五年级奥数第37周简单列举

合集下载

小学数学奥数基础教程(五年级)目30讲全word资料42页

小学数学奥数基础教程(五年级)目30讲全word资料42页

小学奥数基础教程(五年级)第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。

例如用猜想、拼凑、排除、枚举等方法解题。

数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。

这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。

例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。

当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。

(5÷13-7)×(17+9)。

当“÷”在第二或第四个○内时,运算结果不可能是整数。

当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。

小学数学五年级数学奥数举一反三简单列举37

小学数学五年级数学奥数举一反三简单列举37

○ ○ ○
五年级奥数举一反三
【例题2】 有1、2、3、4四张数字卡片,每次取3张组成一个 三位数,可以组成多少个奇数? 【思路导航】 要组成的数是奇数,它的个位上应该是1或者3。当个位是1 时,把能组成的三位数一一列举出来:321,421,231,431, 241,341共6个;同样,个位是3的三位数也是6个,一共能 组成6×2=12个。
五年级奥数举一反三
【例题1】 有一张5元、4张2元和8张1元的人民币,从中取 出9元钱,共有多少种不同的取法? 【思路导航】
五年级奥,要拿出5元钱, 有多少种不同的拿法? 2,有2张5元、4张2元、8张1元的人民币,从中 拿出12元,有几种拿法? 3,用红、黄、绿三种颜色去涂下面的圆,每个 圆涂一种颜色,共有多少种不同的涂法?
五年级奥数举一反三
【例题4】有一张长方形的周长是200厘米,且长和宽都是整 数。问:当长和宽是多少时它的面积最大?当长和宽是多少 时,它的面积最小? 【思路导航】 因为长方形的周长200厘米,所以,长方形的长+宽=100厘 米。由于长和宽都是整数,我们可以举例观察。可以看出: 当长与宽都是50厘米时,它的面积最大;当长与宽的差最大, 即长99厘米,宽1厘米时,面积最小。
五年级奥数举一反三
五年级奥数举一反三
有些题目,因其所求的答案有多种,用算式不 容易表示,需要采用一一列举的方法解决。这种 根据题目的要求,通过一一列举各种情况,最终 达到解答整个问题的方法叫做列举法。 用列举法解题时需要掌握以下三点: 1,列举时应注意有条理的列举,不能杂乱无章 地罗列; 2,根据题意,按范围和各种情况分类考虑,做 到既不重复又不遗漏; 3,排除不符合条件的情况,不断缩小列举的范 围。
五年级奥数举一反三
【练习5】 1,从1到100的自然数中,数字“1”出现了多 少次?

五年级奥数举一反三第353637周之估值、火车行程、简单列举

五年级奥数举一反三第353637周之估值、火车行程、简单列举

第353637周之估值、火车行程、简单列举估值问题专题简析:在日常生活中,某些量往往只需要作一个大致的估计,如对某厂下一年生产的总产值的估计就只能是一个大概数,很难也没有必要精确到几元几角几分。

估算就是对一些量的粗略运算,不仅现在,就是今后科学技术相当发达了,这类计算仍然十分必要。

如果我们的计算结果与粗略估计大相径庭,就说明我们的计算过程必然有错。

估算常采用的方法是:1,省略尾数取近似数;2,用放大或缩小的方法来确定某个数或整个算式的取值范围进行估算。

例1 计算12345678910111213÷31211101987654321商的小数点后前三位数字是多少?分析:如果把被除数和除数一位不舍的进行计算,既繁难也没有必要。

从近似数的乘除法计算法则中可知,把已知数中有效数字的个数多的四舍五入到只比结果中需要的个数多一个,除法计算要比结果多算出一位,并把算得的结果四舍五入到应有的有效数字的个数。

因此,可将被除数和除数同时舍去13位,各保留4位。

原式≈1234÷3121≈0.3953≈0.395即商的小数点后前三位数字是“395”。

练习一1,计算5.43826÷2.01202(保留两位小数)。

2,31211101987654321÷12345678910111213所得商的小数点后前三位数字依次是多少?3,在○里填上“>”、“<”或“=”。

32221202÷12131415○6543210÷2122203例2 请你在123456789×987654321○123456788×987654322的○里填上“>”、“<”或“=”。

