九年级数学:二次函数的图像和性质说课稿二

合集下载

二次函数的图像说课稿

二次函数的图像说课稿

二次函数的图像说课稿(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、条据文书、规章制度、心得体会、策划方案、祝福语、经典语录、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, normative documents, rules and regulations, personal experiences, planning plans, blessings, classic quotes, complete essays, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!二次函数的图像说课稿二次函数的图像说课稿作为一名无私奉献的老师,通常会被要求编写说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。

[初中数学]二次函数的图象与性质说课稿 人教版

[初中数学]二次函数的图象与性质说课稿 人教版

《二次函数的性质与图象》说课稿我将从教材分析、目标分析、教法与学法分析、过程分析四个方面来阐述我对这节课的一点真知灼见。

恳请各位专家、老师批评指正。

一、教材分析1、教材的地位和作用二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,在初中的学习中已经给出了二次函数的图象及性质,学生已经基本掌握了二次函数的图象及一些性质,只是研究函数的方法都是按照函数解析式---定义域----图象----性质的方法进行的,基于这种情况,我认为本节课的作用是让学生借助于熟悉的函数来进一步学习研究函数的更一般的方法,即:利用解析式分析性质来推断函数图象。

它可以进一步深化学生对函数概念与性质的理解与认识,使学生得到较系统的函数知识和研究函数的方法,站在新的高度研究函数的性质与图象。

因此,本节课的内容十分重要。

2、教学的重点和难点教学重点:使学生掌握二次函数的概念、性质和图象;从函数的性质推断图象的方法。

教学难点:掌握从函数的性质推断图象的方法。

二、目标分析按照新课标指出三维目标,根据任教班级学生的实际情况,本节课我确定的教学目标是:1、知识与技能:掌握二次函数的性质与图象,能够借助于具体的二次函数,理解和掌握从函数的性质推断图象的方研究法。

2、过程与方法:通过老师的引导、点拨,让学生在分组合作、积极探索的氛围中,掌握从函数解析式、性质出发去认识函数图象的高度理解和研究函数的方法。

3、情感、态度、价值观:让学生感受数学思想方法之美、体会数学思想方法之重要;培养学生主动学习、合作交流的意识等。

三、教法学法分析遵循“教师的主导作用和学生的主体地位相统一的教学规律”,从教师的角色突出体现教师是设计者、组织者、引导者、合作者,经过教师对教材的分析理解,在教师的组织引导和师生互动过程中以问题为载体实施整个教学过程;在学生这方面,通过自主探索、合作交流、归纳方法等一系列活动为主线,感受知识的形成过程,拓展和完善自己的认知结构,进而体现出教学过程中教师与学生的双主体作用。

湘教版数学九年级下册《1.2二次函数的图象与性质(2)》说课稿2

湘教版数学九年级下册《1.2二次函数的图象与性质(2)》说课稿2

湘教版数学九年级下册《1.2二次函数的图象与性质(2)》说课稿2一. 教材分析湘教版数学九年级下册《1.2二次函数的图象与性质(2)》这一节,是在学生已经掌握了二次函数的图象与性质(1)的基础上进行进一步学习的。

本节内容主要让学生了解二次函数的顶点坐标、对称轴以及开口方向等性质,并通过实例来引导学生掌握如何运用这些性质解决实际问题。

教材通过详细的理论推导和丰富的练习题目,使学生能够深入理解和掌握二次函数的图象与性质(2)。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于二次函数的概念和性质(1)已经有了一定的了解。

但是,对于二次函数的图象与性质(2)的理解和运用还需要进一步的引导和培养。

此外,学生的学习兴趣和学习习惯也是影响教学效果的重要因素。

因此,在教学过程中,需要充分考虑学生的实际情况,因材施教,激发学生的学习兴趣,培养学生的学习习惯。

三. 说教学目标1.知识与技能目标:让学生掌握二次函数的顶点坐标、对称轴以及开口方向等性质,并能够运用这些性质解决实际问题。

2.过程与方法目标:通过实例分析和练习,培养学生的数学思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的团队合作意识和积极向上的学习态度。

四. 说教学重难点1.教学重点:二次函数的顶点坐标、对称轴以及开口方向等性质的推导和运用。

2.教学难点:如何引导学生理解和运用二次函数的性质解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究和解决问题。

2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合现代教育技术,为学生提供丰富的学习资源和学习工具。

六. 说教学过程1.导入:通过回顾二次函数的图象与性质(1),引导学生自然过渡到二次函数的图象与性质(2)的学习。

2.讲解:详细讲解二次函数的顶点坐标、对称轴以及开口方向等性质,并通过实例进行分析。

二次函数的图象和性质说课稿

二次函数的图象和性质说课稿

人教版义务教育课程标准试验教科书《数学》九年级下册第26章第1节第6课时二次函数的图象和性质(说课)嘉鱼县渡普中学 寿华锋尊敬的各位评委、老师大家好,我今天说课的题目是人教版义务教育课程标准试验教科书数学九年级下册第26章《二次函数的图象和性质》。

