACDE的对角线AD交x轴于F.①求证:BE=2OC;②记BF2﹣OF2=m,OC2=n,求的值.2019-2020学年湖北省武汉市江夏一中八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【解答】解:根据题意,得x﹣1≥0,解得,x≥1.故选:C.2.【解答】解:A、=2,故原题计算错误;B、+=+2=3,故原题计算错误;C、==4,故原题计算正确;D、2和不能合并,故原题计算错误;故选:C.3.【解答】解:A、∵72+242=252,∴该三角形符合勾股定理的逆定理,故是直角三角形,故选项不符合题意;B、∵42+52=()2,∴该三角形符合勾股定理的逆定理,故是直角三角形,故选项不符合题意;C、∵()2+12=()2,∴该三角形符合勾股定理的逆定理,故是直角三角形,故选项不符合题意;D、∵402+502≠602,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故选项符合题意;故选:D.4.【解答】解:∵2.50>1.56>0.60>0.40,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.5.【解答】解:根据平行四边形的两组对角分别相等,可知A正确.故选:A.6.【解答】解:∵个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x,则由勾股定理得到:x==4;②当5是此直角三角形的直角边时,设另一直角边为x,则由勾股定理得到:x==.故选:D.7.【解答】解:如图,∵菱形ABCD周长为16,∴AB=AD=4,过点B作BE⊥AD于点E,∴∠BEA=90°,∵∠A=45°,∴BE=AB=2,∴菱形ABCD的面积为:AD•BE=4×2=8.故选:A.8.【解答】解:∵在矩形ABCD中,AD=8,OE=3,O是矩形ABCD的对角线AC的中点,E是BC边的中点,∴BC=AD=8,AB=2OE=6,∠B=90°,∴AC==10,∵点O为AC的中点,∠ADC=90°,∴OD=AC=5,故选:A.9.【解答】解:a的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:=13.即a的取值范围是12≤a≤13.故选:A.10.【解答】解:取AB中点E,连接OE、DE、OD,∵∠MON=90°,∴OE=AB=2.在Rt△DAE中,利用勾股定理可得DE=2.在△ODE中,根据三角形三边关系可知DE+OE>OD,∴当O、E、D三点共线时,OD最大为OE+DE=2+2.故选:B.二、填空题(共6小题,每小题3分,共18分)11.【解答】解:==;==;=.故答案为:;;.12.【解答】解:这组数据的平均数为=,重新排列为0、1、2、3、3,所以中位数为2,众数为3,故答案为:,2,3.13.【解答】解:如图,过A作AD⊥BC于点D,∵AB=AC,∴BC=2CD.在Rt△ACD中,∵∠ADC=90°,∠C=30°,∴AD=AC=×2=1,∴CD==,∴BC=2.故答案为:2.14.【解答】解:作DE⊥AB于E,如图所示:∵菱形ABCD的两条对角线长分别为10和24,∴菱形ABCD的面积=×10×24=120;∵四边形ABCD是菱形,∴OA=AC=12,OB=BD=5,AC⊥BD,∴AB==13,∵菱形的面积=AB•DE=120,∴DE=.故答案为.15.【解答】解:∵在Rt△ABC中,O为斜边中点,OC=,∴AB=2OC=2,又CD为斜边上的高,DC=,∴△ABC的面积=AB•CD=×2×=.故答案为:.16.【解答】解:∵矩形ABCD中,G是CD的中点,AB=12,∴CG=DG=×12=6,在△DEG和△CFG中,,∴△DEG≌△CFG(ASA),∴DE=CF,EG=FG,设DE=x,则BF=BC+CF=AD+CF=6+x+x=6+2x,在Rt△DEG中,EG=,∴EF=2,∵FH垂直平分BE,∴BF=EF,∴6+2x=2,解得x=4.5,∴AD=AE+DE=6+4.5=10.5,∴BC=AD=10.5.故答案为:10.5三、解答题(共7题,共72分)17.【解答】解:(1)原式=2×2﹣6×=4﹣2+4=6;(2)原式=+6×=4+3=7.18.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,………………………………4分∵E、F分别是AB、CD的中点,∴EB∥DF,EB=DF,………………………………8分∴四边形EBFD是平行四边形.………………………………9分19.【解答】解:连接AC,过点C作CE⊥AD交AD于点E,∵AB⊥BC,∴∠CBA=90°,在Rt△ABC中,由勾股定理得AC2=AB2+BC2=169,∴AC=13.∵CD=13,∴AC=CD,即△ACD是等腰三角形.∵CE⊥AD,∴AE=AD=×10=5.在Rt△ACE中,由勾股定理得CE2=AC2﹣AE2,解得CE=12.=S△ABC+S△CAD=AB•BC+AD•CE=×(12×5+10×12)=90.∴S四边形ABCD20.【解答】解:(1)C组人数为321﹣(20+100+60)=141(人),故答案为:141;(2)本次调查数据的中位数是第161个数据,而第161个数据落在C组,所以本次调查数据的中位数落在C组内,故答案为:C.(3)估算其中达到国家规定体育活动时间的人数大约有12840×=8040(人).21.【解答】解:(1)∵a=+1,b=﹣1,∴a+b=2,ab=1,∴a2+b2=(a+b)2﹣2ab=(2)2﹣2×1=6;(2)∵a>0,b>0,∴原式=+=+=•,∵a+b=2,ab=1,∴原式=×=2.22.【解答】解:(1)GF=GC.理由如下:连接GE,∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵在矩形ABCD中,∴∠C=90°,∴∠EFG=90°,∵在Rt△GFE和Rt△GCE中,,∴Rt△GFE≌Rt△GCE(HL),∴GF=GC;(2)设GC=x,则AG=3+x,DG=3﹣x,在Rt△ADG中,42+(3﹣x)2=(3+x)2,解得x=.23.【解答】解:(1)如图1,连接BD,则BD平分∠ABC,∵四边形ABCD是菱形,∴AD∥BC,∴∠A+∠ABC=180°,∵∠A=60°,∴∠ABC=120°,∴∠ABD=∠ABC=60°,∴△ABD是等边三角形,∴BD=AD=4,∵E是AB的中点,∴DE⊥AB,由勾股定理得:DE==2,∵DC∥AB,∴∠EDC=∠DEA=90°,在Rt△DEC中,DC=4,EC===2;(2)如图2,延长CD至H,使DH=CD,连接NH、AH,∵AD=CD,∴AD=DH,∵CD∥AB,∴∠HDA=∠BAD=60°,∴△ADH是等边三角形,∴AH=AD,∠HAD=60°,∵△AMN是等边三角形,∴AM=AN,∠NAM=60°,∴∠HAN+∠NAG=∠NAG+∠DAM,∴∠HAN=∠DAM,在△ANH和△AMD中,∵,∴△ANH≌△AMD(SAS),∴HN=DM,∵D是CH的中点,Q是NC的中点,∴DQ是△CHN的中位线,∴HN=2DQ,∴DM=2DQ.(3)如图2,由(2)知,HN=DM,∴要CN+DM最小,便是CN+HN最小,即:点C,H,N在同一条线上时,CN+DM最小,此时,点D和点Q重合,即:CN+DM的最小值为CH,如图3,由(2)知,△ADH是等边三角形,∴∠H=60°.∵AC是菱形ABCD的对角线,∴∠ACD=∠BCD=∠BAD=30°,∴∠CAH=180°﹣30°﹣60°=90°,在Rt△ACH中,CH==2,∴DM+CN的最小值为2.24.【解答】(1)解:∵与|2﹣a|互为相反数,又∵≥0,|2﹣a|≥0,∴a=b=2,∴A(2,2),如图1中,过点A作AH⊥OB于H.∴AH=OH=2,在Rt△AHB中,∵∠AHB=90°,AH=2,∠ABH=30°,∴BH=AH=2,∴OB=2+2,∴B(2+2,0).(2)①证明:如图2中,延长AC交y轴于G,过点A作AT⊥OA交OB于T.由(1)可知∠AOB=45°,∵OA⊥AT,AC⊥AB,∴∠OAT=∠CAB=90°,∴∠OAG=∠TAB,∠ATO=∠AOT=45°,∴OA=OT,∵∠AOG=∠ATB=135°,∴△AOG≌△ATB(AAS),∴AG=AB,∠AGO=∠ABT=30°,∵四边形ACDE是正方形,∴AC=AE,∵AG=AB,∴CG=BE,∵∠COG=90°∠CGO=30°,∴CG=2OC,∴BE=2OC.②解:如图2中,连接GF.∵AG=AB,∠GAF=∠BAF=45°,AF=AF,∴△GAF≌△BAF(SAS),∴BF=FG,∴m=BF2﹣OF2=GF2﹣OF2=OG2,∵OG=OC,∴==()2=3.。
湖北省武汉市部分学校2019-2020学年下学期八年级数学暑假假期综合复习卷六

①求点 E 的坐标;
②点 P 在 y 轴上,且∠PDF=45°,直接写出 OP 的长为
.
八年级数学试卷 第 6页 共 6 页
八年级数学试卷 第 4页 共 6 页
第 20 题图
21.(本小题满分 8 分)
如图,直线 y=- 1 x+b 与 x 轴,y 轴分别交于点 A,点 B,与函数 y=kx 的图象交 2
于点 M(1,2). (1)直接写出 k,b 的值和不等式 0 1 x b kx 的解集; 2 (2)在 x 轴上有一点 P,过点 P 作 x 轴的垂线,分别交函数 y=- 1 x+b 和 y=kx 2 的图象于点 C,点 D.若 2CD=OB,求点 P 的坐标.
作等腰直角△AEF. (1)如图 1,当点 F 在 CD 边上时,求 BE 的长; (2)如图 2,若 EF⊥DF,求 BE 的长; (3)如图 3,若动点 E 从点 B 出发,沿边 BC 向右运动,运动到点 C 停止,直接写出 线段 AF 的中点 Q 的运动路径长.
图1
图2
图3
24.(本小题满分 12 分)
D.众数是 5
A. 2 9 11
B. 3 2 2 2 2
C. 5 4 4 5
D. 3 1 1 33
6.已知直角三角形的两边长分别为 3,5,则第三边长为
A.4
B.4 或 2
C. 34
D.4 或 34
7.学校准备从甲、乙、丙、丁四名同学中选择一名同学参加市里举办的“汉字听写大
赛”,下表是四位同学几次测试成绩的平均分和方差的统计结果,如果要选出一个成
11.计算 25 = ______.