分析:用分别求积再比较的方法显然麻烦。

如果我们根据乘法的分配律把两边的算式展开,就可以比较它们的积的大小了。

左边:123456789×987654321=(123456788+1)×987654321=123456788×987654321+987654321右边:123456788×987654322=123456788×(987654321+1)=123456788×987654321+123456788比较左、右两边展开的结果,显然左边大,因此,○里填“>”。

小学趣味数学(简单奥数)

小学趣味数学(简单奥数)

51061171214132143981615从简单想起二年级例题精选 学校进行乒乓球单打比赛,参赛选手一共有25人。

如果采用淘汰赛(即每两人比赛一场,输者淘汰),直到冠军产生,一共要进行 场比赛.【思路点睛】25人有点多,从人数少的情况想起。

2位选手决出冠军只要赛1场;3位选手决出冠军只要赛2场(如图1);4位选手决出冠军只要赛3场(如图2)……图1 选手人数 2 3 4 …… 25 比赛场数123……?规律:选手人数-1=比赛场数 解答:25-1=24(场)思维体操1.将100个自然数按图3所示排好,那么第9行左起第二个数是_____。

图32。

如图4,一张桌子可以坐6个人,如图5,两张桌子拼起来可以坐10个人,那么20张桌子像这样拼起来可以坐______人.简单想起是一种研究问题的好方法,可以概括为:多的不会,少的想起;大的不会,小的想起;复杂的不会,简单的想起。

智慧姐姐 …3.100个6相乘,积的个位数字是______。

例题精选 线段AB 上共有12个端点,那么这条线段上一共有__ __条不同的线段。

【思路点睛】12个端点太多了,从2个端点开始想起。

AB 上共有2个点,有线段:1条AB 上共有3个点,有线段:1+2=3(条) AB 上共有4个点,有线段:1+2+3=6(条)AB 上共有5个点,有线段:1+2+3+4=10(条) ……AB 上共有12个点,有线段:1+2+3+4+…+9+10+11=66(条)思维体操1.如图6,圆周上有10个点,过这些点最多可以画__ __条线段。

图62.100个3相乘,积的个位数字是______。

3.在一张纸上,画10条直线,最多可以有______个交点。

例题精选 一个楼梯共有8个台阶,规定上楼时每次只能跨上一个或跨上两个台阶.从地面到最上层共有______种不同的跨法。

【思路点睛】8个台阶太多了,从少的想起。

只有一个台阶,那只有一种跨法,如图7; 有两个台阶,则有两种跨法,如图8;有三个台阶,如果第一次跨两个台阶,还剩下一个台阶,跨法同图7,如果第一次跨一个台阶,还剩下两个台阶,跨法同图8,1+2=3(种);有四个台阶,如果第一次跨两个台阶,还剩下两个台阶,跨法同图8;如果第一次跨一个台阶,还剩下三个台阶,跨法同图9, 2+3=5(种);……图710个310个3 10个9 10个910个9规律:从第三个台阶起,所登台阶的跨法数等于前两个所登台阶跨法数的和。

五年级奥数第28讲简单列举(教师版)

五年级奥数第28讲简单列举(教师版)

五年级奥数第28讲简单列举〈教师版〉教学目标用列举解决简单实际问题,能不重复、不遗漏的找到符合要求的答案。

发展学生思维的条理性和严密性。

知识梳理养鸡场的工人,小心翼翼地把鸡蛋从筐里一个一个往外拿,边拿边数筐里的鸡蛋拿光了,有多少个鸡蛋也就数清了,这种计数的方法就是枚举法。

一般地,根据问题要求,一一列举问题,并加以解决,最终达到解决整个问题的目的。

这种分析问题、解决问题的方法,称之为枚举法。

运用枚举法解决应用题时,必须注意无重复、无遗漏。

为此必须力求有次序、有规律地进行枚举。

典例分析例⒈从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。

从小华家到文峰公园,有几种不同的走法?【解析】为了帮助理解题意,我们可以画出如上示意图。

我们把小华的不同走法一一列举如下:根据列举可知,从小明家经学校到文峰公园,走⒈路有4种不同走法,走⒉路有4种不同走法,走3.路也有4种不同走法,共有4×3=12种不同走法。

