五年级奥数”简单列举问题“ 第十六讲
五年级奥数举一反三第16讲 倍数问题(一)含答案

第16讲倍数问题(一)一、知识要点倍数问题是数学竞赛中的重要内容之一,它是指已知几个数的和或差以及这几个数之间的倍数关系,求这几个数的应用题。
解答倍数问题,必须先确定一个数(通常选用较小的数)作为标准数,即1倍数,再根据其它几个数与这个1倍数的关系,确定“和”或“差”相当于这样的几倍,最后用除法求出1倍数。
二、精讲精练【例题1】两根同样长的铁丝,第一根剪去18厘米,第二根剪去26厘米,余下的铁丝第一根是第二根的3倍。
原来两根铁丝各长多少厘米?练习1:1.两个数的和是682.其中一个加数的个位是0,如果把这个0去掉,就得到另一个加数。
这两个加数各是多少?2.两根绳子一样长,第一根用去6.5米,第二根用去0.9米,剩下部分第二根是第一根的3倍。
两根绳子原来各长多少米?【例题2】甲组有图书是乙组的3倍,若乙组给甲组6本,则甲组的图书是乙组的5倍。
原来甲组有图书多少本?练习2:1.原来小明的画片是小红的3倍,后来二人各买了3张,这样小明的画片就是小红的2倍。
原来二人各有多少张画片?2.一个书架分上、下两层,上层的书的本数是下层的4倍。
从下层拿5本放入上层后,上层的本数正好是下层的5倍。
原来下层有多少本书?【例题3】幼儿园买来苹果的个数是梨的2倍。
大班的同学每7人一组,每组领3个梨和4个苹果,结果梨正好分完,苹果还剩下16个。
大班共有多少个同学?练习3:1.高年级同学植树,共有杉树苗和杨树苗100棵。
如果每个小组分给杉树苗6棵,杨树苗8棵,那么,杉树苗正好分完,杨树苗还剩2棵。
两种树苗原来各有多少棵?2.高年级同学植树,已知杨树的棵数正好是杉树的2倍。
如果每小组分到杉树6棵,杨树8棵,那么,杉树正好分完,杨树还剩20棵。
两种树原来各有多少棵?【例题4】有两筐桔子,如果从甲筐拿出8个放进乙筐,两筐的桔子就同样多;如果从乙筐拿出13个放到甲筐,甲筐的桔子是乙筐的2倍。
甲、乙两筐原来各有多少个桔子?练习4:1.甲、乙两仓存有货物,若从甲仓取31吨放入乙仓,则两仓所存货物同样多;若乙仓取14吨放入甲仓,则甲仓的货物是乙仓的4倍。
五年级上册奥数(课件)第16讲:生活中的数学

答:共有13人参加。
练习四
五个人进行象棋比赛,每两个人都要比赛一盘,到现在为止,1 号选手赛了1盘,2号选手赛了2盘,3号选手赛了3盘,4号选手赛了4 盘,那么5号选手已经赛了多少盘?
123Fra bibliotek45
赛了1盘
赛了2盘
赛了3盘
赛了4盘
赛了2盘
和4赛过 和3、4赛过 和2、4、5 赛过
和1、2、3、5 和3、4 都赛过
这些糖果的数量减 3之后能同时被5、 6、7整除。
5、6、7的公倍数: 210、420、840……
210 +3 =213(颗) 答:博士买了213颗糖。
小结
生活离不开数学,数学离不开生活, 数学知识源于生活而最终服务于生活。
例题三
卡尔前不久刚参加了一次游泳比赛,集会那天,她和参加比赛的 所有运动员都亲切地握了一次手,表示友谊。卡尔记得当时一共握了 五十次手,中途有5人离开了,那么你知道最后还有多少人吗?
一共21个人。
每个人要鞠20个躬
21×20=420(个)
答:共要行420个鞠躬礼。
例题四
米德参加摩托车比赛,参加的选手与比赛场次一样多,任何两
个选手只在一次比赛中相遇,每次比赛出场四人,问共有多少人参
加?