12.直线 y=-3x+1 与 x 轴的交点坐标为___________. 13.函数 y=kx 与 y=6-x 的图象如图所示,则 k=________. 14.某公司招聘一名公关人员甲,对甲进行了笔试和面试,其面试和笔试的成绩分别为
湖北省武汉市江岸区2019-2020学年八年级(下)期中数学试卷(含解析)

2019-2020学年湖北省武汉市江岸区八年级(下)期中数学试卷一、选择题(共10小题).1.要使二次根式有意义,则x的取值范围是()A.x≤﹣3 B.x≥﹣3 C.x≠﹣3 D.x≥32.下列根式中是最简二次根式的是()A.B.C.D.3.以下列长度的线段为边,不能构成直角三角形的是()A.2、3、4 B.1、1、C.3、4、5 D.5、12、134.下列计算正确的是()A.﹣=B.3﹣=3 C.×=D.÷2=5.正方形具有而矩形不一定具有的性质是()A.四个角都为直角B.对角线互相平分C.对角线相等D.对角线互相垂直6.下列命题的逆命题是真命题的是()A.同旁内角互补,两直线平行B.等边三角形是锐角三角形C.如果两个实数相等,那么它们的绝对值相等D.全等三角形的对应角相等7.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H.则DH=()A.6 B.C.D.58.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10 B.12 C.13 D.149.如图,四边形AEFD和EBCF都是平行四边形,过点E作直线交边AD于点M,交边BC于点N,连接MF,NF.若▱AEFD和▱EBCF的面积分别为4和6,则△MNF的面积为()A.5 B.5.5 C.6 D.810.如图,△ABC中,∠C=45°,点E在边BC上,且满足AE=AB,D为线段AE的中点,若∠EDB=∠CAB,DB=3,则AE=()A.3B.2C.3D.6二、填空题(共6小题).11.=.12.已知是整数,则满足条件的最小正整数n为.13.在△ABC中,∠C=90°,∠A=30°,AC=2,则斜边AB=.14.如图,四边形ABCD为菱形,四边形AOBE为矩形,O,C,D三点的坐标为(0,0),(2,0),(0,1),则点E的坐标为.15.如图,四边形ABCD中,AD∥BC,∠B=90°,点E为线段CD的中点,AD=1,CB=2,AE=3,则AB=.16.如图,在平面直角坐标系中,A(4,0),B(﹣2,0),C(4,4),D(﹣2,6),点E在x轴上,满足∠BED=∠DEC,则点E的坐标为.三、解答题(共72分)17.计算:(+)÷.18.如图,▱ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形.19.已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.20.如图,一架2.5m长的梯子AB斜靠在一竖直墙AO上,这时AO为2.4m.(1)求OB的长度;(2)如果梯子底端B沿地面向外移动0.8m到达点C,那么梯子顶端A下移多少m?21.如图,是由49个边长为1的小正方形组成的7×7的正方形网格,小正方形的顶点为格点,点O、A、M、N、B均在格点上.(1)直接写出OM=;(2)点E在网格中的格点上,且△OME是以O为顶角顶点的等腰三角形,则满足条件的点E有个;(3)请在如图所示的网格中,借助矩形MNBA和无刻度的直尺作出∠MON的角平分线,并保留作图痕迹.22.小明在学完了平行四边形这个章节后,想对“四边形的不稳定性”和“四边形的判定”有更好的理解,做了如下的探究:他将8个木棍和一些钉子组成了一个正方形ABCD和平行四边形HEFG(如图1),且BC,EF在一条直线上,点D落在边HE上.经小明测量,发现此时B、D、G三个点在一条直线上,∠F=67.5°,DG=2.(1)求HG的长度;(2)设BC的长度为a,CE=(用含a的代数式表示);(3)小明接着探究,在保证BC,EF位置不变的前提条件下,从点A向右推动正方形,直到四边形EFGH刚好变为矩形时停止推动(如图2).若此时DE2=8(﹣1),求BF的长度.23.矩形ABCD的对角线交于点O,∠MON=α.(1)如图1,AD=DC,α=90°,点M在边AD上,点N在边CD上,求证:MO=ON;(2)如图2,∠ACD=30°,α=60°,点M在线段AD的延长线上,点N在线段CD的延长线上,若OM=ON,求的值;(3)如图3,AD=6,DC=8,α=45°,点M在线段AD的延长线上,点N在线段CD的延长线上,若DM=DN,直接写出线段ON的长度.24.问题背景:如图1,两条相等的线段AB,CD交于点O,∠AOC=60°,连接AC,BD,求证:AC+BD≥CD.证明:过点C作AB的平行线,过点B作AC的平行线,两平行线交于点E,连接DE.∵AB∥CE,AC∥BE.∴四边形ABEC为平行四边形,则AC=,AB=CE.∵AB∥CE,∴∠DCE=∠AOC=60°.又∵CD=AB=CE,∴△DCE为等边三角形,CD=.∴AC+BD=BE+BD≥DE=CD,即AC+BD≥CD.请完成证明中的两个填空.迁移应用:如图2,正方形ABCD的边长为4,点M在边AB上,点N在边CD上,点O在MN上,过点O作MN的垂线,交AD于点F,交BC于点E.求证:①MN=EF;②FM+NE≥4.联系拓展:如图3,△ABC为等腰三角形,AB=AC,过点A作BC的平行线l,点D在直线l上,点A到BD的距离为2,求线段CD的最小值.参考答案一、选择题(共10小题).1.要使二次根式有意义,则x的取值范围是()A.x≤﹣3 B.x≥﹣3 C.x≠﹣3 D.x≥3【分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.解:根据题意得:x+3≥0,解得,x≥﹣3.故选:B.2.下列根式中是最简二次根式的是()A.B.C.D.【分析】利用最简二次根式的定义对各选项进行判断.解:=,==,=2,只有为最简二次根式.故选:B.3.以下列长度的线段为边,不能构成直角三角形的是()A.2、3、4 B.1、1、C.3、4、5 D.5、12、13【分析】根据勾股定理的逆定理,可以判断各个选项中的三条线段是否可以构成直角三角形,从而可以解答本题.解:∵22+32=4+9=13≠16=42,故选项A中三条线段不能构成直角三角形;∵12+12=1+1=2=()2,故选项B中三条线段能构成直角三角形;∵32+42=9+16=25=52,故选项C中三条线段能构成直角三角形;∵52+122=25+144=225=152,故选项D中三条线段能构成直角三角形;故选:A.4.下列计算正确的是()A.﹣=B.3﹣=3 C.×=D.÷2=【分析】利用二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C 进行判断;根据二次根式的除法法则对D进行判断.解:A、原式=2﹣,所以A选项错误;B、原式=2,所以B选项错误;C、原式==,所以C选项正确;D、原式=2÷2=,所以D选项错误.故选:C.5.正方形具有而矩形不一定具有的性质是()A.四个角都为直角B.对角线互相平分C.对角线相等D.对角线互相垂直【分析】利用正方形、矩形的性质即可判断.解:正方形、矩形都具有四个角都是直角,正方形的对角线互相垂直平分且相等,矩形的对角线互相平分且相等,故选:D.6.下列命题的逆命题是真命题的是()A.同旁内角互补,两直线平行B.等边三角形是锐角三角形C.如果两个实数相等,那么它们的绝对值相等D.全等三角形的对应角相等【分析】首先写出逆命题,然后再判断是否是真命题即可.解:A、同旁内角互补,两直线平行,逆命题是两直线平行,同旁内角互补,是真命题,故此选项符合题意;B、等边三角形是锐角三角形的逆命题是锐角三角形是等边三角形,是假命题,故此选项不合题意;C、如果两个实数相等,那么它们的绝对值相等,逆命题是两个实数绝对值相等,则这两个实数相等,是假命题,故此选项不合题意;D、全等三角形的对应角相等,逆命题是对应角相等的两个三角形全等,是假命题,故此选项不合题意;故选:A.7.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H.则DH=()A.6 B.C.D.5【分析】先根据菱形的性质得OA=OC=4,OB=OD=3,AC⊥BD,再利用勾股定理计算出AB=5,然后根据菱形的面积公式得到•AC•BD=DH•AB,再解关于DH的方程.解:∵四边形ABCD是菱形,∴OA=OC=4,OB=OD=3,AC⊥BD,在Rt△AOB中,AB==5,则AD=5,∵S菱形ABCD=•AC•BD,S=DH•AB,菱形ABCD∴DH•5=×6×8,∴DH=.故选:B.8.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10 B.12 C.13 D.14【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:芦苇长13尺.故选:C.9.如图,四边形AEFD和EBCF都是平行四边形,过点E作直线交边AD于点M,交边BC于点N,连接MF,NF.若▱AEFD和▱EBCF的面积分别为4和6,则△MNF的面积为()A.5 B.5.5 C.6 D.8【分析】由平行四边形的性质得出△EMF的面积=平行四边形AEFD的面积=2,△ENF的面积=平行四边形EBCF的面积=3,进而得出答案.解:∵四边形AEFD和EBCF都是平行四边形,∴AD∥EF,BC∥EF,∴△EMF的面积=平行四边形AEFD的面积=×4=2,△ENF的面积=平行四边形EBCF的面积=×6=3,∴△MNF的面积=△EMF的面积+△ENF的面积=2+3=5;故选:A.10.如图,△ABC中,∠C=45°,点E在边BC上,且满足AE=AB,D为线段AE的中点,若∠EDB=∠CAB,DB=3,则AE=()A.3B.2C.3D.6【分析】过点A作AF⊥BE于F,交BD于G,由等腰三角形的性质及重心定理可得BG,再证明∠DBE=∠ACB=45°,∠FGB=45°,可证得FG=FB,由勾股定理解得FG,则可得BF、EF及AG,从而可得AF,最后在Rt△AEF中,由勾股定理可求得AE的长.解:过点A作AF⊥BE于F,交BD于G,如图:∵AE=AB,AF⊥BE,∴BF=EF,∠AEB=∠ABE,∵D为线段AE的中点,∴G为△AEB的重心,∴BG=2DG=BD=×3=2,AG=2FG,在△BDE和△CAB中,∠BED=∠CBA,∠BDE=∠CAB,∠BED+∠BDE+∠DBE=∠CBA+∠CAB+∠C=180°,∠C=45°,∴∠DBE=∠ACB=45°,在Rt△GFB中,∠GFB=90°,∠GBF=45°,∴∠FGB=90°﹣∠GBF=90°﹣45°=45°=∠GBF,∴FG=FB,∵FG2+FB2=BG2,∴2FG2=,∴FG=2,∴AG=2FG=2×2=4,∴FB=FG=2,∴AF=AG+FG=4+2=6,在Rt△AEF中,∠AFE=90°,EF=BF=2,AF=6,∴AE===2.故选:B.二、填空题(每小题3分,共18分)11.=10.【分析】直接利用二次根式的性质化简得出答案.解:==10.故答案为:10.12.已知是整数,则满足条件的最小正整数n为 3 .【分析】先变形得到=,根据题意n必须是3的完全平方数倍,所以最小正整数n为3.解:∵=,而是整数,∴最小正整数n为3.故答案为3.13.在△ABC中,∠C=90°,∠A=30°,AC=2,则斜边AB=.【分析】根据含30°角的再见三角形性质求出AB=2CB,根据勾股定理得出方程,求出BC即可.解:∵在△ABC中,∠C=90°,∠A=30°,∴AB=2BC,由勾股定理得:AB2=AC2+BC2,即(2BC)2=22+BC2,解得:BC=,所以AB=,故答案为:.14.如图,四边形ABCD为菱形,四边形AOBE为矩形,O,C,D三点的坐标为(0,0),(2,0),(0,1),则点E的坐标为(﹣2,﹣1).【分析】求出OC、OD的长,根据菱形的性质求出OA=OC=2,根据矩形的性质求出OB=EA=1,即可得出答案.解:∵O,C,D三点的坐标为(0,0),(2,0),(0,1),∴OC=2,OD=1,∵四边形ABCD是菱形,∴OA=OC=2,OB=OD=1,∵四边形AOBE为矩形,∴∠EAO=∠EBO=90°,EB=OA=2,EA=OB=1,∵E在第二象限,∴E点的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).15.如图,四边形ABCD中,AD∥BC,∠B=90°,点E为线段CD的中点,AD=1,CB=2,AE=3,则AB=3.【分析】延长AE交BC的延长线于F,根据平行线的性质得到∠DAE=∠F,∠D=∠ECF,根据全等三角形的性质得到CF=AD=1,EF=AE=3,由勾股定理即可得到结论.解:延长AE交BC的延长线于F,∵AD∥BC,∴∠DAE=∠F,∠D=∠ECF,∵DE=CE,∴△ADE≌△FCE(AAS),∴CF=AD=1,EF=AE=3,∵BC=2,∴BF=3,AF=6,∵∠B=90°,∴AB===3,故答案为:3.16.如图,在平面直角坐标系中,A(4,0),B(﹣2,0),C(4,4),D(﹣2,6),点E在x轴上,满足∠BED=∠DEC,则点E的坐标为(1,0)或(4,0).【分析】①过D作DE⊥AC于E,得到正方形,利用正方形的性质可得结论,②过D作DH⊥EC于H,利用角平分线的性质与勾股定理可得答案.解:①如图,过D作DE⊥AC于E,∵A(4,0),B(﹣2,0),C(4,4),D(﹣2,6),∴∠DBA=∠BAE=∠AED=90°,BD=BA=6,∴四边形ABDE是正方形,连接AD,则∠BAD=∠EAD=45°,∴E,A重合时,有∠BED=∠DEC,∴E点的坐标为(4,0).②如图,过D作DH⊥EC于H,∵∠BED=∠DEC,DB⊥BE,∴DB=DH=6,∵C(4,4),D(﹣2,6),∴CD==,CH==2,由三角形内角和定理可得:∠BDE=∠HDE,∵DB⊥BE,DH⊥EH,∴BE=HE设BE=x,则HE=x,CE=x+2,AE=6﹣x,∵CA⊥EA,CA=4,∴(x+2)2=(6﹣x)2+42,解得,x=3,∴BE=3,∴E点的坐标为(1,0);综上,E点的坐标为(1,0)或(4,0).故答案为:(1,0)或(4,0).三、解答题(共72分)17.计算:(+)÷.【分析】利用二次根式的除法法则运算.解:原式=+=4+2.18.如图,▱ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形.【分析】首先利用平行四边形的性质,得出对角线互相平分,进而得出EO=FO,BO =DO,即可得出答案.【解答】证明:∵▱ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,∴AO=CO,BO=DO,∵AE=CF,∴AF=EC,则FO=EO,∴四边形BFDE是平行四边形.19.已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.【分析】观察可知:(1)式是完全平方和公式,(2)是平方差公式.先转化,再代入计算即可.