例⒉用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?【解析】要使信号不同,要求每一种信号颜色的顺序不同,我们可以把这些信号进行列举。

可以看出,红色信号灯排在第一个位置时,有两种不同的信号;绿色信号灯排在第一个位置时,也有两种不同的信号;黄色信号灯排在第一个位置时,也有两种不同的信号,因而共有3个2种不同排列方法,即2×3=6种。

例3、一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能?【解析】由于长方形的周长是22米,可知它的长与宽之和为11米。

下面列举出符合这个条件的各种长方形:这个长方形的面积共有5种可能。

例⒋有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?【解析】把4个小朋友分别编号:A、B、C、D,A与其他小朋友打电话,应该打3次,同样B 小朋友也应打3次电话,同样C、D应该各打3次电话。

4个小朋友,共打了3×4=12次。

小学五年级奥数题大全及答案

小学五年级奥数题大全及答案


姓名
得分
二、解答题
11、计算 172.4 6.2+2724 0.38
12、计算
0.00…0181 0.00…011 963 个 0 1028 个 0
13、计算 12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.23
14、下面有两个小数: a=0.00…0105 1994 个 0 求 a+b,a-b,a b,a b. b=0.00…019 1996 个 0
13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成 3 张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将 100 张黄油 票换成 100 张香肠票,并且在整个交换过程中刚好出手了 1991 张票券?
14、试找出这样的最小自然数,它可被 11 整除,它的各位数字之和等于 13.

姓名
得分
二、解答题
1、173□是个四位数字.数学老师说:“我在这个□中先后填入 3 个数字, 所得到的 3 个四位数,依次可被 9、11、6 整除.”问:数学老师先后填入的 3 个数字的和是多少?
12、在 1992 后面补上三个数字,组成一个七位数,使它们分别能被 2、3、5、11 整除,这个七位数最小值是多少?

姓名
得分
二、解答题
11、计算 32.14+64.28 0.5378 0.25+0.5378 64.28 0.758 64.28 0.125 0.5378
12、计算 0.888 125 73+999 3
13、计算 1998+199.8+19.98+1.998

五年级奥数题100题(附答案)-简单奥数题五年级

五年级奥数题100题(附答案)-简单奥数题五年级

五年级奥数题100题(附答案)-简单奥数题五年级五年级奥数题100题(附答案)1. 765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002. (9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000 (500个9000) =45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。