一样多
每次比赛出场人数×比赛场次=每个人参加比赛场数×参赛人数=总出场人次
也一样多
4
4×3 +1 =13(人)
是开
梅放
花;
,有
选的
择孩
在子
冬是
天荷
开花
放,
选
择
在
夏
我们,还在路上……
总结
希望同学们到生活中学数学,在生 活中用数学。数学与生活密不可分,学 深了,学透了,自然会发现,其实数学 很有用处。
2020年五年级春季奥数训练16讲带的答案

数学思维(五年级春季练习+答案)目录第一讲 (001)第二讲 (004)第三讲 (007)第四讲 (010)第五讲 (013)第六讲 (016)第七讲 (019)第八讲 (023)第九讲 (026)第十讲 (029)第十一讲 (032)第十二讲 (035)第十三讲 (038)第十四讲 (041)第十五讲 (044)第十六讲 (047)第一讲 练习☆1、1692+=+x x 解: 6x-2x=9-1 4x=8 X=2☆2、()()25103105-+=-x x 解: 5x-50=3x+30-25 2x=55 X=255或者27.5☆3、()8745=--x x 解: 5x-28+4x=8 9x=36 X=4☆4、()()x x x x 3722027--=-+ 解: 7x+2x-20=x-14+6x 2x=6 X=3☆☆5、()()221453x x -=- 解: 12x-20=2-4x 16x=22 X=811或者1.375☆☆6、()()1691222--=-⨯x x x 解: 8x-4=9x-6x+6 5x=10X=2☆☆7、()()072523=++-x x 解: 6x-15+2x+14=0 8x=1X=81或者0.125☆☆8、()()432723+=-x x 解: 21x-14=8x+12 13X=26 X=2☆☆9、⎩⎨⎧=-=+11521923x y y x (加减消元法)解得:x= 1 y=8☆☆☆10、()()⎩⎨⎧=---=+53433224y x y x (化简,再加减消元)解得: x=6 y=41、2、3、第二讲练习☆1、两列火车从相距480千米的两城相向而行,甲列车每小时行40千米,乙列车每小时行42千米,5小时后,甲、乙两车还相距多少千米?①480-(42+40)×5=70千米☆2、某工厂有三个车间,一车间的人数是二车间的3倍多6人,二车间比三车间多9人。
三个车间共有工人107人,求三个车间各有多少人?( 把108改成107) 解设:二车间有x人,一车间有3x+6,三车x-95x+6-9=107 二车间:225x=110 一车间:3×22+6=72X=22 三车间:22-9=13☆3、箱子里有红球和白球若干个,红球的数量是白球的3倍。
人教版五年级数学上册【详解】5年级第16讲_分数应用题

第十六讲分数应用题例题1.答案:30详解:根据题意,小高吃的巧克力占全部巧克力的3231=10510--,吃了9块,那么总共有39=3010÷块巧克力.例题2.答案:680详解:根据题意可知306块砖占了原来的1194520+=.由此可知原来有930668020÷=块.例题3.答案:170详解:男生增加了25,总人数本来也应该增加25人,但结果只增加了16人,说明女生少了9人,进而求出女生原来有1918020÷=人,再求出男生原来有325180145-=,所以现在男生14525170+=人.例题4.答案:160详解:第一天走了全程的14,还剩下全程的34,第二天走了全程的322=434⨯,所以最后剩下全程的14,正好是40千米,那么全程为160千米.例题5.答案:42详解:先把每种水果“占其他”几分之几转化成“占总数”几分之几.苹果占总数的17,桔子占总数的521,那么可求出梨占总数的1513172121--=.总数有13264221÷=个.例题6.答案:56详解:总牌数始终没变,所以应该单位“1”都转化成总牌数.阿呆赢牌前牌数占总牌数的33538=+,赢牌后牌数占总牌数的775712=+,增加了总牌数的73512824-=.总牌数为5209624÷=张,阿呆此时有7965612⨯=张.练习1.答案:120简答:绿球占全部的11513412--=,那么一共有55012012÷=个.练习2.