解:(1)当x=+1,y=﹣1时,原式=(x+y)2=(+1+﹣1)2=12;(2)当x=+1,y=﹣1时,原式=(x+y)(x﹣y)=(+1+﹣1)(+1﹣+1)=4.20.如图,一架2.5m长的梯子AB斜靠在一竖直墙AO上,这时AO为2.4m.(1)求OB的长度;(2)如果梯子底端B沿地面向外移动0.8m到达点C,那么梯子顶端A下移多少m?【分析】(1)根据勾股定理即可得到结论;(2)设梯子的A端下滑到D,如图,求得OC=0.7+0.8=1.5,根据勾股定理即可得到结论.解:(1)在Rt△AOB中,OB===0.7(m);(2)设梯子的A端下滑到D,如图,∵OC=0.7+0.8=1.5,∴在Rt△OCD中,OD===2(m),∴AD=OA﹣OD=﹣2=0.4,∴梯子顶端A下移0.4m.21.如图,是由49个边长为1的小正方形组成的7×7的正方形网格,小正方形的顶点为格点,点O、A、M、N、B均在格点上.(1)直接写出OM= 5 ;(2)点E在网格中的格点上,且△OME是以O为顶角顶点的等腰三角形,则满足条件的点E有 3 个;(3)请在如图所示的网格中,借助矩形MNBA和无刻度的直尺作出∠MON的角平分线,并保留作图痕迹.【分析】(1)利用勾股定理即可求出OM的长;(2)由OM=5,得OE=5,根据网格即可找到点E;(3)连接AN和BM交于点D,连接OD,即可作出∠MON的角平分线.解:(1)根据网格可知:OM==5,故答案为:5;(2)如图,由OM=5,∴OE=5,所以满足条件的点E有3个,分别为E1,E2,E3.故答案为:3;(3)如图,连接AN和BM交于点D,连接OD,则OD即为∠MON的角平分线.22.小明在学完了平行四边形这个章节后,想对“四边形的不稳定性”和“四边形的判定”有更好的理解,做了如下的探究:他将8个木棍和一些钉子组成了一个正方形ABCD和平行四边形HEFG(如图1),且BC,EF在一条直线上,点D落在边HE上.经小明测量,发现此时B、D、G三个点在一条直线上,∠F=67.5°,DG=2.(1)求HG的长度;(2)设BC的长度为a,CE=(﹣1)a(用含a的代数式表示);(3)小明接着探究,在保证BC,EF位置不变的前提条件下,从点A向右推动正方形,直到四边形EFGH刚好变为矩形时停止推动(如图2).若此时DE2=8(﹣1),求BF的长度.【分析】(1)根据平行四边形的性质得到∠H=∠GFE=67.5°,HE∥FG,求得∠GFE=67.5°,得到∠HDG=∠BDE=67.5°,根据等腰三角形的判定定理即可得到结论;(2)由(1)知,∠BDE=∠BED=67.5°,得到BE=BD,根据等腰直角三角形的性质得到BD=BC=a,于是得到结论;(3)设CD=a,根据矩形的性质得到EF=HG=2,∠HEF=90°,根据勾股定理即可得到结论.解:(1)∵四边形HEFG是平行四边形,∴∠H=∠GFE=67.5°,HE∥FG,∴∠GFE=67.5°,∵四边形ABCD是正方形,∴∠DCB=90°,∠BDC=∠BDC=45°,∴∠DCE=90°,∴∠CDE=22.5°,∴∠BDE=∠BDC+∠CDE=67.5°,∴∠HDG=∠BDE=67.5°,∴∠H=∠GDH,∴HG=DG=2;(2)由(1)知,∠BDE=∠BED=67.5°,∴BE=BD,∵BC的长度为a,∴BD=BC=a,∴CE=BE﹣BC=a﹣a=(﹣1)a;故答案为:(﹣1)a;(3)∵在推进过程中CD的长度保持不变,设CD=a,∵四边形EFGH是矩形,∴EF=HG=2,∠HEF=90°,∴∠DEC=90°,∴DE2=CD2﹣CE2,∵BC,EF位置不变,∴CE=(﹣1)a,∴在Rt△CDE中,由勾股定理得,DE2=CD2﹣CE2,∴8(﹣1)=a2﹣(﹣1)2a2,∴a2=4,∵a>0,∴a=2,∴BF=BE+EF=2+2.23.矩形ABCD的对角线交于点O,∠MON=α.(1)如图1,AD=DC,α=90°,点M在边AD上,点N在边CD上,求证:MO=ON;(2)如图2,∠ACD=30°,α=60°,点M在线段AD的延长线上,点N在线段CD的延长线上,若OM=ON,求的值;(3)如图3,AD=6,DC=8,α=45°,点M在线段AD的延长线上,点N在线段CD的延长线上,若DM=DN,直接写出线段ON的长度.【分析】(1)根据正方形的性质得到OD=OC,OD⊥OC,由全等三角形的性质即可得到结论;(2)如图2,在DM上截取PM=DO,连接OP,根据矩形的性质得到OD=OC,求得∠ODC=∠ACD=30°,根据全等三角形的性质得到ND=OP,求得∠N=∠POM,得到∠DOP =30°,设DO=PD=x,根据三角函数的定义即可得到结论;(3)如图3,过O作OG⊥CD于G,根据三角形中位线定理得到OG=3,DG=4,连接MN,得到∠DNM=45°,过N作NH⊥OM于H,根据等腰直角三角形的性质得到NH=ON,设DM=DN=x,根据勾股定理得到ON==,根据相似三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,AD=CD,∴四边形ABCD是正方形,∴OD=OC,OD⊥OC,∵∠MON=90°,∴∠MOD=∠NOC,在△DMO与△DNO中,∴△DMO≌△CNO(AAS),∴MO=ON;(2)解:如图2,在DM上截取PM=DO,连接OP,∵四边形ABCD是矩形,∴AO=OC=AC,DO=OB=BD,AC=BD,∴OD=OC,∴∠ODC=∠ACD=30°,∵∠NOD+∠DOM=∠DOM+∠M=60°,∴∠NOD=∠M,∵OM=ON,∴△OND≌△OMP(SAS),∴ND=OP,∴∠N=∠POM,∴∠POM+∠NOD=∠N+∠MOD=∠ODC=30°,∴∠DOP=30°,即△DOP是顶角为120°的等腰三角形,∴设DO=PD=x,∴ND=OP=x,∵DM=DP+PM=DP+DO=2x,∴==;(3)如图3,过O作OG⊥CD于G,∴OG∥AD,∵AO=CO,∴OG=AD,DG=CG=CD,∵AD=6,DC=8,∴OG=3,DG=4,连接MN,∵∠MDN=90°,DM=DN,∴∠DNM=45°,过N作NH⊥OM于H,∵∠NOM=45°,∴△ONH是等腰直角三角形,∴NH=ON,设DM=DN=x,∴MN=x,NG=4+x,∴ON==,∴NH=,∵∠ONH=∠DNM=45°,∴∠ONG=∠MNH,∵∠NHM=∠NGO=90°,∴△ONG∽△MNH,∴,∴=,解得:x=5(负值舍去),∴ON==3.24.问题背景:如图1,两条相等的线段AB,CD交于点O,∠AOC=60°,连接AC,BD,求证:AC+BD≥CD.证明:过点C作AB的平行线,过点B作AC的平行线,两平行线交于点E,连接DE.∵AB∥CE,AC∥BE.∴四边形ABEC为平行四边形,则AC=BE,AB=CE.∵AB∥CE,∴∠DCE=∠AOC=60°.又∵CD=AB=CE,∴△DCE为等边三角形,CD=DE.∴AC+BD=BE+BD≥DE=CD,即AC+BD≥CD.请完成证明中的两个填空.迁移应用:如图2,正方形ABCD的边长为4,点M在边AB上,点N在边CD上,点O在MN上,过点O作MN的垂线,交AD于点F,交BC于点E.求证:①MN=EF;②FM+NE≥4.联系拓展:如图3,△ABC为等腰三角形,AB=AC,过点A作BC的平行线l,点D在直线l上,点A到BD的距离为2,求线段CD的最小值.【分析】问题背景:利用平行四边形的性质以及等边三角形的性质即可解决问题.迁移应用:①如图2中,作FH⊥BC于H,MK⊥CD于K.证明△FHE≌△MKN(AAS)可得结论.②如图2中,以EF,EM为邻边作平行四边形FMGE,连接NG.证明△MNG是等腰直角三角形即可解决问题.联系拓展:如图3中,以AD,AB为邻边作平行四边形ADPB,连接PA交BD于O.证明AP=CD,求出PA的最小值即可解决问题.解:问题背景:根据平行四边形的性质可知AC=BE,根据等边三角形的性质可知CD=DE,故答案为BE,DE.迁移应用:①如图2中,作FH⊥BC于H,MK⊥CD于K.∵四边形ABCD是正方形,∴∠A=∠B=∠C=90°,∵FH⊥BC,∴∠FHB=90°,∴四边形AFHB是矩形,∴FH=AB,同理可证:MK=BC,∵AB=BC,∴FH=MK,∵MN⊥EF,∴∠EON=∠ECN=90°,∴∠MNK+∠CEO=180°,∵∠FEH+∠CEO=180°,∴∠MNK=∠FEH,∵∠FHE=∠MKN=90°,∴△FHE≌△MKN(AAS),∴EF=MN.②如图2中,以EF,EM为邻边作平行四边形FMGE,连接NG.∴FM=EG,FM∥EG,EF=MG,EF∥MG,∴∠NOE=∠NMG=90°,∵MN=EF,∴MN=MG,∴GN=MG=EF,∵FM+EN=EG+EN≥NG,∵EF≥AB=4,∴FM+NE≥4.联系拓展:如图3中,以AD,AB为邻边作平行四边形ADPB,连接PA交BD于O.∴DP=AB=BC,∴∠DPB=∠ABC=∠ACB,∵DP=AC,∠DPB=∠ACB,PC=OC,∴△DPC≌△ACP(SAS),∴DC=AP,∵A到DB的距离为2,∴AO≥2,∴DC=AP=2AO≥4,∴CD的最小值为4.。
湖北省2019-2020学年八年级数学下学期期中测试卷一(含答案)
湖北省2019–2020学年下学期期中测试卷八年级数学一、选择题(本大题共10小题,每小题3分,共30分)1.下列二次根式中,最简二次根式是A .8B .223C .37xD 22x y +.2.如果3,4,a 是勾股数,则a 的值是A .5B .C .或5D .73.下列各式中,计算正确的是A .1212= B .2(33)9-= C .2(21)322+=+ D .1052÷=4.如图,一个25m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24m ,如果梯子的顶端A 沿墙下滑4m ,那么梯子底端B 外移A .7米B .8米C .9米D .10米5.在四边形ABCD 中,给出条件:①AB ∥CD ;②AD ∥BC ;③AB=CD ;④AD=BC ;⑤∠A=∠C ;⑥∠B=∠D .将其中的任意两个进行组合,能判定四边形ABCD 是平行四边形的有A .10组B .9组C .8组D .7组6.如图,在菱形ABCD 中,AB=5,对角线AC=6.若过点A 作AE ⊥BC ,垂足为E ,则AE 的长为( )A .4B .2.4C .4.8D .57.已知()()22m 12,n 12,7m 14m 93n 6n 7=+=-----则代数式的值为A .8B .–8C .10D .–6 8.如图,在▱ABCD 中,对角线AC 、BD 相交成的锐角α为60°,若AC=10,BD=8,则▱ABCD 的面积是A .20B .20C .30D .309.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .22D .5 10.如图,E 、F 分别是正方形ABCD 的边CD ,AD 上的点,且CE=DF ,AE ,BF 相交于点O ,下列结论:①AE=BF ;②AE⊥BF ;③AO=OE ;④S △AOB =S 四边形DEOF 中,正确的有A .1个B .2个C .3个D .4个二、填空题(本大题共6小题,每小题3分,共18分)112x 9-x 的取值范围是_______.12.若实数x 、y 满足y 2020x x 20202019=-+-+,()2020x-y =则_______.13.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM=3,BC=10,则OB 的长为___________.14.如图,在Rt △ABC 中,∠C =90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为________.15.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC=,∠AEO=120°,则FC 的长度为___________316.如图,P 是边长为4的正方形ABCD 的对角线BD 上的一动点,且点E 是边AD 的中点,求PE+PA 的最小值为___________.三、解答题(本大题共8个小题,满分72分)17.(本题满分8分,每小题4分)计算:(1)120-555(2((551515231523+. 18.(8分)先化简,再求值:3x 3x 36x xy 4x 36xy ,x y 3.y y y 2+-+==⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭其中, 19.(8分)如图,已知平行四边形ABCD 的两条对角线相交于点O ,E 是BO 的中点,过B 点作AC 的平行线,交CE 的延长线于点F ,连接BF.(1)求证:FB=AO ;(2)当平行四边形ABCD 满足什么条件时,四边形AFBO 是菱形?说明理由.20.(本题满分8分)在Y ABCD 中,点E 、F 分别在边BC 、AD 上,且BE=DF .(1)如图1,连接AE 、CF ,求证:四边形AECF 是平行四边形;(2)如图2,连接AE 、BF 交于点G ,连接DE 、CF 交于点H ,连接GH ,若E 为BC 的中点,在不添加辅助线的情况下,请直接写出以G 、H 为顶点的平行四边形.21.(本题满分8分)如图,在矩形ABCD 中,AB=4cm ,BC=8cm ,点P 从点D 出发向点A 运动,运动到点A 即停止;同时点Q 从点B 出发向点C 运动,运动到点C 即停止.点P 、Q 的速度的速度都是1cm/s ,连结PQ ,AQ ,CP ,设点P 、Q 运动的时间为t (s ).(1)当t 为何值时,四边形ABQP 是矩形?(2)当t 为何值时,四边形AQCP 是菱形?(3)分别求出(2)中菱形AQCP 的周长和面积.22.(10分)如图1,已知AD ∥BC ,AB ∥CD ,∠B=∠C .(1)求证:四边形ABCD为矩形;(2)M为AD的中点,在AB上取一点N,使∠BNC=2∠DCM.①如图2,若N为AB中点,BN=2,求CN的长;②如图2,若CM=3,CN=4,求BC的长.23(10分).如图,点D、E是Rt△ABC两直角边AB、AC上的一点,连接BE,已知点F、G、H分别是DE、BE、BC的中点.(1)求∠FGH度数(2)连CD,取CD中点M,连接GM,若BD=8,CE=6,求GM的长.24.(本题满分12分).如图所示,在平面直角坐标系中,正方形OABC的点A、C分别在x 轴和y轴的正半轴上,点B(6,6)在第一象限,AP平分∠CAB交OB于P.(1)求∠OPA的度数和OP的长;(2)点P不动,将正方形OABC绕点O逆时针旋转至图2的位置,∠COP=60°,AP交OB于点F,连接CF.求证:OF+CF=PF;(3)如图3,在(2)的条件下,正方形的边AB交x轴于点D、OE平分∠BAD,M、N是OB、OE 上的动点,求BN+MN的最小值,请在图中画出示意图并简述理由.湖北省2019–2020学年八年级数学下学期期中测试卷 (解析版) 一、选择题(本大题共10小题,每小题3分,共30分) 1.下列二次根式中,最简二次根式是A .8B .223C .37xD 22x y +. 【答案】D2.如果3,4,a 是勾股数,则a 的值是A .5B .C .或5D .7 【答案】A3.下列各式中,计算正确的是A .1212= B .2(33)9-= C .2(21)322+=+D .1052÷=【答案】C 4.