6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。

高斯小学奥数五年级上册含答案_余数的性质与计算

高斯小学奥数五年级上册含答案_余数的性质与计算

高斯小学奥数五年级上册含答案_余数的性质与计算第二十一讲余数的性质与计算37』桂除的余数足多少?我知沽玳,余数昂7!^1这一讲我们来学习余数问题.在整数的除法中,只有能整除和不能整除两种情况. 当不能整除时,就会产生余数.一般地,如果a是整数,b是整数(b丰0),若有a+ b=q r (也就是a b q r ), 0当r 0 时,我们称a 能被b 整除;当r 0 时,我们称a 不能被b 整除,r 为a 除以b 的余数,q 为a 除以b 的商余数问题和整除问题是有密切关系的,因为只要我们去掉余数,就能和整除问题联系在一起了.余数有如下一些重要性质.基本性质:被除数=除数X商(当余数大于0时也可称为不完全商)+余数除数=(被除数-余数)*商;商=(被除数-余数)十除数.余数小于除数.理解这条性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.例题1.用一个自然数去除另一个整数,商40,余数是16,被除数、除数的和是877,求被除数和除数各是多少?「分析」如果设除数为a,被除数可以表示为什么?练习1.甲、乙两数的和是2014,甲数除以乙数商99余14,求甲、乙两数.我们之前学过一些特殊数(如2、3、4、5、7、8、9、11、13、25、99、125)的整除1)一个数除以2或5的余数,等于这个数的个位数字除以2或5的余数;一个数除以4或25的余数,等于这个数的末两位数除以4或25的余数;一个数除以8或125的余数,等于这个数的末三位数除以8或125 的余数;2)一个数除以3或9的余数,等于这个数的各位数字和除以3或9的余数;特性.这些数的整除特性稍加改造,即可成为求解余数的一类简便算法:一个数除以99(包括11、33)的余数,等于将它两位截断再求和之后的余数;此外,求3和9的余数还可应用乱切的方法.(3)一个数除以11 的余数,等于它的奇位数字和减去偶位数字和除以11的余数,如果奇位数字和比偶位数字和小,则先加上若干个11 再减即可.(4)一个数除以7、11和13的余数,等于将它三位截断之后,奇数段之和减去偶数段之和除以7、11 和13 的余数,如果奇数段之和比偶数段之和小,则加上若干个7、11 或13再减即可.这种利用整除特性来计算余数的方法叫做特性求余法.例题2.1)20132013 除以4和8 的余数分别是多少?2)20142014 除以3和9 的余数分别是多少?分析」根据4、8、3、9 的特性,可以很快计算出结果.练习2.(1)20121221 除以5和25 的余数分别是多少?(2)20130209 除以3和9 的余数分别是多少?例题3.(1)123456789 除以7和11的余数分别是多少?87654321 呢?(2)360360360 除以99 的余数是多少?「分析」根据7、1、99 的特性,可以计算出结果.在截断的时候要特别小心.练习3.201420132012 除以13和99 的余数分别是多少?为了更好地了解余数的其它一些重要性质,我们再来做几个练习:1)211除以9的余数是_______ ;(2)137除以9的余数是_________(3) 211 137的和除以9的余数是___________ ; ( 4) 211 137的差除以9的余数是(5)211 137的积除以9的余数是__________ ; (6) 1372除以9的余数是________比较上面的结果,我们发现余数还有一些很好的性质:和的余数等于余数的和;差的余数等于余数的差;积的余数等于余数的积?这三条性质分别称为余数的可加性、可减性和可乘性?在计算一个算式的结果除以某个数的余数时,可以利用上述性每个数都用它除以7的质进行简算.例如计算33 37 15 80的结果除以7的余数就可以像右侧这样计算?这一简算方法又称替换求余法?需要提醒大家的是,虽然上述三条计算余数的口诀朗朗上口,但并不严格,在使用时还需要注意:(1)如果替换之后余数的计算结果大于除数,还需要再次计算结果的余数.例如:在计算423 317除以6的余数时,利用“和的余数等于余数的和”,结果就变成了3 5 8, 8 6,所以还需要再次计算8除以6的余数是2,才是423 317除以6最后的余数?再比如:在计算423 317除以6的余数时,也会遇到3 5 15 6的情况,同样的还需要计算15除以6的余数是3,才是最终的结果.(2)在计算减法时,会出现余数不够减的情况,这时只要再加上除数或除数的倍数即可?例如:在计算423 317除以6的余数时,会发现结果变成了3 5不够减.此时,只要再加上6,用6 3 5 4来计算即可.例题4.一年有365天,轮船制造厂每天都可以生产零件1234个?年终将这些零件按6个一包的规格打包,最后一包不够6个.请问:最后一包有多少个零件?「分析」最后一包的零件数实际上就是零件总数除以19的余数.练习4.(1)123 456 789除以111 的余数是多少?(2)224468 6678的结果除以22 余数是多少?如果我们将“特性求余法”和“替换求余法”相结合,便可大大简化余数的计算.例题5.(1)87784 49235 81368除以4、9 的余数分别是多少?(2)365366+367368 369370除以7、11、13 的余数分别是多少?「分析」要把结果算出来,再求余数,计算量很大.看看如何利用“替换求余”以及“特性求余”的方法来进行求解.例题6.( 1) 2100的个位数字是多少?32014除以10 的余数是多少?(2) 32014除以7 的余数是多少?「分析」一个数的个位数字就是它除以10 的余数,大家来找一下个位数字的变化规律.小熊分粽子今天是端午节, 猴爸爸一大早就领着猴儿们去观看龙舟比赛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级奥数第37周简单列