答案:144简答:第2个小时写的84个字占练字计划的1173412+=,那么练字计划一共要写78414412÷=个字.练习3.答案:126简答:男生减少2人,总数增加4人,说明女生增加了6人,增加了上届女生数的120.上届有女生1612020÷=人,本届有1206126+=人.练习4.答案:360简答:第一天看了全书的13,剩下全书的23.那么第二天应该看了全书..的2243515⨯=,最后还剩全书的14213155--=.说明这本书共有21443605÷=页.作业1.答案:4简答:23243⨯+=.作业2.答案:十分之三;十七分之三.作业3.答案:2400简答:531 20020024006412⎛⎫÷-=÷=⎪⎝⎭.作业4.答案:200简答:119020045⎛⎫÷+=⎪⎝⎭.作业5.答案:350简答:水果糖占总糖数的777916=+,共有780035016⨯=颗.。
小学奥林匹克数学 竞赛数学 五年级 第16讲-余数

知识点回顾一、替换求余:可加性、可减性以及可乘性二、特性求余:例如2、3、4、5、7、8、9、11、13、99等1111除以一个两位数,余数是66,求这个两位数.1111661045-=104551119=⨯⨯1045的约数大于余数66 这个两位数是9521421421421421个(1)除以4和125的余数分别为多少?(2)除以9和11的余数分别是多少? 21808808808808个(1)一个数除以4的余数只需考虑它的末两位除以4的余数. 除以4余121除以4余1 (2)一个数除以9的余数等于它的各位数字之和除以9的余数.(88)21336+⨯=除以9余3一个数除以11的余数等于奇数位数字和减去偶数位数字和的差除以11的余数. (88)11176+⨯=(88)10160+⨯=除以11余5 176-160=16 16÷11=1余5一个数除以125的余数只考虑末三位除以125的余数. 421125346÷=除以125余46一年有365天,轮船制造厂每天都可以生产零件1234个.年终将这些零件按19个一包的规格打包,最后一包不够19个.请问:最后一包有多少个零件? 1234196418÷=36519194÷=1234365⨯18472⨯=72除以19余15 最后一包有15个零件.67222221⨯⨯⨯⨯-个自然数的个位数字是多少? 22⨯222⨯⨯2222⨯⨯⨯22222⨯⨯⨯⨯2 ……个位 2 4 8 6 267除以4余36722222⨯⨯⨯⨯个的个位数字是8 个位数字就是729一年有365天,轮船制造厂每天都可以生产零件1234个。
年终将这些零件按19个一包的规格打包,最后一包不够19个。
请问:最后一包有多少个零件?20072007200720071232006+++⋅⋅⋅+算式计算结果的个位数字是多少?1、5、6、10的2007次方的个位数字就是1,5,6,0.1次方2次方3次方4次方5次方6次方…2007次方2 2 4 8 6 2 4 (8)3 3 9 7 1 3 9 74 4 6 4 6 4 6 47 7 9 3 1 7 9 38 8 4 2 6 8 4 29 9 1 9 1 9 1 9 156087432945+++++++++= 2007200720071210+++的个位数字是5 200720072007 200120022006+++的个位数等于的个位数是118745631+++++=的个位数,为152001⨯+108888888+⨯++⨯⨯⨯个除以5的余数是多少?8除以5余310333333+⨯++⨯⨯⨯个3 3,23,33,43,⋅⋅⋅除以5的余数依次为3,4,2,1,3,4,⋅⋅⋅342110+++=347+=余2如果某个自然数除以49余23,除以48也余23.那么这个自然数被14除余数是多少?这个数减去23后是49和48的一个公倍数23,2349481+⨯⨯,2349482+⨯⨯,⋅⋅⋅23÷14=1余9一个自然数除以19余9,除以23余7.那么这个自然数最小是多少?被23除余7的所有数:7,30,53,76,99,122,145,168,191,214,237,…第一个除以19余9的数是237刘叔叔养了400多只兔子,如果3只一个笼,那么最后一笼只有2只;如果5只一笼,那么最后一笼只有4只;如果7只一笼,那么最后一笼只有5只.刘叔叔一共养了多少只兔子?