如图,一个25m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24m ,如果梯子的顶端A 沿墙下滑4m ,那么梯子底端B 外移A .7米B .8米C .9米D .10米【答案】B 5.在四边形ABCD 中,给出条件:①AB ∥CD ;②AD ∥BC ;③AB=CD ;④AD=BC ;⑤∠A=∠C ;⑥∠B=∠D .将其中的任意两个进行组合,能判定四边形ABCD 是平行四边形的有A .10组B .9组C .8组D .7组【答案】C6.如图,在菱形ABCD 中,AB=5,对角线AC=6.若过点A 作AE ⊥BC ,垂足为E ,则AE 的长为( )A .4B .2.4C .4.8D .5【答案】C 7.已知()()22m 12,n 12,7m 14m 93n 6n 7=+=-----则代数式的值为 A .8B .–8C .10D .–6 【答案】A8.如图,在▱ABCD 中,对角线AC 、BD 相交成的锐角α为60°,若AC=10,BD=8,则▱ABCD 的面积是A .20B .20C .30D .30 【答案】B 9.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .22D 5【答案】C 10.如图,E 、F 分别是正方形ABCD 的边CD ,AD 上的点,且CE=DF ,AE ,BF 相交于点O ,下列结论:①AE=BF ;②AE⊥BF ;③AO=OE ;④S △AOB =S 四边形DEOF 中,正确的有A .1个B .2个C .3个D .4个【答案】C二、填空题(本大题共6小题,每小题3分,共18分)11.若代数式2x 9x 3--在实数范围内有意义,则x 的取值范围是_______.【答案】x 3x 3>≤-或12.若实数x 、y 满足y 2020x x 20202019=-+-+,()2020x-y =则_______.【答案】1.13.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM=3,BC=10,则OB 的长为___________.【答案】3414.如图,在Rt △ABC 中,∠C =90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为________.【答案】4.15.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC=,∠AEO=120°,则FC 的长度为___________3 【答案】316.如图,P 是边长为4的正方形ABCD 的对角线BD 上的一动点,且点E 是边AD 的中点,求PE+PA 的最小值为___________.【答案】25三、解答题(本大题共8个小题,满分72分) 17.(本题满分8分,每小题4分)计算:(1)120-555(2((551515231523+. 【解答】(1)原式5555(2)原式=553-–12=83-18.(8分)先化简,再求值:3x 3x 3xy 36xy ,x y 3.y y y 2+-+==⎛⎛ ⎝⎝其中, 【解答】原式=2x 3xy y-() 3x ,y 3=322==-当时,原式19.(8分)如图,已知平行四边形ABCD 的两条对角线相交于点O ,E 是BO 的中点,过B 点作AC 的平行线,交CE 的延长线于点F ,连接BF.(1)求证:FB=AO ;(2)当平行四边形ABCD 满足什么条件时,四边形AFBO 是菱形?说明理由.【解答】证明:(1)如图,取BC的中点G,连接EG.∵E是BO的中点,∴EG是△BFC的中位线,∴EG=0.5BF.同理,EG=0.5OC,∴BF=OC.又∵点O是▱ABCD的对角线交点,∴AO=CO,∴BF=AO.又∵BF∥AC,即BF∥AO,∴四边形AOBF为平行四边形,∴FB=AO;(2)当平行四边形ABCD是矩形时,四边形AFBO是菱形.理由如下:∵平行四边形ABCD是矩形,∴OA=OB,∴平行四边形AFBO是菱形.20.(本题满分8分)在Y ABCD中,点E、F分别在边BC、AD上,且BE=DF.(1)如图1,连接AE、CF,求证:四边形AECF是平行四边形;(2)如图2,连接AE、BF交于点G,连接DE、CF交于点H,连接GH,若E为BC的中点,在不添加辅助线的情况下,请直接写出以G、H为顶点的平行四边形.【解答】(1)证AF平行且等于CE即可.(2)AGHF,FGHD,GEHF,GBEH,GECH.21.(本题满分8分)如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度的速度都是1cm/s,连结PQ,AQ,CP,设点P、Q运动的时间为t(s).(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?(3)分别求出(2)中菱形AQCP的周长和面积.【解答】(1)当四边形ABQP是矩形时,BQ=AP,即:t=8﹣t,解得t=4.答:当t=4时,四边形ABQP是矩形;(2)设t秒后,四边形AQCP是菱形当AQ=CQ,即224t =8﹣t时,四边形AQCP为菱形.解得:t=3.答:当t=3时,四边形AQCP是菱形;(3)当t=3时,CQ=5,则周长为:4CQ=20cm,面积为:4×8﹣2×12×3×4=20(cm2).22.(10分)如图1,已知AD∥BC,AB∥CD,∠B=∠C.(1)求证:四边形ABCD为矩形;(2)M为AD的中点,在AB上取一点N,使∠BNC=2∠DCM.①如图2,若N为AB中点,BN=2,求CN的长;②如图2,若CM=3,CN=4,求BC的长.【解答】(1)证明:如图1中,∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵AB∥CD,∴∠B+∠C=180°,∵∠B=∠C,∴∠B=∠C=90°,∴四边形ABCD是矩形.(2)①如图2中,延长CM、BA交于点E.∵AN=BN=2,∴AB=CD=4,∵AE∥DC,∴∠E=∠MCD,在△AEM和△DCM中,∠E=∠MCD,∠AME=∠CMD,AM=DM,∴△AME≌△DMC,∴AE=CD=4,∵∠BNC=2∠DCM=∠NCD,∴∠NCE=∠ECD=∠E,∴CN=EN=AE+AN=4+2=6.②如图2中由①可知,△EAM≌△CDM,EN=CN,∴EM=CM=3,EN=CN=4,设BN=x,则BC2=CN2–BN2=CE2–EB2,∴42–x2=62–(x+42,∴x=,∴BC=2222137 CN BN422⎛⎫-=-=⎪⎝⎭23(10分).如图,点D、E是Rt△ABC两直角边AB、AC上的一点,连接BE,已知点F、G、H分别是DE、BE、BC的中点.(1)求∠FGH度数(2)连CD,取CD中点M,连接GM,若BD=8,CE=6,求GM的长.【解答】(1)∵度F,G,H分别是DE,BE,BC的中点知∴FG∥AB,GH∥AC∵道AB⊥回AC∴FG⊥GH即∠FGH=90°(2)连答接HM,则HM∥BD,HM=12BD=4同理GH=12CE=3∵BD⊥CE,∴HM⊥GH由勾股定理的可得GM=524.(本题满分12分).如图所示,在平面直角坐标系中,正方形OABC的点A、C分别在x 轴和y轴的正半轴上,点B(6,6)在第一象限,AP平分∠CAB交OB于P.(1)求∠OPA的度数和OP的长;(2)点P不动,将正方形OABC绕点O逆时针旋转至图2的位置,∠COP=60°,AP交OB于点F,连接CF.求证:OF+CF=PF;(3)如图3,在(2)的条件下,正方形的边AB交x轴于点D、OE平分∠BAD,M、N是OB、OE 上的动点,求BN+MN的最小值,请在图中画出示意图并简述理由.【解答】(1)如图1,∵AC,OB是正方形OABC的对角线,∴OA=AB,∠2=∠3=∠BAC=45°,∵AP是∠BAC的角平分线,∴∠1=∠BAC=22.5°,∴∠OAP=∠3+∠1=67.5°,在△OAP中,∠OPA=180°﹣∠2﹣∠OAP=67.5°,∴∠OAP=∠OPA,∴OA=OP,∵B(6,6),∴AB=6,∴OA=AB=6,∴OP=6;(2)如图2,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∵∠COP=60°,∴∠AOP=150°,由(1)知,OP=OA∴∠P=15°,由(1)知,∠POG=45°,∴∠AGO=∠P+∠POG=60°,∵OB是正方形的对角线,∴∠BOC=45°,∵∠COP=60°,∠POG=45°,∴∠BOG=∠COP=60°,∴△OFG是等边三角形,∴OF=FG=OG,∴△COF≌△POG(SAS),∴PG=CF,∴CF+OF=PG+FG=PF;(3)如图3,过点B作BQ⊥OE于Q,延长BQ交x轴于B',∵OE是∠DOB的平分线,∴BQ=B'Q,∴点B'与点B关于OE对称,连接B'M'交OE于N',∴BN'+M'N'=B'N'+M'N'=B'M',过点B'作B'M⊥OB于M,交OE于E,此时,BN+MN最小,∵OB是边长为6的正方形的对角线,∴OB=62由作图知,OB'=OB=62由(2)易知,∠BOH=30°,在Rt△B'OM中,B'M=OB'=3即:BN+MN的最小值为32.。
2019-2020学年湖北省武汉市部分重点中学(武汉六中等)高一(下)期末数学试卷及答案
2019-2020学年湖北省武汉市部分重点中学(武汉六中等)高一(下)期末数学试卷一、选择题(每小题只有一个正确选项,每小题5分,共60分.)1.(5分)已知直线(2a+1)x+ay﹣2=0在两坐标轴上的截距相等,则实数a=()A.﹣B.1C.﹣或﹣1D.﹣12.(5分)下列命题中正确的个数为()①如果=λ(λ∈R),那么与方向相同;②若非零向量与共线,则A、B、C、D四点共线;③△ABC中,若B>90°,则•<0;④四边形ABCD是平行四边形,则必有=.A.0个B.1个C.2个D.3个3.(5分)在△ABC中,内角A,B,C的对边是a,b,c,若=,b2﹣a2=ac,则cos C等于()A.B.C.D.4.(5分)圆心都在直线L:x+y=0上的两圆相交于两点M(m,3),N(﹣3,n),则m+n =()A.﹣1B.1C.0D.25.(5分)某工厂生产某产品2019年每月生产量基本保持稳定,2020年由于防疫需要2、3、4、5月份停产,6月份恢复生产时月产量仅为去年同期的一半,随着疫情缓解月产量逐步提高.该工厂如果想8月份产量恢复到去年同期水平,那么该工厂从6月开始月产量平均增长率至少需到达多少个百分点?()A.25B.35C.42D.506.(5分)已知直线l:mx﹣y﹣m+=0与圆C:(x﹣2)2+y2=4.直线l与圆C下列关系中不可能的是()A.相交B.相切C.过圆心D.相离7.(5分)已知两个非零向量,的夹角为,且|﹣|=2,则•的取值范围是()A.(﹣,0)B.[﹣2,0)C.[﹣,0)D.[﹣1,0)8.(5分)已知x>1,y>0,且+=1,则x+2y的最小值为()A.9B.10C.11D.7+29.(5分)下列说法正确有()①若|a|>b,则a2>b2;②a>b,c>d,则a﹣c>b﹣d;③若a<b<0,c<d<0,则ac>bd;④若a>b>0,c<0,则>.A.①④B.②④C.③④D.④10.(5分)已知{a n}为等比数列,a1a3a5=27,a2a4a6=,以T n表示{a n}的前n项积,则使得T n达到最大值的n是()A.4B.5C.6D.711.(5分)若直线ax+by﹣2=0(a,b>1)始终把圆x2+y2﹣2x﹣2y﹣2=0的周长分为1:2.则+的最大值为()A.4﹣2B.2﹣C.﹣1D.12.(5分)在锐角△ABC中,内角A,B,C所对的边分别为a,b,c.若a2=b2+c2,则tan A的取值范围是()A.[,+∞)B.(,+∞)C.(,+∞)D.[2,+∞)二、填空题(每小题5分,共20分)13.(5分)直线l:x﹣y sin+1=0的斜率为.14.(5分)已知向量=(﹣1+2t,2),=(2,﹣4+4t),=(1,λ)(其中t,λ∈R).若⊥(2+),则λ=.15.(5分)设等差数列{a n}满足:a4+a6=4,a82﹣a22=48.数列{na n}的前n项和记为S n,则S6的值为.16.(5分)锐角△ABC中,内角A,B,C的对边分别为a,b,c,已知a cos=b sin A,则B=,若a≥c=2,则a的取值范围是.三、解答题(解答题应写出文字说明,演算步骤或证明过程)17.(12分)已知直线l过点P(﹣1,2).(1)若直线l在两坐标轴上截距和为零,求l方程;(2)设直线l的斜率k>0,直线l与两坐标轴交点分别为A、B,求△AOB面积最小值.18.(10分)如图,在正△ABC中,AB=2,P,E分别是BC、CA边上一点,并且=3,设=t,AP与BE相交于F.(1)试用,表示;(2)求•的取值范围.19.(12分)设等比数列{a n+b n}的公比为3,等差数列{a n﹣b n}的公差为2,且a1=b1=1.(1)求数列{a n}的通项公式;(2)求数列{n(a n﹣n)}的前n项和S n.20.(12分)圆x2+y2=4,点P为直线l:x+y﹣4=0上一动点,过点P引圆O的两条切线,切点分别为A,B.(1)若点P的坐标为(6,﹣2),求直线P A、PB的方程;(2)求证:直线AB恒过定点Q,并求出该定点Q的坐标.21.(12分)设函数f(x)=ax2+4x+b.(1)当a>0且a+b=4时,解关于x的不等式f(x)≥0;(2)已知a>b,若f(x)的值域为[0,+∞),求的最小值.22.(12分)如图,有一矩形空地ABCD,AB=2BC=40米,现计划种植甲、乙两种蔬菜,已知单位面积种植甲蔬菜的经济价值是种植乙蔬菜经济价值的3倍,但种植甲蔬菜需要有辅助光照.AB边中点O处处恰有一可旋转光源满足甲蔬菜生长的需要,该光源照射范围是∠EOF=60°,其中E、F分别在边BC,CD上.(1)若∠BOE=30°,求四边形OECF的面积;(2)求该空地产生最大经济价值时种植甲种蔬菜的面积.2019-2020学年湖北省武汉市部分重点中学(武汉六中等)高一(下)期末数学试卷参考答案与试题解析一、选择题(每小题只有一个正确选项,每小题5分,共60分.)1.(5分)已知直线(2a+1)x+ay﹣2=0在两坐标轴上的截距相等,则实数a=()A.﹣B.1C.﹣或﹣1D.﹣1【分析】根据直线的截距相等,得到关于a的方程,解出即可.【解答】解:显然直线不过(0,0),截距不是0,故直线可化为:+=1,若直线(2a+1)x+ay﹣2=0在两坐标轴上的截距相等,则=,解得:a=﹣1,故选:D.【点评】本题考查了直线的截距式方程,考查对应思想,是一道常规题.2.(5分)下列命题中正确的个数为()①如果=λ(λ∈R),那么与方向相同;②若非零向量与共线,则A、B、C、D四点共线;③△ABC中,若B>90°,则•<0;④四边形ABCD是平行四边形,则必有=.A.0个B.1个C.2个D.3个【分析】根据向量的相等以向量的平行和向量的共线即可判断.【解答】解:对于①,=λ(λ∈R),那么与方向相同或相反,故①错误,对于②,非零向量与共线,则A,B,C,D四点共线或AB与CD平行,故②错误,对于③,△ABC中,若B>90°,则•<0,故③正确,对于④,四边形ABCD是平行四边形,则必有=,故④正确.故选:C.