专题简析:
有些题目,因其所求的答案有多种,用算式不容易表示,需要采用一一列举的方法解决。

这种根据题目的要求,通过一一列举各种情况,最终达到解答整个问题的方法叫做列举法。

用列举法解题时需要掌握以下三点:
1,列举时应注意有条理的列举,不能杂乱无章地罗列;
2,根据题意,按范围和各种情况分类考虑,做到既不重复又不遗漏;
3,排除不符合条件的情况,不断缩小列举的范围。

例1 有一张5元、4张2元和8张1元的人民币,从中取出9元钱,共有多少种不同的取法?
分析:如果不按一定的顺序去思考,就可能出现遗漏或重复的取法。

因此,我们可以按照从大到小、从少到多的顺序,先排5元的,再排2元的,最后排1元的,把可以组成9元的情况一一列举出来。

从上面的列举中可以看出:取9元钱共有7种不同的取法。

练习一
1,有足够的2角和5角两种人民币,要拿出5元钱,有多少种不同的拿法?
2,有2张5元、4张2元、8张1元的人民币,从中拿出12元,有几种拿法?
3,用红、黄、绿三种颜色去涂下面的圆,每个圆涂一种颜色,共有多少种不同的涂法?
○○○
例2 有1、2、3、4四张数字卡片,每次取3张组成一个三位数,可以组成多少个奇数?
分析要组成的数是奇数,它的个位上应该是1或者3。

当个位是1时,把能组成的三位数一一列举出来:321,421,231,431,241,341共6个;同样,个位是3的三位数也是6个,一共能组成6×2=12个。

练习二
1,用0、1、2、3四个数字,能组成多少个三位数?
2,用3、4、5、6四张数字卡片,每次取两张组成两位数,可以组成多少个偶数?
3,甲、乙、丙、丁四位同学和王老师站成一排照相,共有多少种不同的站法?
例3 在一张圆形纸片中画10条直线,最多能把它分成多少小块?
分析:我们把所画直线的条数和分成的块数列成表进行分析:
1+1+2+3+…+10=56(块)
练习三
1,在下面的长方形纸中画出5条直线最多能把它分成多少块?请你动手画一画。

2,请你算一算,在一张圆形纸片中画20条直线,最多能把它分成多少块?
3,在一个圆形纸片上画三条横着的平行线和三条竖着的平行线,把此圆分成了多少块?
例4 有一张长方形的周长是200厘米,且长和宽都是整数。

问:当长和宽是多少时它的面积最大?当长和宽是多少时,它的面积最小?
分析因为长方形的周长200厘米,所以,长方形的长+宽=100厘米。

由于长和宽都是整数,我们可以举例观察。

可以看出:当长与宽都是50厘米时,它的面积最大;当长与宽的差最大,即长99厘米,宽1厘米时,面积最小。

练习四
1,a和b都是自然数,且a+b=81。

a和b相乘的积最大可以是多少?
2,有一段竹篱笆全长24米,现把它围成一个四边形,所围面积最大是多少平方米?
3,a、b、c三个数都是自然数,且a+b+c=30。

那么a ×b×c的积最大可以是多少?最小可以是多少?
例5 从1到400的自然数中,数字“2”出现了多少次?分析:在1—400这400个数中,“2”可能出现在个位、十位或百位上。

(1)“2”在个位上:2、12、22、...、92;102、112、122、...、192;202、212、222、...、292;302、312、 (392)
共:10×4=40(次)
(2)“2”在十位上:20、21、…、29;120、121、…、129;220、221、…、229;320、321、…、329。

共10×4=40(次)
(3)“2”在百位上:从200到299共100次。

所以,数字“2”出现了10×4+100=180(次)。

练习五
1,从1到100的自然数中,数字“1”出现了多少次?2,从1到100的自然数中,完全不含数字“1”的数共有多少个?
3,1×2×3×…×100,这100个数乘积的末尾有几个连续的0?。

相关文档
最新文档