除以3余2 除以5余4 除以7余5 3×5-1=14 14,14+15 , 14+15×2 ,14+15×3,…14+15×5=89 89+105×3=404只100多名小朋友站成一列.从第一人开始一次按1,2,3,…,11的顺序循环报数,最后一名同学报的数是9;如果按照1,2,3,…,13的顺序循环报数,那么最后一名同学报的数是11.请问:一共有多少名小朋友?除以11余9 除以13余11 少2 11132141⨯-=123123123123123个除以99的余数是多少?99的整除特性:两位截断求和 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 …… 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3123÷2=61余1 12+31+23=66 66×61+23+1=405040+50=90把63个苹果,90个桔子,130个梨平均分给一些同学.最后一共剩下25个水果没有分出去.请问:剩下个数最多的水果剩下多少个?++=6390130283-=283252582582343=⨯⨯258的约数有1,2,3,6,43,86,129和25810<人数<63 人数只能是43个分完后苹果剩20个,桔子剩4个,梨剩1个。
高斯小学奥数五年级下册含答案第16讲_不确定性问题

第十六讲不确定性问题漫画:图1:一个集市上,很多人在一个鸡蛋摊子前面排队.由于鸡蛋紧俏,如果买的鸡蛋在10个以下(包括10个),每个3角钱;超过10个的部分,每个5角钱.图2:集市的一角,卡莉娅对小高说:“我比你多花了1元3角”.旁边的墨莫插嘴:“我知道你们各买了多少鸡蛋”.图3:另一边,阿呆对阿瓜说:“我比你多花了4元钱”,又问墨莫:“你知道我们买了多少个鸡蛋吗?”墨莫沉默了……我们之前学过的问题都有一个特点,就是数量之间总有确定的关系,例如“甲是乙的3倍”,那么3=⨯甲乙,这样只要知道了甲、乙中的一个量,就可以求出另一个量的大小.但是还有一类问题,其中包含了一些不那么确定的条件,例如“甲比乙多”,通过这个条件我们只能模糊地知道甲在数量上超过乙,但却无法确定甲比乙大多少,因此即使知道了甲、乙中的一个量,也不可能知道另一个的大小.再举一个例子,小高说他一个月的零花钱有100多元.但是,101元是100多元,199元也是100多元,我们并不能具体确定是多少钱,只是知道一个范围.像这样条件比较模糊的问题,我们就称之为“不确定问题”.下面我们就来看一些这样的问题.例题1.松鼠一家三口一共采了200多个松果,松鼠爸爸采了其中的49,松鼠妈妈采了其中的513,那么松鼠宝宝采了多少个松果?分析:乍一看,这题好像缺少条件,因为松鼠一家采的松果总数没有确定.不过要注意题目中有隐藏条件:每只松鼠采的松果都是整数个.练习1.高思学校某尖子班共有20多人,期末测试的结果为:18的同学得满分,13的同学优秀,12的同学良好,那么得良好的同学有多少人?上面的不确定性问题,我们是利用倍数关系得到确定结果的.有的时候,题目中的倍数关系可能隐藏的比较深,需要我们用心寻找.例题2.植物园里菊花与月季花的盆数之比是3:4,月季花与兰花的盆数之比是5:6.如果菊花比兰花少五十多盆,那么月季花比菊花多多少盆? 分析:可能有半盆菊花,或者13盆月季吗?练习2.小高、墨莫和卡莉娅三人比谁的积分多,数了数之后发现:小高和墨莫的积分比为5:8,墨莫和卡莉娅的积分比为12:13,三人的积分总和为400多分,那么卡莉娅比小高多多少分?我们在解题过程中,可能会遇到这样的题目,它包含有多个不确定性条件,我们需要综合考虑才能得到确定的结果.还有些题目,我们需要分析极端情况,才能得到范围大小.有时极端情况(最值)就是我们要寻找的答案.例题3.小明将100枚棋子分成3堆,已知第一堆比第二堆的2倍还多,第二堆比第三堆的2倍也要多,那么第三堆最多有多少枚棋子?分析:如果设第三堆的棋子数为1份,那么第二堆和第三堆棋子分别最少有多少?练习3.小高、墨莫和卡莉娅三人比赛吃包子,最终共吃了40个包子.小高吃的包子数是卡莉娅的2倍,墨莫吃的包子数比卡莉娅的3倍要少,那么卡莉娅最少吃了多少个包子?例题4.