【点评】本题考查向量的相等,向量的平行,关键是掌握共线的条件,属于基础题.3.(5分)在△ABC中,内角A,B,C的对边是a,b,c,若=,b2﹣a2=ac,则cos C等于()A.B.C.D.【分析】解:由已知利用正弦定理可得c=a,结合已知b2﹣a2=ac,可求得b=2a,进而根据余弦定理可求cos C的值.【解答】解:∵=,∴由正弦定理可得:=,即c=a,又∵b2﹣a2=ac,∴b2﹣a2=3a2,可得b=2a,∴cos C===,故选:A.【点评】本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.4.(5分)圆心都在直线L:x+y=0上的两圆相交于两点M(m,3),N(﹣3,n),则m+n =()A.﹣1B.1C.0D.2【分析】由两圆的公共弦垂直于两圆圆心的连线,再由两直线斜率的关系列式可得m+n 的值.【解答】解:∵两圆相交于两点M(m,3),N(﹣3,n),且两圆的圆心都在直线x+y =0上,∴MN垂直直线x+y=0,则MN的斜率k=,得m+n=0.故选:C.【点评】本题主要考查圆与圆相交的性质,考查直线与圆位置关系的应用,是基础题.5.(5分)某工厂生产某产品2019年每月生产量基本保持稳定,2020年由于防疫需要2、3、4、5月份停产,6月份恢复生产时月产量仅为去年同期的一半,随着疫情缓解月产量逐步提高.该工厂如果想8月份产量恢复到去年同期水平,那么该工厂从6月开始月产量平均增长率至少需到达多少个百分点?()A.25B.35C.42D.50【分析】设该工厂从6月开始月产量平均增长率至少需到达x,8月份产量去年同期水平为a,则a(1+x)2=a.由此能求出该工厂从6月开始月产量平均增长率至少需到达多少个百分点.【解答】解:设该工厂从6月开始月产量平均增长率至少需到达x,8月份产量去年同期水平为a,则a(1+x)2=a.解得x=≈0.414≈42%.∴该工厂从6月开始月产量平均增长率至少需到达42个百分点.故选:C.【点评】本题考查百分点的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.6.(5分)已知直线l:mx﹣y﹣m+=0与圆C:(x﹣2)2+y2=4.直线l与圆C下列关系中不可能的是()A.相交B.相切C.过圆心D.相离【分析】由直线系方程可得直线过圆上的定点,由此可得直线l与圆C不可能相离.【解答】解:由直线l:mx﹣y﹣m+=0,得m(x﹣1)﹣y+=0,由,得,可得直线l过定点A(1,).圆C:(x﹣2)2+y2=4的圆心C(2,0),半径r=2.∵|CA|=,∴A在圆C上,∴直线l与圆C不可能相离,故选:D.【点评】本题考查直线与圆位置关系,训练了直线系方程的应用,是基础题.7.(5分)已知两个非零向量,的夹角为,且|﹣|=2,则•的取值范围是()A.(﹣,0)B.[﹣2,0)C.[﹣,0)D.[﹣1,0)【分析】对|﹣|=2两边平方后,结合•=||•||cos进行化简可得+||•||+=4;由基本不等式的性质知,+≥2||•||,于是推出0<||•||,再结合平面向量数量积即可得解.【解答】解:∵|﹣|=2,∴﹣2•+=4,∴﹣2||•||cos+=4,即+||•||+=4,由基本不等式的性质可知,+≥2||•||,∴0<||•||,∴•=||•||cos=||•||∈[,0).故选:C.【点评】本题主要考查平面向量数量积运算,还涉及利用基本不等式的性质求最值,对于平面向量的模长问题,一般采用平方处理,考查学生的逻辑推理能力和运算能力,属于基础题.8.(5分)已知x>1,y>0,且+=1,则x+2y的最小值为()A.9B.10C.11D.7+2【分析】利用“乘1法”与基本不等式的性质即可得出.【解答】解:∵x>1,∴x﹣1>0,又y>0,且+=1,∴x+2y=(x﹣1)+2y+1=[(x﹣1)+2y](+)+1=6++≥6+2=10,当且仅当=,即x=4,y=3时等号成立,故x+2y的最小值为10.故选:B.【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.9.(5分)下列说法正确有()①若|a|>b,则a2>b2;②a>b,c>d,则a﹣c>b﹣d;③若a<b<0,c<d<0,则ac>bd;④若a>b>0,c<0,则>.A.①④B.②④C.③④D.④【分析】对于①②,可根据条件取特殊值判断;对于③④,可直接利用不等式的基本性质判断.【解答】解:①由|a|>b,取a=0,b=﹣2,则a2>b2不成立,故①错误;②由a>b,c>d,取a=c=0,b=d=﹣1,则a﹣c>b﹣d不成立,故②错误;③∵a<b<0,c<d<0,∴﹣a>﹣b>0,﹣c>﹣d>0,∴ac>bd,故③正确;④由a>b>0,得,∵c<0,∴,故④正确.故选:C.【点评】本题考查了不等式的基本性质,属基础题.10.(5分)已知{a n}为等比数列,a1a3a5=27,a2a4a6=,以T n表示{a n}的前n项积,则使得T n达到最大值的n是()A.4B.5C.6D.7【分析】先求出首项和公比,得出{a n}是一个减数列,前4项都大于1,从第五项开始小于1,从而得出结论.【解答】解:∵{a n}为等比数列,a1a3a5=27=,a2a4a6==,∴a3=3,a4=,∴q==,a1=12,a5=a4•q=<1.故{a n}是一个减数列,前4项都大于1,从第五项开始小于1,以T n表示{a n}的前n项积,则使得T n达到最大值的n是4,故选:A.【点评】本题主要考查等比数列的性质,属于基础题.11.(5分)若直线ax+by﹣2=0(a,b>1)始终把圆x2+y2﹣2x﹣2y﹣2=0的周长分为1:2.则+的最大值为()A.4﹣2B.2﹣C.﹣1D.【分析】由圆的方程得圆心和半径,根据圆的周长被分为1:2,可推出圆心到直线的距离为1,即,化简整理后,再结合基本不等式的性质可得ab的最小值,再求出+的最大值.【解答】解:把圆x2+y2﹣2x﹣2y﹣2=0化成标准形式为(x﹣1)2+(y﹣1)2=4,其中圆心为(1,1),半径为2.设直线与圆交于A、B两点,圆心为C,因为直线把圆的周长分为1:2,所以∠ACB=×360°=120°,所以圆心C(1,1)到直线ax+by﹣2=0的距离为1,即,因为a,b>1,所以ab﹣2(a+b)+2=0,由基本不等式的性质可知,ab+2=2(a+b)≥4,当且仅当a=b时,等号成立,此时有ab≥,所以+===+≤+=2﹣.所以+的最大值为2﹣.故选:B.【点评】本题主要考查直线与圆的综合问题,除圆的标准方程、点到直线的距离公式等基础知识外,还涉及利用基本不等式的性质求最值,考查学生的逻辑推理能力和运算能力,属于中档题.12.(5分)在锐角△ABC中,内角A,B,C所对的边分别为a,b,c.若a2=b2+c2,则tan A的取值范围是()A.[,+∞)B.(,+∞)C.(,+∞)D.[2,+∞)【分析】由三角形的余弦定理、正弦定理和两角和的正弦公式、同角的商数关系,化简可得tan A=3tan B,再由两角和的正切公式,以及锐角三角形的定义,可得tan A>0,tan C >0,解不等式可得所求范围.【解答】解:由a2=b2+c2,又a2=b2+c2﹣2bc cos A,则b2+c2=b2+c2﹣2bc cos A,可得c=4b cos A,由正弦定理可得:sin C=4sin B cos A,可得sin(A+B)=sin A cos B+sin B cos A=4sin B cos A,化为3sin B cos A=sin A cos B,在锐角△ABC中,cos A≠0,cos B≠0,则tan A=3tan B,又tan C=﹣tan(A+B)=﹣=﹣,由tan A>0,tan C>0,可得1﹣tan2A<0,解得tan A>,故选:B.【点评】本题考查三角形的正弦定理和余弦定理的运用,以及两角和的三角函数公式,考查方程思想和化简运算能力,属于中档题.二、填空题(每小题5分,共20分)13.(5分)直线l:x﹣y sin+1=0的斜率为.【分析】求出sin,把直线方程变形,再由直线的一般方程求斜率公式得答案.【解答】解:由直线l:x﹣y sin+1=0,得x﹣,即2x﹣.则该直线的斜率k=.故答案为:.【点评】本题考查三角函数值的求法,考查由直线方程求直线的斜率,是基础题.14.(5分)已知向量=(﹣1+2t,2),=(2,﹣4+4t),=(1,λ)(其中t,λ∈R).若⊥(2+),则λ=﹣1.【分析】根据条件求出,然后由,得到,再求出λ的值.【解答】解:,,且,∴,∴λ=﹣1.故答案为:﹣1.【点评】本题考查了向量坐标的加法、数乘和数量积的运算,向量垂直的充要条件,考查了计算能力,属于基础题.15.(5分)设等差数列{a n}满足:a4+a6=4,a82﹣a22=48.数列{na n}的前n项和记为S n,则S6的值为14.【分析】等差数列{a n}的公差设为d,运用等差数列的通项公式,解方程可得首项和公差,可得a n,na n,计算可得所求和.【解答】解:等差数列{a n}的公差设为d,由a4+a6=4,a82﹣a22=48,可得2a1+8d=4,6d•(2a1+8d)=48,解得a1=﹣6,d=2,可得a n=﹣6+2(n﹣1)=2n﹣8,na n=2(n2﹣4n),则S6=2[(12+22+32+42+52+62)﹣4(1+2+3+4+5+6)]=2×(1+4+9+16+25+36﹣4×21)=14.故答案为:14.【点评】本题考查等差数列的通项公式和数列的求和,考查方程思想和运算能力,属于基础题.16.(5分)锐角△ABC中,内角A,B,C的对边分别为a,b,c,已知a cos=b sin A,则B=,若a≥c=2,则a的取值范围是(1,4).【分析】①由正弦定理=,可推出sin A cos=sin B sin A,再结合二倍角公式和B的取值范围即可得解;②由正弦定理=,知a=,再根据三角形的内角和与正弦的两角和公式可将其化简为;然后由A、C∈(0,),可求得C∈(,),即tan C >,将其代入化简后的式子即可得解.【解答】解:①由正弦定理知,=,∵a cos=b sin A,∴sin A cos=sin B sin A,∵sin A≠0,∴cos=sin B=2sin cos,∵锐角△ABC,∴B∈(0,),∈(0,),∴cos≠0,sin=,∴B=.②由正弦定理知,=,∴a====,∵锐角△ABC,∴A、C∈(0,),∵A+C=π﹣B=,∴A=﹣C∈(0,),即C∈(,),∴C∈(,),tan C>,∴a=∈(1,4).故答案为:;(1,4).【点评】本题考查解三角形和三角函数的综合运用,涉及正弦定理、二倍角公式、正弦的两角和公式以及正切函数的图象与性质,考查学生灵活运用知识的能力、逻辑推理能力和运算能力,属于中档题.三、解答题(解答题应写出文字说明,演算步骤或证明过程)17.(12分)已知直线l过点P(﹣1,2).(1)若直线l在两坐标轴上截距和为零,求l方程;(2)设直线l的斜率k>0,直线l与两坐标轴交点分别为A、B,求△AOB面积最小值.【分析】(1)由题意利用点斜式设出直线的方程,求出斜率k的值,可得结论.(2)先求出直线在坐标轴上的截距,再由题意利用基本不等式求得△AOB面积最小值.【解答】解:(1)直线l过点P(﹣1,2),若直线l在两坐标轴上截距和为零,设直线l的方程为y﹣2=k(x+1),即kx﹣y+2+k=0.则它在两坐标轴上截距分别为﹣1﹣和k+2,由题意,﹣1﹣+k+2=0,∴k=﹣2 或k=1,直线l的方程为2x+y=0 或x﹣y+3=0.(2)设直线l的斜率k>0,则直线l:kx﹣y+2﹣k=0与两坐标轴交点分别为A(﹣1,0)、B(0,k+2),求△AOB面积为S=|﹣1|•|k+2|==+2+≥2+2=4,当且仅当k=2时,等号成立,故△AOB面积最小值为4.【点评】本题主要考查用点斜式求直线的方程,直线在坐标轴上的截距,基本不等式的应用,属于中档题.18.(10分)如图,在正△ABC中,AB=2,P,E分别是BC、CA边上一点,并且=3,设=t,AP与BE相交于F.(1)试用,表示;(2)求•的取值范围.【分析】(1)由=t,可推出=+t,而=﹣,代入化简整理即可得解;(2)由=3,知=﹣,再结合平面向量的数量积可推出•=[(1﹣t)+t]•(﹣)=(4t﹣5),而t∈[0,1],从而求得•的取值范围.【解答】解:(1)∵=t,∴=+=+t=+t(﹣)=(1﹣t)+t.(2)∵=3,∴==﹣,∴•=[(1﹣t)+t]•(﹣)=(t﹣1)+()•+t=4(t﹣1)+()×2×2cos60°+t×4=(4t﹣5).∵P是BC边上一点,∴t∈[0,1],∴•=(4t﹣5)∈[,].【点评】本题考查平面向量的线性和数量积运算,熟练掌握平面向量的加法、减法、数乘和数量积的运算法则是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.19.(12分)设等比数列{a n+b n}的公比为3,等差数列{a n﹣b n}的公差为2,且a1=b1=1.(1)求数列{a n}的通项公式;(2)求数列{n(a n﹣n)}的前n项和S n.【分析】(1)运用等差数列和等比数列的通项公式,解方程可得a n;(2)求得n(a n﹣n)=n(3n﹣1﹣1),分别运用数列的分组求和、错位相减法求和,结合等差数列和等比数列的求和公式,可得所求和.【解答】解:(1)由等比数列{a n+b n}的公比为3,等差数列{a n﹣b n}的公差为2,且a1=b1=1,可得a n+b n=(a1+b1)•3n﹣1=2•3n﹣1,a n﹣b n=(a1﹣b1)+2(n﹣1)=2n﹣2,则a n=n﹣1+3n﹣1,n∈N*;(2)n(a n﹣n)=n(3n﹣1﹣1),S n=(1•30+2•31+3•32+…+n•3n﹣1)﹣(1+2+…+n),设T n=1•30+2•31+3•32+…+n•3n﹣1,3T n=1•3+2•32+3•33+…+n•3n,上面两式相减可得﹣2T n=1+31+3•32+…+3n﹣1﹣n•3n=﹣n•3n,化为T n=+•3n,则S n=+•3n﹣n(n+1).【点评】本题考查等差数列和等比数列的通项公式和求和公式的运用,以及数列的分组求和、错位相减法求和,考查转化思想和运算能力,属于中档题.20.(12分)圆x2+y2=4,点P为直线l:x+y﹣4=0上一动点,过点P引圆O的两条切线,切点分别为A,B.(1)若点P的坐标为(6,﹣2),求直线P A、PB的方程;(2)求证:直线AB恒过定点Q,并求出该定点Q的坐标.【分析】(1)由题意,切线的斜率存在,设切线方程为y+2=k(x﹣6),由圆心到直线的距离等于半径列式求得k,则切线方程可求;(2)根据题意,设P(4﹣m,m),可得AB是圆O与以PO为直径的两圆的公共弦,求出以PO为直径的圆的方程,与圆O的方程联立,消去二次项可得直线AB的方程,再由直线系方程可得定点Q的坐标.【解答】解:(1)由题意,切线的斜率存在,设切线方程为y+2=k(x﹣6),即kx﹣y﹣6k﹣2=0.由,解得k=﹣或k=0.∴所求切线方程分别为y=﹣2和3x+4y﹣10=0;证明:(2)根据题意,点P为直线x+y﹣4=0上一动点,设P(4﹣m,m),∵P A,PB是圆O的切线,∴OA⊥P A,OB⊥PB,∴AB是圆O与以PO为直径的两圆的公共弦,可得以PO为直径的圆的方程为[x﹣(2﹣)]2+(y﹣)2=(2﹣)2+()2,即x2﹣(4﹣m)x+y2﹣my=0,①又圆O的方程为:x2+y2=4,②,①﹣②,得(4﹣m)x+my﹣4=0,即m(y﹣x)+4x﹣4=0,则该直线必过点Q(1,1).【点评】本题考查了直线和圆的位置关系,圆和圆的位置关系,圆的切线性质,以及直线过定点问题,考查运算求解能力,属于中档题.21.(12分)设函数f(x)=ax2+4x+b.(1)当a>0且a+b=4时,解关于x的不等式f(x)≥0;(2)已知a>b,若f(x)的值域为[0,+∞),求的最小值.【分析】(1)把a>0且a+b=4,代入不等式,利用配方法可求得不等式的解;(2)化简变形,再利用基本不等式,即可求得最小值.【解答】解:(1)由a>0且a+b=4,代入不等式f(x)≥0,得ax2+4x+4﹣a≥0,化简,得(x+1)(ax﹣a+4)≥0,∴x≤﹣1或x≥1﹣,当a>2时,1﹣>﹣1;∴不等式的解集为{x|x≤﹣1或x≥1﹣};当0<a<2时,1﹣<﹣1,∴不等式的解集为{x|x≤1﹣或x≥﹣1};当a=2时,1﹣=﹣1,∴不等式的解集为R.(2)由f(x)的值域为[0,+∞),可得a>0,△=0,∴16﹣4ab=0,可得ab=4.==(a﹣b)+≥2=4.当且仅当a﹣b=时,的最小值为4.【点评】本题考查二次函数不等式的解法,利用基本不等式求最值,考查了转化思想,属于中档题.22.(12分)如图,有一矩形空地ABCD,AB=2BC=40米,现计划种植甲、乙两种蔬菜,已知单位面积种植甲蔬菜的经济价值是种植乙蔬菜经济价值的3倍,但种植甲蔬菜需要有辅助光照.AB边中点O处处恰有一可旋转光源满足甲蔬菜生长的需要,该光源照射范围是∠EOF=60°,其中E、F分别在边BC,CD上.(1)若∠BOE=30°,求四边形OECF的面积;(2)求该空地产生最大经济价值时种植甲种蔬菜的面积.【分析】(1)四边形OECF的面积S=S OBCF﹣S△BOE;(2)设∠BOE=α∈[0°,45°],过点F作FM⊥AB于点M,利用三角函数的知识可推出种植甲、乙两种蔬菜的面积S甲和S乙;设单位面积种植乙蔬菜的经济价值为m,该空地产生的经济价值为y,可用含α的式子表示出y;令f(α)=tanα﹣,结合正切的两角差公式和基本不等式的性质可求出f(α)取得最小值时,tanα的值,再将其代入S甲的表达式中即可得解.【解答】解:(1)由∠EOF=60°,∠BOE=30°,可知OF⊥OB,O为AB中点,∵AB=2BC,∴OB=BC,∴四边形FOBC为正方形.在Rt△BOE中,∠BOE=30°,OB=20米,∴BE=,∴四边形OECF的面积为S OBCF﹣S△BOE=平方米.(2)设∠BOE=α∈[0°,45°],则∠AOF=120°﹣α,过点F作FM⊥AB于点M,在Rt△OBE中,BE=OB•tanα=20tanα;在Rt△OMF中,OM==,∴DF=OA﹣OM=20﹣.∴种植乙种蔬菜的面积S乙=S△BOE+S ADFO=OB•BE+(OA+DF)•AD=×20×20tanα+×[20+20﹣]×20=200[tanα+2﹣],种植甲种蔬菜的面积S甲=S矩形ABCD﹣S乙=800﹣200[tanα+2﹣]=200[2﹣tanα+],设单位面积种植乙蔬菜的经济价值为m,该空地产生的经济价值为y,则y=3m•S甲+m•S乙=3m×200×[2﹣tanα+]+m×200×[tanα+2﹣],=400m×[4﹣(tanα﹣)].令f(α)=tanα﹣=tanα﹣=,==(tanα+)+﹣≥2﹣=4﹣,当且仅当tanα+=2,即tanα=2﹣时,等号成立.若该空地产生的经济价值y最大,则f(α)应取得最小值,为4﹣,此时tanα=2﹣,∴S甲=200[2﹣tanα+]=200×[2﹣(2﹣)﹣]=400(﹣1)平方米.故该空地产生最大经济价值时种植甲种蔬菜的面积为400(﹣1)平方米.【点评】本题考查函数的实际应用,还涉及三角恒等变换与基本不等式的性质,选择适当的函数模型是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.。
湖北省武昌八校2018-2019学年度第二学期八年级期中联考数学卷
2018—2019学年度第二学期部分学校八年级期中联合测试 数学试卷考生注意:1.满分120分,考试用时120分钟.2.全部答案必须在答题卡上完成,答在其它位置上无效.一、选择题(本大题共10小题,共30分) 1.下列二次根式中,与是同类二次根式的是( )A. B. C. D.2.二次根式中x 的取值范围是( )A.B. 且C.D.且3.下列命题中逆命题不成立的是( )A. 两直线平行,同位角相等B. 全等三角形的对应角相等C. 四边相等的四边形是菱形D. 直角三角形中,斜边的平方等于两直角边的平方和 4.下列各组数能构成勾股数的是( )A. 2,,B. 12,16,20C.,,D.,,5.已知c b a ,,是ABC ∆的三边,且满足0))(222=---c b a b a (,则ABC ∆是( ) A. 直角三角形B.等边三角形C. 等腰直角三角形D. 等腰三角形或直角三角形6.下列说法不正确的是( )A. 一组邻边相等的矩形是正方形B. 对角线互相垂直的矩形是正方形C. 对角线相等的菱形是正方形D. 有一组邻边相等、一个角是直角的四边形是正方形 7.已知y =,则xy的值为( ) A. B.C.D.8.如图,在菱形ABCD 中,AB =13,对角线BD =24,若过点C 作CE ⊥AB ,垂足为E ,则CE 的长为( )A.B. 10C. 12D.9.如图,在ABC 中, AD 平分∠CAB 交BC 于点E . 若∠BDA =90°,E 是AD 中点,DE =2,AB =5,则AC 的长为( )A.1 B . 34C. 23D.3510.凸四边形ABCD 的两条对角线和两条边的长度都为1,则四边形ABCD 中最大内角度数为( )A.0150 B. 0135 C. 0120 D. 0105二、填空题(本大题共6小题,共18分) 11.若ab <0,则化简结果是______. 12.计算:+= ______.13.如图,在菱形ABCD 中,AC 与BD 相交于点O ,点P 是AB 的中点,,则菱形ABCD 的周长是______.EDBCA14.如图,在等边三角形ABC 中,BC =6cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1cm /s 的速度运动,点F 从点B 出发沿射线BC 以2cm /s 的速度运动.如果点E 、F 同时出发,设运动时间为t (s )当t = s 时,以A 、C 、E 、F 为顶点四边形是平行四边形. 15.若0,0x y >>且24x y +=,求22169x y +++的最小值______.16.如图,正方形ABCD 的边长为1,点F 在线段CE 上,且四边形BFED 为菱形,则CF 的长为 .三、解答题(本大题共8小题,共72分) 17.(本小题8分)计算:(1))845(18125--+)(.(2)124648÷+)(. 18.(本小题8分)阅读下列材料,并解决相应问题:35)35)(35()35(2352+=+-+=-用上述类似的方法化简下列各式:(1)761+.(2)若a 是的小数部分,求a3的值. 19.(本小题8分)如图,在7×7网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系,使点A (3,4)、C (4,2),则点B 的坐标为____________; (2)判断格点△ABC 的形状,并说明理由.(3)在x 轴上有一点P ,使得PA +PC 最小,则PA +PC 的最小值是__________.GECF BA FCEDBA第14题图第16题图20.(本小题8分)如图,正方形ABCD 中,点Q P ,分别为AD ,CD 边上的点,且DQ=CP ,连接BQ ,AP .求证:BQ=AP .21.(本小题8分)如图,在四边形ABCD 中,AB ∥DC ,AB =AD ,对角线AC ,BD 交于点O ,AC 平分∠BAD ,过点C 作CE ⊥AB 交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形; (2)若AB =,BD =2,求OE 的长.22.(本小题10分)阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当,时,∵,∴,当且仅当时取等号.请利用上述结论解决以下问题:(1)当时,xx 1+的最小值为_______;当时,xx 1+的最大值为__________. (2)当时,求xx x y 1632++=的最小值.(3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.23.(本小题10分)如图,ABC ∆中8,6==AC AB ,D 是BC 边上一动点,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .(1)若10=BC ,判断四边形AEDF 的形状并证明; (2)在(1)的条件下,若四边形AEDF 是正方形,求BD 的长;(3)若∠BAC =60°,四边形AEDF 是菱形,则BD =_____________.ODCBAFE DCBA24.(本小题12分)已知O 为坐标原点,B A ,分别在y 轴、x 轴正半轴上,D 是x 轴正半轴上一动点,DE AD =,∠α=ADE ,矩形AOBC 的面积为32且BC AC 2=. (1)如图1,当α=90°时,直线CE 交x 轴于点F ,求证:F 为OB 中点; (2)如图2,当α=60°时,若D 是OB 中点,求E 点坐标;(3)如图3,当α=120°时,Q 是AE 的中点,求D 点运动过程中BQ 的最小值.xy FEDCB AOxyEDOA B CxyQEOA B CD图1 图2 图3武汉市八年级第二学期部分学校期中联考数学试卷参考答案一、选择题1-5:CBBBD 6-10:DCADA 二、填空题11.b a - 12.37 13.24 14.2或6 15.25 16.226- 三、解答题17. 解:(1)原式=5+3-3+2=2+5;(2)原式=(4+)÷2=2+.18. 解:(1)67)67)(67(67671761-=-+-=+=+(2)由题意可得:a =-1,==3+3.19.(1)(0,0);(2)∵AC 2=22+12=5,BC 2=22+42=20,AB 2=42+32=25,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形.(3)17.20.证明:在正方形ABCD 中,AB =AD =CD ,∠BAQ =∠D =90°, ∵DQ =CP ,∴AQ =DP ,在△ABQ 和△ADP 中, , ∴△ABQ ≌△ADP (SAS ), ∴BQ =AP .21.解:(1)∵AB ∥CD ,∴∠OAB =∠DCA ,∵AC 为∠DAB 的平分线,∴∠OAB =∠DAC ,∴∠DCA =∠DAC ,∴CD =AD =AB , ∵AB ∥CD ,∴四边形ABCD 是平行四边形,∵AD =AB ,∴▱ABCD 是菱形; (2)∵四边形ABCD 是菱形,∴OA =OC ,BD ⊥AC ,∵CE ⊥AB ,∴OE =OA =OC , ∵BD =2,∴OB =BD =1,在Rt △AOB 中,AB =,OB =1,∴OA ==2,∴OE =OA =2.22.解:(1)2; ;(2)由3161632++=++=x x x x x y ,0>x Θ113162316=+⋅≥++=∴x x x x y ,当xx 16=时,最小值为11.(3)设x S BOC =∆,则xS AOC 36=∆∴四边形ABCD 面积,当且仅当时取等号, 即四边形ABCD 面积的最小值为25.23.(1) AEDF 是矩形,理由如下∵222222AB +AC =6+8=BC =10,由勾股定理得∠BAC=90°∵DE AF DF AE ∥、∥ ∴四边形AEDF 是平行四边形 又∵∠BAC=90°,∴四边形AEDF 是矩形(2) 由(1)得,当DE=DF 时,四边形AEDF 是正方形。
2019-2020学年武汉市部分学校八年级(下)期中数学试卷(含答案解析)
2019-2020学年武汉市部分学校八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.函数y=1x−3+√x−2的自变量x的取值范围是()A. x≥2,且x≠3B. x≥2C. x≠3D. x>2,且x≠32.如图所示,被纸板遮住的三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 以上三种情况都有可能3.下列运算正确的是()A. √2+√3=√5B. 2aa2−4+44−a2=2a+2C. (a−3)2=a2−9D. (−2a2)3=−6a64.如图,在平行四边形ABCD中,点E是BC的中点,作EF⊥AE交CD于F,若∠BAE=45°,AE=4,下列结论:①∠EAF=45°,②AF=AB+CF,③CD=2CF,④S△AEF=8中正确的是()A. ①②④B. ①③④C. ①②③D. ②③④5.如图,平行四边形ABCD中,DE⊥AB于E,DF⊥BC于F,若平行四边形ABCD的周长为48,DE=5,DF=10,则平行四边形ABCD的面积等于()A. 87.5B. 80C. 75D. 72.56.如图,已知菱形OABC的顶点O(0,0),B(−2,−2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A. (1,−1)B. (−1,−1)C. (1,1)D. (−1,1)7.如图,AD是△ABC的中线,∠ADC=45°,BC=4cm,把△ACD沿AD翻折,使点C落在E的位置,则BE的平方为()A. 4B. 8C. 16D. 208.如图,正方形ABCD的边长为√5,E在正方形外,DE=DC,过D作DH⊥AE于H,直线DH,EC交于点M,直线CE交直线AD于点,则下列结论正确的是()①∠DAE=∠DEA;②∠DMC=45°;③AM+CMMD =√2;④若MH=2,则S△CMD=12S△CEDA. 1个B. 2个C. 3个D. 4个9.一个正方形只有一种形式;两个同样大小的正方形拼接起来,使一边公共,也只有一种形式;三个这样的正方形拼接起来便有两种形式,如图所示,类似地,四个同样大小的正方形拼接起来,应有()种不同形式(注意:两种拼接结果,若经过若干次平移、旋转、翻折,能够重合在一起,便认为是同一种形式)A. 4B. 5C. 6D. 710.如图,点B、E、C、F在一条直线上,AB=DE,∠A=∠D,则以下所给的条件不能证明△ABC≌△DEF的是()A. BE=CFB. ∠B=∠DEFC. AC=DFD. AC//DF二、填空题(本大题共6小题,共18.0分)11.在平行四边形ABCD中,若∠A−∠B=70°,则∠A=______ ,∠B=______ ,∠C=______ ,∠D=______ .12.已知:(x+√x2+2002)(y+√y2+2002)=2002,则x2−3xy−4y2−6x−6y+58=______ .13.如下图,已知△ABC是等边三角形,点D、E分别在AC、BC上,且CD=BE,则∠AFD=.14.