把48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全都分给第一组,一部分小朋友每人能拿到5本,其他小朋友每人能拿到4本;如果把书全都分给第二组,一部分小朋友每人能拿到4本,其他小朋友每人能拿到3本.问:两组一共有多少人?分析:第一组的小朋友有人拿到5本,有人拿到4本,那么最多多少人,最少多少人?第二组的小朋友最多多少人,最少多少人?练习4.王老师买来120个苹果,准备分给幼儿园大班和小班的小朋友,已知小班比大班多14人.如果把苹果全部分给大班的小朋友,一部分小朋友每人能分到5个苹果,其他小朋友每人能拿到4个苹果;如果把苹果全部分给小班的小朋友,一部分小朋友每人能分到4个苹果,其他小朋友能分到3个苹果.问:小班有多少人?例题5.若干名家长(爸爸或妈妈,他们都不是老师)和老师陪同一些小学生参加数学竞赛.已知家长和老师共有22人,家长比老师多,妈妈比爸爸多,老师比妈妈多3人,问:在这些人中,爸爸有多少人?分析:家长和老师共有22人,而且家长比老师多,那么家长至少得有多少人呢?家长中,妈妈又比爸爸多,那么妈妈至少得有多少人呢?相应的,女老师又至少得有多少人呢?例题6.为鼓励节约用电,某小区按下列方式收取电费:如果每月用电不超过24度,就按每度9角钱收费;如果超过24度,超出的部分按每度2元钱收费.已知五月份甲家比乙家多交了电费9元6角钱(不足一度的部分按一度电计算),那么甲、乙两家各交了多少电费?分析:甲和乙所交的电费都超过24度了么?还是都没超过?或者是甲超过了,乙没有超过呢?首先应该判断出这个情况.量子力学之不确定性原理在物理学中,有一门很高深的学问,叫做量子力学.它主要是以微观粒子为研究对象,如:电子,质子和中子等.在量子力学形成与发展过程中,获得的许多现象与原理,极大地改变了人们对世界的看法.其中,“不确定性原理”是其典型代表.要想明白“不确定性原理”,可以先从我们熟悉的物体说起.比如一辆汽车,我们既可以知道它的位置,也可以知道它的速度.但是对于微观粒子而言,非常奇妙的是,我们并不能同时确定它的位置和速度.比如一个电子,如果我们准确的知道它的位置,那么我们就不能确定它的速度.反过来,如果我们准确地知道它的速度,那么我们就不能确定它的位置.这就是所谓的不确定性原理,是不是很奇妙呢?神奇的微观世界作业1. 五年级(1)班有四十多人,其中有的同学喜欢看《哈利·波特》,有的同学喜爱看《灰太狼与喜洋洋》,问五年级(1)班上共有多少人?作业2. 小高最近迷上了《水浒传》,三天看了200页.已知第二天看的页数是第一天看的2倍,第三天看的页数比第二天看的2倍还多,那么第一天最多看了多少页?作业3. 学期要结束了,温老师买来80块巧克力,准备分给精英1班和精英2班的同学.已知精英2班比精英1班多9人,如果把巧克力全部分给精英1班的同学,一部分同学每人能分到5个巧克力,其他同学每人能拿到4个巧克力;如果把巧克力全部分给精英2班的同学,一部分同学每人能分到4个巧克力,其他同学能分到3个巧克力.精英1班有多少人?作业4. 物美超市饮料部为鼓励消费,规定:买5瓶以下或5瓶可乐,每瓶10元;如果买5瓶以上,超出5瓶部分,每瓶8元.已知小高比卡莉娅多花了42元,小高买了多少瓶可乐?作业5. 小高、墨莫和卡莉娅三人比赛玩扫雷游戏,比赛结束后发现:小高所用时间与卡莉娅所用时间比为3:4,卡莉娅所用时间与墨莫所用时间比为6:7,又知道小高比墨莫少用二十多秒,那么小高完成扫雷游戏用了多长时间?18 16第十六讲 不确定性问题例题1. 答案:40详解:由题目知,松果总数既是9的倍数,又是13的倍数,因此松果总数应为117的倍数.又知一共采了200多个松果,因此应为234个.松鼠宝宝采了45234(1)40913⨯--=个.例题2. 答案:30详解:菊花、月季花和兰花的盆数之比是15:20:24,因此菊花比兰花少的盆数应为9的倍数,所以为54盆,1份为5424156÷-=()盆,月季花比菊花多6201530⨯-=()盆.例题3. 答案:13详解:设第三堆的棋子数为“1”份,第二堆的棋子数为“2”份多一些,第一堆的棋子数为“4”份多一些,总和为“7”份多一些.为使第三堆尽量多,即找与100最接近且是7的倍数的数,为98.但是98不行,只能找再小一点的91.因此第三堆最多有91713÷=枚.