小明在做数学题时,发现了下面有趣的结果:3−2=18+7−6−5=415+14+13−12−11−10=924+23+22+21−20−19−18−17=16…根据以上规律,可知第20行左起第一个数是______ .15.在正方形ABCD中,对角线AC=12cm,则正方形ABCD的面积是______cm2.16.我们在计算不规则图形的面积时,有时采用“方格法”来计算.计算方法如下:假定每个小方格的边长为1个单位长,S为图形的面积.L是边界上的格点数,N是内部格点数,则有S=L2+N−1.请根据此方法计算图中四边形ABCD的面积S=______.三、解答题(本大题共8小题,共64.0分)17.计算(1)√12×√34÷√2(2)(√2−π)0+√12−(−12)−218.如图1,△ABC和△DEC都是等边三角形,点E在AC上.(1)求证:AD=BE;(2)如图2,当CD=√32AC时,将△DEC绕点C顺时针旋转30°,连接BD交AC于点G,取AB 的中点F,连接FG①求证:BE=2FG;②若△AFG的周长为9,求BC的长.19.如图1,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E,F分别在四边形ABCD的∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.边BC,CD上,∠EAF=12(1)思路梳理:将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线,易证△AFG≌____,故EF,BE,DF之间的数量关系为____;(2)类比引申:如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC延长线∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.上,∠EAF=12(3)联想拓展:如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,则DE的长为____.20.如图:已知△ABC中,AB=AC,AD为BC边的中线,E为AD上任意一点,求证:BE=CE.21.在Rt△ABC中∠ACB=90°,AB=25,AC=15,CH⊥AB垂足为H,求BC与CH的长.22.我国著名数学家秦九韶在《数书九章》中提出了“三斜求积术”,三斜即指三角形的三条边长,可以用该方法求三角形面积.若改用现代数学语言表示,其形式为:设a,b,c为三角形三边,S为面积,则S=√14[a2b2−(a2+b2−c22)2]①.而在文明古国古希腊,也有一个数学家海伦给出了求三角形面积的另一个公式,若设p=a+b+c2(周长的一半),则S=√p(p−a)(p−b)(p−c)②(1)这两个公式在表面上形式很不一致,请你用以5,12,13为三边构成的三角形,分别验证它们的面积值;(2)三角形的面积是数学中非常重要的一个几何度量值,很多数学家给出了不同形式的计算公式.请你证明如下这个公式:如图,ΔABC的内切圆半径为r,三角形三边长为a,b,c,仍记p=a+b+c,S为三角形面积,则S=pr.223.已知:点O是平行四边形ABCD两条对角线的交点,点P是AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为E、F.(1)如图1,当点P与点O重合时,求证:OE=OF;(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,有OE=OF,如图2,线段CF、AE、OE之间有怎样的数量关系?给出证明.(3)当点P在图3位置,且∠OFE=30°时,线段CF、AE、OE之间有怎样的数量关系?(直接写出结论,无需证明).24.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且CF=AE,连接DE,DF,EF.FH平分∠EFB交BD于点H.(1)求证:DE⊥DF;(2)求证:DH=DF:(3)过点H作HM⊥EF于点M,用等式表示线段AB,HM与EF之间的数量关系,并证明.【答案与解析】1.答案:A解析:解:根据题意得:x−2≥0,且x−3≠0,解得x≥2,且x≠3.故选:A.根据二次根式的被开方数是非负数,以及分母不等于0,就可以求出x的范围.本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.答案:D解析:解:从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个锐角.故选D.三角形按角分类,可以分为锐角三角形、直角三角形、钝角三角形.有一个角是直角的三角形是直角三角形;有一个角是钝角的三角形是钝角三角形;三个角都是锐角的三角形是锐角三角形.本题考查了三角形内角和定理的运用以及图形的识别能力和推理能力,解题的关键是熟记三角形内角和定理.3.答案:B解析:解:A、原式不能合并,不符合题意;B、原式=2a−4(a+2)(a−2)=2(a−2)(a+2)(a−2)=2a+2,符合题意;C、原式=a2−6a+9,不符合题意;D、原式=−8a6,不符合题意,故选:B.各式计算得到结果,即可做出判断.此题考查了二次根式的加减法,幂的乘方与积的乘方,完全平方公式,以及分式的加减法,熟练掌握运算法则是解本题的关键.4.答案:A解析:解:作EM//AB交AF于M,如图所示:∵四边形ABCD是平行四边形,∴AB//CD,∴AB//EM//CD,∴AM:FM=BE:CE,∠AEM=∠BAE=45°,∵点E是BC的中点,∴BE=CE,∴AM=FM,∴EM是梯形ABCF的中位线,∴AB+CF=2EM,∵EF⊥AE,∴∠AEF=90°,∴EM=12AF=AM=FM,∴∠EAF=∠AEM=45°,AF=AB+CF,①②正确;∴△AEF是等腰直角三角形,∴FE=AE=4,∴S△AEF═12AE×FE=12×4×4=8,④正确;∵∠BAF=∠BAE+∠EAF=90°,∴AF⊥AB,∵AB//CD,∴AF⊥CD,当AD=AC时,CF=DF,则CD=2CF,③不正确;故选:A.作EM//AB交AF于M,证出AB//EM//CD,由平行线得出AM:FM=BE:CE,∠AEM=∠BAE=45°,证出EM是梯形ABCF的中位线,得出AB+CF=2EM,由直角三角形斜边上的中线性质得出EM=12AF=AM=FM,得出AF=AB+CF;由平行线的性质得出∠EAF=∠AEM=45°,证明△AEF是AE×FE=8,即可得出答案.等腰直角三角形,得出FE=AE=4,由三角形面积公式得出S△AEF═12本题考查了平行四边形的性质、平行线的性质、平行线分线段成比例定理、梯形中位线定理、等腰直角三角形的判定与性质、直角三角形斜边上的中线性质等知识;熟练掌握平行四边形的性质和直角三角形斜边上的中线性质是解题的关键.5.答案:B解析:此题主要考查的知识点:(1)平行四边形的两组对边分别相等;(2)平行四边形的面积等于边长乘以高.已知平行四边形的高DE,DF,根据“等面积法”列方程,求出AB,从而求出平行四边形的面积.解:设AB=x,则BC=24−x,根据平行四边形的面积公式可得:AB·DE=BC·DF,即5x=10(24−x),解之得,x=16.则平行四边形ABCD的面积等于AB·DE=5×16=80.故选B.6.答案:C解析:解:∵O(0,0),B(−2,−2),∴中点坐标为:(−1,−1).∵菱形绕点O逆时针旋转,每秒旋转45°,=8(秒).∴点D旋转一周的时间=36045=7.5,∵608∴第60秒时,菱形的对角线恰好在第一象限的角平分线上,∴D(1,1).故选C.先求出D点坐标,再求出菱形旋转一周所需的时间,进而可得出结论.本题考查的是坐标与图形的变换−旋转,熟知图形旋转不变性的性质是解答此题的关键.7.答案:B解析:解:由题意可知∠EDA是由∠CDA翻折得到,∴∠EDA=∠CDA=45°,ED=CD,∴∠EDB=90°,∵AD是△ABC的中线,BC=4cm,∴BD=CD=2cm.∴ED=BD=2cm,在Rt△BDE中,根据勾股定理可得,BE=√BD2+DE2=√22+22=2√2cm,∴BE的平方=8,故选:B.根据翻转变换的性质得到∠EDA=∠CDA=45°,ED=CD,得到∠EDB=90°,根据勾股定理计算即可.本题考查的是翻转变换的性质以及勾股定理的应用,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.答案:C解析:解:∵四边形ABCD是正方形,∴DA=DC,∠ADC=90°,∵DC=DE,∴DA=DE,∴∠DAE=∠DEA,故①正确,∵DA=DC=DE,∠ADC=45°(圆周角定理),∴∠AEC=12∵DM⊥AE,∴∠EHM=90°,∴∠DMC=45°,故②正确,如图,作DF⊥DM交PM于F,∵∠ADC=∠MDF=90°,∴∠ADM=∠CDF,∵∠DMF=45°,∴∠DMF=∠DFM=45°,∴DM=DF,∵DA=DC,∴△ADM≌△CDF(SAS),∴AM=CF,∴AM+CM=CF+CM=MF=√2DM,=√2,故③正确,∴AM+CMMD若MH=2,则易知AH=MH=HE=2,AM=EM=√2,在Rt△ADH中,DH=√AD2−AH2=√5−4=1,∴DM=3,AM+CM=3√2,∴CM=CE=√2,∴S△DCM=S△DCE,故④错误.故选:C.∠ADC=①利用等腰三角形的性质即可证明.②根据DA=DC=DE,利用圆周角定理可知∠AEC=12 45°,即可解决问题.③如图,作DF⊥DM交PM于F,证明△ADM≌△CDF(SAS)即可解决问题.④解直角三角形求出CE=EF=√2可得结论.本题考查正方形的性质,全等三角形的判定和性质,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.9.答案:C解析:解:可能的拼接方式有以下6种:故选C.根据题意要求动手操作一下即可得出答案.本题考查几何变换的类型,难度适中,关键是掌握平移、轴对称、旋转和位似这四种变换.10.答案:A解析:解:∵∠A=∠D,AB=DE,∴添加∠B=∠DEF,利用ASA可得△ABC≌△DEF;∴添加AC=DF,利用SAS可得△ABC≌△DEF;∴添加AC//DF,∴∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:A.根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS、HL是解题的关键.11.答案:125°;55°;125°;55°解析:解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,AD//BC,∴∠A+∠B=180°,∵∠A−∠B=70°,∴∠A=125°,∠B=55°,∠C=125°,∠D=55°.故答案为125°,55°,125°,55°.根据平行四边形的对角相等,可得∠A=∠C,∠B=∠D;又因为平行四边形的对边平行,可得AD//BC,即可得∠A+∠B=180°,又∠A−∠B=70°,解方程组即可求得平行四边形的四个角的度数.此题考查了平行四边形的性质:平行四边形的对角相等.注意解题时方程思想的应用.12.答案:58解析:解:∵(x+√x2+2002)(y+√y2+2002)=2002,∴等式右边为有理数,左边必为平方差公式,即x=−y,原式=(x−4y)(x+y)−6(x+y)+58,=58.故答案为:58.由(x+√x2+2002)(y+√y2+2002)=2002,得到等式右边为有理数,左边必为平方差公式,得到x=−y,再把原式变形为(x−4y)(x+y)−6(x+y)+58,即可得到原式的值.本题考查了二次根式的性质以及代数式的变形能力.13.答案:60°解析:解:∵△ABC是等边三角形,∴∠ABE=∠C=60°,AB=BC,在△ABE和△BCD中{AB=BC∠ABE=∠C BE=CD,∴△ABE≌△BCD(SAS),∴∠BAE=∠CBD,∴∠AFD=∠ABF+∠BAE=∠ABF+∠CBD=∠ABC=60°,或答案为:60°.14.答案:440解析:解:∵3=22−1,8=32−1,15=42−1,24=52−1,…∴第20个式子左起第一个数是:212−1=440.故答案为:440.根据左起第一个数3,8,15,24…的变化规律得出第n行左起第一个数为(n+1)2−1,由此求出即可.此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.15.答案:72解析:解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BAD=90°,∠BAC=∠DAC=45°∴△ABC是等腰直角三角形∴AB=AC⋅cos∠BAC=12⋅cos45°=6√2∴S正方形ABCD=AB2=(6√2)2=72(cm2)故答案为:72.根据正方形性质可证明△ABC是等腰直角三角形,进而可求得正方形边长,最后求正方形面积即可.本题考查了正方形性质,等腰直角三角形判定和性质,正方形面积;是一道很基础型的几何计算题,运用等腰直角三角形性质,由斜边求直角边是解题关键.16.答案:15解析:解:由图形可知L=8,N=12∴S=L2+N−1=82+12−1=15故答案为:15.根据图形分别得出L和N的值,代入公式S=L2+N−1计算即可.本题考查了用“方格法”来计算三角形的面积,结合图形得出公式中的相关字母的值,则问题不难解答.17.答案:解:(1)原式=√12×34÷√2=32÷√2=32×√2=32×√22=3√24;(2)原式=1+2√3−4=2√3−3.解析:(1)首先计算二次根式的乘法,再计算二次根式的除法即可;(2)首先计算零次幂、二次根式的化简、负整数指数幂,然后再计算加减即可.此题主要考查了二次根式的混合运算和零次幂、负整数指数幂,关键是熟练掌握各计算公式和计算法则.18.答案:证明:(1)∵△ABC和△DEC都是等边三角形,∴AB=AC=BC,CD=CE=DE,∠ACB=∠DCE=60°,∴△ACD≌△BCE(SAS)∴AD=BE;(2)过B作BT⊥AC于T,连AD,如图2,∵CE绕C顺时针旋转30°,∴∠ACE=30°,∴∠GCD=90°,由勾股定理可得BT=√32AB,又∵CD=CE=√32AB,∴BT=CD.在△BTG和△DCG中,{∠BTC=∠DCG ∠BGT=∠DGC BT=CD,∴△BTG≌△DCG(AAS),∴BG=DG,TG=CG,∵F是AB的中点.∴FG//AD,FG=12AD.则在Rt△BCE和Rt△ACD中,{BC=AC∠BCE=∠ACD CE=CD∴Rt△BCE≌Rt△ACD(SAS).∴BE=AD,∴BE=2FG.②∵△ABC是等边三角形,BT⊥AC,∴AT=CT=12AC,∵TG=CG,∴AC=4TG,AG=3TG,∴CD=√32AC=2√3TG=CE,∴BE=√BC2+CE2=2√7TG,∵Rt△BCE≌Rt△ACD,∴BG=GD,AD=BE=2√7TG,又∵AF=BF,∴FG//AD,∴FG=12AD=√7TG,∵△AFG的周长为9,∴AG+AF+FG=3TG+2TG+√7TG=9,∴TG=5−√72,∴BC=AC=4TG=10−2√7.