例题4. 答案:25详解:先看第一组,部分小朋友能拿到5本,人数应大于48[]=95人,部分小朋友能拿到4本,人数应小于48412÷=人,故第一组有10人或11人.再看第二组,部分小朋友能拿到4本,人数应大于48412÷=人,部分小朋友能拿到3本,人数应小于48316÷=人,故第二组有13、14或15人.又知道第二组比第一组多5人,因此第一组为10人,第二组为15人,两组共有25人.例题5. 答案:5详解:家长比老师多,因此家长至少为12人,老师最多10人.妈妈比爸爸多,说明妈妈至少为7人,又知道老师比妈妈多3人,因此老师10人,妈妈7人,爸爸5人.例题6. 答案:27.6元,18元详解:本题需要进行分类讨论.如果甲、乙两家均未超过24度,那么甲家比乙家多交的电费应为9的倍数,如果甲、乙两家均超过24度,那么甲家比乙家多交的电费应为20的倍数.而96角既非9的倍数,也不是20的倍数,因此只能是甲家超过24度,乙家没有超过24度.经简单讨论,当乙家为20度时满足条件,此时甲家用了27度.甲、乙两家分别交了27.6元和18元.练习1. 答案:12简答:可知该班的人数既是8的倍数,也是3的倍数,还得是2的倍数,那么一定是24的倍数,只能是24.得良好的同学占了一半,有12人.练习2. 答案:77简答:小高、墨莫和卡莉娅的积分比是15:24:26,总分应为15242665++=的倍数.又知道三人的积分总和为400多分,故为657455⨯=分.卡莉娅比小高多(2615)777-⨯=分.练习3. 答案:7简答:设卡莉娅吃的包子数为“1”份,小高吃的包子数为“2”份,墨莫吃的包子数为“3”份少一些,因此总包子数加上一个数应为6的倍数,问卡莉娅最少吃了多少,至少加上2才是6的倍数,因此卡莉娅最少吃了4267÷=个包子.练习4. 答案:39简答:大班小朋友有些人分到5个,其他人分到4个,说明大班的小朋友最多有29人,最少有25人.小班小朋友有些人分到4个,其他人分到3个,说明小班的小朋友最多有39个,最少有31个.又知道小班比大班多14人,那么小班只能有39人,大班只能有25人.作业1. 答案:48简答:可知人数既是6的倍数,又是8的倍数,那么一定是24的倍数.只能是48.作业2. 答案:28简答:设第一天看了1份,那么第二天看了2份,第三天看了4份还多.一共看了7份还多.那么1份最多是28页.作业3. 答案:17简答:尖子1班的人数范围是17~19,尖子2班的人数范围是21~26.2班比1班多9人,那么2班有26人,1班有17人.作业4. 答案:9简答:424810=⨯+,说明小高买了9瓶,卡莉娅买了4瓶.作业5. 答案:4:5简答:小高、墨莫和卡莉娅所用时间之比是9:14:12,小高比墨莫少的时间一定是5的倍数,只能是25.那么小高用了()25149945÷-⨯=秒.。
小学数学5年级培优奥数讲义 第16讲 假设法解题(学生版)

第16讲 假设法解题能根据题目中的已知条件或结论作出某种假设,用假设法解决问题.假设法是一种常用的思维方法和解题方法,就是根据题目中的已知条件或结论作出某种假设.例如假设未知的两个量是同一种量;假设要求的两个未知量相等;假设题中某一未知条件为一合理数,但不影响解题结果;还可以把题目中缺少的条件假设出来等.从而对已知条件适当转化,使复杂问题简单化,再根据数量上出现的矛盾作适当调整、推算,找到适当的解题方法.考点一:全部假设法例1、2元一张和5元一张人民币共63张,合计171元,问2元、5元的人民币各有多少张?知识梳理典例分析学习目标例2、光华玻璃厂委托运输公司包运2000块玻璃,每块运输费0.4元,如损坏一块,要赔偿损失费7元,结果运输公司得到运费711.2元,问运输公司损失玻璃多少块?例3、体育杨老师买回4个篮球和5个排球,一共用去185元,一个篮球比一个排球贵8元,篮球与排球的单价各是多少元?例4、陈红和王刚进行射击比赛,约定每击中一发得20分,脱靶一发扣12分,两人各打了10发,共得208分,其中陈红比王刚多64分,问陈红、王刚各中了几发?例5、某工程队有甲、乙两台挖土机,甲机先挖4小时,然后两机一起挖10小时,总共挖土600立方米.已知甲机比乙机每小时多挖6立方米,问甲机比乙机一共多挖多少立方米?例6、张会计把一张5元的人民币和一张5角的人民币换成了28张表面为一元和一角的零钱,求两种票面额的零钱各有多少张?例7、某场乒乓球比赛售出30元、40元、50元的门票共200张,收入7800元.其中40元和50元的张数相等,每种票各售出多少张?考点二:鸡兔同笼例1、今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只.问鸡、兔各有多少只?例2、鸡与兔共200只,鸡的脚数比兔脚多100只,问:鸡兔各多少只?实战演练➢课堂狙击1、五(1)班有51个同学,他们要搬51张课桌椅.规定男生每人搬2张,女生两人搬1张.这个班有男、女生各多少人?2、用大、小两种汽车运货.每辆大汽车装18箱,每辆小汽车装12箱.现有18车货,价值3024元.若每箱便宜2元,则这批货价值2520元.大、小汽车各有多少辆?3、某玻璃杯厂要为商场运送1000个玻璃杯,双方商定每个运费为1元,如果打碎一个,这个不但不给运费,而且要赔偿3元.结果运到目的地后结算时,玻璃杯厂共得运费920元.求打碎了几个玻璃杯?4、育红小学组织五年级三个班的代表进行抢答比赛,比赛规则是:每班代表的基础分为100分,答对一题加10分,答错一题不但不加分,反而要扣掉5分.五(2)班代表对其中的10题进行了抢答,最后得分是155分,他们答对了几题?5、有鸡蛋18箩,每只大箩容180个,每只小箩容120个,共值302.4元,若将每个鸡蛋便宜2分出售,则可得款252元,问大箩、小箩各几只?6、笼中共有30只鸡和兔,数一数足数正好是100只.问鸡兔各多少只?➢课后反击1、笼中共有鸡、兔100只,鸡和兔的脚共248只.求笼中鸡、兔各有多少只?2、有一元、二元、五元的人民币50张,总面值116元.已知一元的比二元的多2张,问三种面值的人民币各有几张?3、小松鼠妈妈采松子,晴天每天可以采20个,雨天每天只能采12个.它一连采了112个松子,平均每天采14个.问:这几天当中有几天雨天?4、有40分、20分、16分、10分的邮票共40枚,共计7.58元,已知40分和20分的邮票枚数相等,16分和10分的邮票枚数相等,求四种邮票各多少枚?假设法是一种常用的思维方法和解题方法,就是根据题目中的已知条件或结论作出某种假设.例如假设未知的两个量是同一种量;假设要求的两个未知量相等;假设题中某一未知条件为一合理数,但不影响解题结果;还可以把题目中缺少的条件假设出来等.从而对已知条件适当转化,使复杂问题简单化,再根据数量上出现的矛盾作适当调整、推算,找到适当的解题方法.鸡兔同笼的假设法运用全部假设法➢本节课我学到➢我需要努力的地方是学霸经验名师点拨重点回顾。
北师大版 五年级下册 第16讲 用方程解决问题 教师版

第 1 页 共 19 页教学辅导教案1、用你喜欢的方法计算. 3119+8+82727⨯() 111+12346-⨯() =4 =5411305315⨯--() 3134145145⨯+⨯ =12 =1432、计算下列分数。
81383=÷ 2411585=÷ 377232=÷ 61231=÷ 5321571=÷ 155412=÷ 3505310=÷3616183=÷ 0950=÷3、一筐香蕉连筐重42千克,卖出31后,剩下的连筐重29千克.筐重多少千克? 重量减轻了42-29=13(千克) 13千克对应31 香蕉的总量是393113=÷(千克) 筐重:42-39=3(千克)4、天天游泳池,长25米,宽10米,深1.6米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是1分米的正方形,那么至少需要这种瓷砖多少块?(25×1.6+1.6×10)×2+25×10=362(平方米)=36200平方分米36200÷(1×1)=36200(块)答案:需要36200块5、一个正方体玻璃容器,从里面量棱长是2dm .向容器中倒入5.5L 水,再把一个苹果放入水中,这时量得容器内的水深是15cm .这个苹果的体积是多少? 15厘米=1.5分米,5.5升=5.5立方分米,2×2×1.5﹣5.5,=6﹣5.5,=0.5(立方分米),答:这个苹果的体积是0.5立方分米.根据长方体的体积公式,先求出放入苹果后的容器内水的体积,再减去没放入苹果之前的体积5.5立方分米,就等于苹果的体积.