解析:(1)由“SAS”可证△ACD≌△BCE,可得AD=BE;(2)①根据旋转角的定义,可以得到∠ACE=30°,则∠GCD=90°,则AC⊥BD,可证明△BTG≌△DCG,从而得到FG是△ABD的中位线,然后证明Rt△BCE≌Rt△ACD,利用三角形的中位线定理以及全等三角形的性质即可确定.②由等边三角形的性质和直角三角形性质可得AF=12AG=12×3TG=32TG,FG=√3AF=3√32TG,由△AFG的周长为9,可求TG的长,即可求解.本题是几何变换综合题,考查了全等三角形的判定和性质,直角三角形的性质,三角形中位线定理,等边三角形的性质等知识,添加恰当辅助线构造全等三角形是本题的关键.19.答案:解:(1)△AFE,EF=BE+DF;(2)EF,BE,DF之间的数量关系是EF=DF−BE.证明:将△ABE绕点A逆时针旋转,使AB与AD重合,得到△ADE′,则△ABE≌ADE′,∴∠DAE′=∠BAE,AE′=AE,DE′=BE,∠ADE′=∠ABE,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∠ADE′=∠ADC,即E′,D,F三点共线,又∠EAF=12∠BAD,∴∠E′AF=∠BAD−(∠BAF+∠DAE′)=∠BAD−(∠BAF+∠BAE)=∠BAD−∠EAF=12∠BAD.∴∠EAF=∠E′AF,在△AEF和△AE′F中,{AE=AE′∠EAF=∠E′AF AF=AF,∴△AFE≌△AFE′(SAS),∴FE=FE′,又∵FE′=DF−DE′,∴EF=DF−BE;(3)√5.解析:本题考查的是旋转变换的性质、全等三角形的判定和性质,灵活运用利用旋转变换作图、掌握全等三角形的判定定理和性质定理是解题的关键.(1)将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,证明△AFG≌△AFE,根据全等三角形的性质解答;(2)将△ABE绕点A逆时针旋转,使AB与AD重合,得到△ADE′,证明△AFE≌△AFE′,据全等三角形的性质解答;(3)将△ABD绕点A逆时针旋转至△ACD′,使AB与AC重合,连接ED′,根据全等三角形的性质、勾股定理计算.解:(1)将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,∵∠B+∠ADC=180°,∴∠FDG=180°,即点F,D,G三点共线,∵∠BAE=∠DAG,∠EAF=12∠BAD,∴∠EAF=∠GAF,在△AFG和△AFE中,{AE=AG∠EAF=∠GAF AF=AF,∴△AFG≌△AFE,∴EF=FG=FD+DG=FD+BE,故答案为:△AFE,EF=BE+DF;(2)见答案;(3)将△ABD绕点A逆时针旋转至△ACD′,使AB与AC重合,连接ED′,由(1)得,△AED≌AED′,∴DE=D′E.∵∠ACB=∠B=∠ACD′=45°,∴∠ECD′=90°,在Rt△ECD′中,ED′=√EC2+D′C2=√5,即DE=√5,故答案为√5.20.答案:解:∵△ABC中,AB=AC,AD为BC边的中线,∴AD⊥BC,BD=CD,在△BED和△CED中,{ED=ED∠EDB=∠EDC=90°BD=CD,∴△BED≌△CED(SAS),则BE=CE.解析:由AB=AC,AD为中线,利用三线合一得到AD垂直于BC,BD=CD,利用SAS得到三角形BED与三角形CED全等,利用全等三角形对应边相等就得证.此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.21.答案:解:在Rt△ABC中,∠ACB=90°,根据勾股定理可得:BC=√AB2−AC2=√252−152=20,∵Rt△ABC的面积=12×BC×AC=12×AB×CH,∴20×15=25×CH,解得,CH=12.解析:利用勾股定理得出BC的长,再利用三角形面积求法得出HC的长.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.22.答案:解:(1)由①得:S=√14[52×122−(52+122−1322)2]=30,由②得:p=5+12+132=15,S=√15(15−5)(15−12)(15−13)=30;(2)连接OA、OB、OC,如图所示:∴S=S△AOB+S△AOC+S△BOC=12rc+12rb+12ra=(a+b+c2)r=pr.解析:(1)根据题意所给公式将a=5,b=12,c=13代入公式计算即可验证;(2)连接OA、OB、OC,S=S△AOB+S△AOC+S△BOC,由三角形面积公式即可得出结论.本题考查了三角形的内切圆、数学常识以及三角形面积公式;熟练掌握三角形面积的计算方法是解题的关键.23.答案:解:(1)证明:如图1,∵AE⊥PB,CF⊥BP,P与O重合,∴∠AEO=∠CFO=90°,∵四边形ABCD是平行四边形,O为对角线交点,∴AO=CO,在△AEO和△CFO中,{∠AEO=∠CFO ∠EOA=∠FOC AO=CO,∴△AEO≌△CFO(AAS),∴OE=OF;(2)CF=AE+OE.证明:延长EO交CF于点G,如图2所示,则可得∠EOA=∠GOC,∵AE⊥PB,CF⊥BP,∴AE//CF,∴∠EAO=∠GCO,又∵O为对角线交点,∴AO=CO,在△AEO和△CGO中,{∠EOA=∠GOC AO=CO∠EAO=∠GCO,∴△AEO≌≌△CGO(ASA),∴OE=OG,AE=CG,在Rt△EFG中,OE=OG,∴点O为Rt△EFG斜边EG的中点,故OF=OE=OG=12EG,∴∠OFE=∠OEF=30°,∴∠OFG=∠EFG−∠OFE=90°−30°=60°,又∵OF=OG,∴△OFG为等边三角形,故GF=OF=OE,∵CF=CG+GF,∴CF=CG+GF=AE+OE;(3)CF=OE−AE.证明:延长EO、FC交于点G,如图3所示,∵AE⊥PB,CF⊥BP,∴AE//CF,∴∠AEO=∠G,又∵O为对角线交点,∴AO=CO,在△AEO和△CGO中,{∠EOA=∠GOC ∠AEO=∠GAO=CO,∴△AEO≌△CGO(AAS),∴OE=OG,AE=CG,在Rt△EFG中,OE=OG,故点O为Rt△EFG斜边EG的中点,∴OF=OE=OG=12EG,∵∠OEF=30°,∴∠OFE=∠OEF=30°,即∠OFG=∠EFG−∠EFO=90°−30°=60°,又∵OF=OG,∴△OFG为等边三角形,∴GF=OF=OG=OE,∵CF=GF−CG,∴CF=OE−AE.解析:(1)由△AOE≌△COF(AAS)即可得出结论.(2)图2中的结论为:CF=OE+AE,延长EO交CF于点G,只要证明△EOA≌△GOC(ASA),△OFG 是等边三角形,即可解决问题.(3)图3中的结论为:CF=OE−AE,延长EO交FC的延长线于点G,证明方法与(2)类似.本题考查四边形综合题、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.24.答案:(1)证明:如图1中,∵四边形ABCD是正方形,∴AD=CD,∠EAD=∠BCD=∠ADC=90°,∴∠EAD=∠DCF=90°,∵CF=AE,∴△AED≌△CFD(SAS),∴∠ADE=∠CDF,∴∠EDF=∠EDC+∠CDF=∠EDC+∠ADE=∠ADC=90°,∴DE⊥DF.(2)证明:∵△AED≌△CFD,∴DE=DF,∵∠EDF=90°,∴∠DEF=∠DFE=45°,∵∠ABC=90°,BD平分∠ABC,∴∠DBF=45°,∵FH平分∠BFE,∴∠HFB=∠HFE,∴∠DHF=∠HFB+∠DBC=∠HFB+45°,∠DFH=∠HFE+∠DFE=∠HFE+45°,∴∠DHF=∠DFH,∴DH=DF.(3)解:结论:EF=2AB−2HM理由:如图2中,作HM⊥EF于M,HN⊥BC于N.∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∴BD=√AB2+AD2=√2AB,∵FH平分∠BFE,HM⊥EF,HN⊥BF,∴HM=HN,∵∠HBN=45°,∠HNB=90°,=√2HN=√2HM,∴BH=HNsin45∘∴DH=BD−BH=√2AB−√2HM,∵EF=DF=√2DF=√2DH,cos45∘∴EF=2AB−2HM.解析:(1)如图1中,证明△AED≌△CFD(SAS),可得结论.(2)想办法证明DE=DF,DF=DH即可.(3)结论:EF=2AB−2HM如图2中,作HM⊥EF于M,HN⊥BC于N.利用等腰直角三角形的性质,角平分线的性质定理即可解决问题.本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
假期综合复习卷五
一、选择题:
1.若代数式3 x 在实数范围内有意义,则x 的取值范围是
()A.x ≥0 B.x ≥-3
C.x ≥3
D.x ≤32.下列式子中,y 是x 的正比例函数的是
()A.y =2x -1 B.y =2x
C.y =2x 2
D.y 2=4x
3.矩形、菱形、正方形都具有的性质是()
A.对角线相等
B.对角线互相平分
C.对角线互相垂直
D.对角线平分对角
4.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定通常
要比较两名同学成绩的()
A.平均数
B.众数
C.中位数
D.方差
5.一次函数y =-3x +2的图像不经过...
下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列
各组数据中,能作为一个智慧三角形三边长的一组是()
A.1,2,3
B.1,1,2
C.1,1,3
D.1,2,3
7.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示.
成绩/m
1.50 1.60 1.65 1.70 1.75 1.80人数232341
则这些运动员成绩的中位数,众数分别为()
A.1.65,1.70
B.1.65,1.75
C.1.70,1.75
D.1.70,1.70
8.一次函数y =(1-2m )x +3m -2的图像经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1>y 2,则m
的取值范围是()
A.m <32
B.m >32
C.m <2
1
D.m >219.如右图,在平面直角坐标系中,正比例函数y =x 和y =-
21x 的图像分别为直线l 1、l 2,过点A 1(1,-2
1)作x 轴的垂线交l 1于点A 2,过点A 2作y 轴的垂线交l 2于点A 3,过点A 3作x 轴的垂线
交l 1于点A 4,过点A 4作
y 轴的垂线交l 2于点A 5,……,依次
进行下云,则点A 2019的横坐标为()
A.21008
B.-21008
C.-21009
D.21006
10.如右图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm.点P从
点A出发,以1cm/s的速度向点D运动;同时点Q从点C出发,以3cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动t(s)时,A、B、P、Q四点中有两个点能与CD组成平行四边形,则t
的值为()
A.6或7
B.6或8
C.7或8
D.6或7或8
二、填空题:
11.计算:20+5=.
12.数据:3,3,3,6,9,9,9的平均数为.
13.如图,在□ABCD中,∠A=130°,则∠1的度数为.
14.某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,乘车行驶6公里的车费
是元.
第13题图第15题图第16题图
15.已知直线y=kx+b与x轴的交点在A(2,0)和B(3,0)之间(包括A、B两点),直线y=kx+b
-2k与x轴交于点(m,0),则m的取值范围为.
16.如图,在矩形ABCD中,AB=4,BC=9,点E,F分别在边BC,CD上.若BE=3,∠EAF=
45°,则DF的长是.
三、解答题:
17.计算:
(1)18-32+2;(2))3
( ×6.
8
18.(本小题满分8分)如图,在四边形ABCD中,AD=12,OD=OB=5,AC=26,∠ADB=90°.
(1)求证:四边形ABCD为平行四边形;
(2)求四边形ABCD的面积.
19.(本小题满分8分)第七届军运会将在我市举行,某校开展了“强身健体,喜迎军运”活动,随
机抽查了部分学生,对他们每天的体育锻炼时间进行调查,将调查统计的结果分为四类:每天锻炼时间t≤0.5小时记为A类,0.5小时<t≤1小时记为B类,1小时<t≤1.5小时记为C 类,t>1.5小时记为D类,并将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
(1)求被调查的学生总人数;
(2)补全条形统计图,并求扇形统计图中表示“D类”的扇形圆心角的度数;
(3)若该校共有1500名学生,请估计该校每日体育锻炼时间超过1小时的学生人数.
20.(本小题满分8分)已知,在由边长为1个单位长度的小正
方形组成的8×6的网格中,建立如右图所示的平面直角
坐标系,A,B两点的坐标分别为(4,3),(5,1).
(1)将线段BA向左平移4个单位长度,再向下平移2个单
位长度,画出得到的线段CD(点A对应点D,点B对
应点C),则□ABCD的面积为;
(2)以线段AB为边,顶点在格点,面积最大矩形的周
长;
(3)在(1)的条件下,若直线y=kx平分□ABCD的面积,则k=.
21.(本小题满分8分)如图,已知点E,F分别是□ABCD的边BC,AD的中点,且∠BAC=90°.
(1)求证:四边形AECF是菱形;
(2)若∠ABC=30°,BC=10.求菱形AECF的面积
22.(本小题满分10分)为迎接“军运会”,某商店准备采购500件纪念品,现有甲、乙两种纪
念品可供选择,其中甲种纪念品的进价为80元件,售价为112元/件;乙种纪念品的进价为64元/件,售价为80元/件.设购进甲种纪念品x(x为整数)件,所购纪念品全部售完时利润为y元.
(1)求y关于x的函数关系式;
(2)若乙种纪念品的数量不少于甲种纪念品数量的3倍,且利润y不低于9600元,请通过
计算说明商店有几种采购方案;
(3)若甲种纪念品每件售价降低3a元,乙种纪念品每件售价上涨2a元,在(2)的条件下,最
大利润为11500元,求a的值.
23.(本小题满分10分)已知,在正方形ABCD中,E是边BC上点,点P在射线AE上,直线BP
交正方形ABCD的边于点F,BE=1,AB=n,∠BPE=α.
(1)如图1,若α=90°,求DF的长;
(2)若α=45°.
①如图2,求DF的长(用含n的代数式表示);
②如图3,P在线段AE的延长线上,BP=CP,则n=.
24.(本小题满分12分)己知,直线y =2x +4分别与x 轴,y 轴交于点A ,点B ,过点A 的直线AC
交y 轴于点C (0,-1).
(1)求直线AC 的解析式;
(2)如图1,P 为直线AC 上一点,D 为线段AB 的中点,若△ABC 的面积与△PAD 的面积相等,
求点P 的坐标;
(3)如图2,Q 为直线AC 上一点,经过点Q 的直线:y =kx -4k 2交x 轴于点N ,交y 轴于点M ,
连接BN ,求证:QN
BN 为定值.。