【回顾四年级下册第五章-认识方程】一、解下列方程.5629=-x x 105.0=-x x 16785=x567=x 105.0=x 8=x 20=x 107=x二、看图列出方程 1.正方形周长6米 2.桃树100棵 x 米梨树x 棵1、64=x ,2、1005=x5.1=x 20=x【五年级下册第七章-用方程解决问题】三、甲乙两地同时从两地相向而行,甲车每行60千米,乙车每时行55千米,行驶2.5时相遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题
上一页
首页 结束
下一页
第14讲 简单列举问题
例 例5:从1到400的自然数中,数字“2”出现了多少次? 题 精 讲
解: 在1—400这400个数中,“2”可能出现在个位、十位或百位上。 (1)“2”在个位上:2、12、22、…、92;102、112、 122、…、192;202、212、222、…、292;302、312、…、 392。 共:10×4=40(次) (2)“2”在十位上:20、21、…、29;120、121、…、129; 220、221、…、229;320、321、…、329。共10×4=40(次) (3)“2”在百位上:从200到299共100次。 所以,数字“2”出现了10×4+100=180(次)。
5年级趣味数学
第 讲 14
简单列举问题
第14讲 简单列举问题
知
识 精 讲
有些题目,因其所求的答案有多种,用算式不容易表示, 需要采用一一列举的方法解决。这种根据题目的要求,通过一
一列举各种情况,最终达到解答整个问题的方法叫做列举法。
用列举法解题时需要掌握以下三点:
1,列举时应注意有条理的列举,不能杂乱无章地罗列;
精
讲
解: 因为长方形的周长200厘米 所以,长方形的长+宽=100厘米。 由于长和宽都是整数,我们可以举例观察 可以看出: 当长与宽都是50厘米时,它的面积最大; 当长与宽的差最大,即长99厘米,宽1厘米时,面积最小。
上一页
首页 结束
下一页
第14讲 简单列举问题
练 习
变式练习4:a和b都是自然数,且a+b=81。a和b相乘的积最大可以是 多少?
2,根据题意,按范围和各种情况分类考虑,做到既不重复又 不遗漏;
3,排除不符合条件的情况,不断缩小列举的范围。
上一页
首页 结束
下一页
第14讲 简单列举问题
例 题
例1:有一张5元、4张2元和8张1元的人民币,从中取出9元钱,共有多 少种不同的取法?
精
讲
上一页
首页 结束
下一页
第14讲 简单列举问题
练 习
1+1+2+3+…+10=56(块)
上一页
首页 结束
下一页
第14讲 简单列举问题
练 习
练习3:在一个圆形纸片上画三条横着的平行线和三条竖着的平行线, 把此圆最多分成了多少块?
题
上一页
首页 结束
下一页
第14讲 简单列举问题
例 题
例4: 有一张长方形的周长是200厘米,且长和宽都是整数。问:当 长和宽是多少时它的面积最大?当长和宽是多少时,它的面积最小?
答:可以组成12个。
上一页
首页 结束
下一页
第14讲 简单列举问题
变式练习2:甲、乙、丙、丁四位同学和王老师站成一排照相,共有多 练 少种不同的站法? 习 题
上一页
首页 结束
下一页
第14讲 简单列举问题
例 例3:在一张圆形纸片中画10条直线,最多能把它分成多少小块? 题 精 讲
解: 我们把所画直线的条数和分成的块数列成表进行分析:
答:出现了180次。
上一页
首页 结束
下一页
第14讲 简单列举问题
练 练习5:从1到100的自然数中,数字“1”出现了多少次? 习 题
上一页
首页 结束
下一页
变式练习1:有足够的2角和5角两种人民币,要拿出5元钱,有多少种 不同的拿法?
题
上一页
首页 结束
下一页
第14讲 简单列举问题
例 题Байду номын сангаас
例2:有1、2、3、4四张数字卡片,每次取3张组成一个三位数,可 以组成多少个奇数?
精
讲
解:
要组成的数是奇数,它的个位上应该是1或者3。当个位是1时, 把能组成的三位数一一列举出来:321,421,231,431,241, 341共6个;同样,个位是3的三位数也是6个,一共能组成 6×2=12个。