一、教材分析1、教材的地位和作用二次函数是反映变量间的数量关系和变化规律的一种常见的数学模型,与人们的生活密切相关,而且在生活实际中有着广泛地应用。

在本节课之前,学生已学习了二次函数的概念和二次函数y ﹦ax 2、y ﹦a(x ­h)2 +k 的图象和性质,因此本课的教学是在学生学过二次函数的基础知识的基础上,引导学生进一步地掌握、深化二次函数的图象和性质,它既是前面所学知识的拓展和延伸,又为后面的二次函数与方程、不等式、及实际应用奠定良好的迁移基础。

这不仅符合学生的认知规律,而且还使学生进一步体会了由特殊到一般和数形结合的思想方法。

因此,这节课无论是在知识上,还是对学生能力的培养上都有着十分重要的作用。

2、根据新课标要求和学生已有的知识经验,我从知识、技能、思想、活动经验四个方面确定教学目标(1)知识目标:让学生经历探索二次函数y ﹦ax 2+bx+c 的图象的开口方向、对称轴、和顶点坐标的过程,理解二次函数y ﹦ax 2+bx+c 的性质(2)技能目标:让学生掌握用描点法画出函数y ﹦ax 2+bx+c 的图象,和用配方法确定抛物线的对称轴、顶点坐标(3)思想目标:通过对二次函数的图象和性质的探究,让学生体验从特殊到一般的研究思路,增强学习数学的信心(4)活动经验目标: 通过实践、观察、归纳等教学活动,让学生获得结合图象讨论性质是数形结合地研究函数的重要方法3、根据学生的认知发展水平和教材的结构体系,我确定本节课的重难点重点:用描点法画出二次函数y ﹦ax 2+bx+c 的图象,和通过配方确定抛物线的对称轴、顶点坐标难点:理解二次函数y ﹦ax 2+bx+c 的性质,及它的对称轴是x=­ab 2,顶点坐标(­a b 2,a 4b ac 42 )。

初中九年级数学说课稿二次函数地图象与性质

初中九年级数学说课稿二次函数地图象与性质

二次函数y=ax2地图象与性质地说课稿《二次函数y=ax2地图象与性质》,根据新课标理念,对应本节,将以教什么,怎样教以及为什么这样教为思路,从分析,教学目的分析,教学方法分析,教学过程分析四个方面加以说明。

一,分析(说):1,所处地地位与作用:《二次函数y=ax2地图象与性质》是初中数学(人教版)九年级下第26章二次函数地一节内容。

本节内容主要是作函数y=ax2地图象,通过图象研究y=ax2地开口方向,对称轴,顶点坐标等其它性质。

本课是在学生掌握了二次函数地概念下对二次函数y=ax2地图象与性质进一步地研究,通过作出二次函数地图象来研究它地性质。

通过这节地学习,学生将掌握函数y=ax2地图象与性质,是进一步学习二次函数地基础。

二次函数地图象与性质是初中阶段所学地有关函数知识地重要内容之一。

2,教学目的:根据上述分析,考虑到学生已有地认知结构心理特征,制定如下教学目的: (1),知识目的:会用描点法画出二次函数y=ax2地图象,能根据图象观察,分析出二次函数y=ax2地开口方向,对称轴,顶点坐标等有关性质。

(2),能力目的:通过函数图象进一步理解二次函数与抛物线地有关知识,并且能应用到实际问题中;提高学生对比,发现,概括地能力;培养观察能力与分析问题地能力。

(3),情感目的:通过作函数图象,认识数形结合地数学思想方法,体会数学中地特殊与一般地辨证关系.;培养学生动手能力,勇于探索创新及实事求是地科学精神.。

3,教学重点,难点:本着课程目的,在充分理解地基础上,确立了如下地教学重点,难点。

教学重点:1,画出二次函数y=ax2 地图象;2,根据图象观察,分析出二次函数y=ax2地性质 ;教学难点:二次函数y=ax2地性质地应用,渗透数形结合地数学思想方法,了解从特殊到一般地探索方法,培养观察能力与分析问题地能力。

二,教学策略(说教法):1,教学手段:启发式讲解互动式讨论研究式探索本节课以学生地自主探索为主,老师主要通过演示引导启发学生得出结论,这样有利于学生提高学习兴趣,获得成就感。

二次函数的图像说课稿(精选6篇)

二次函数的图像说课稿(精选6篇)

二次函数的图像说课稿(精选6篇)二次函数的图像说课稿 1尊敬的各位评委、各位老师:大家好!今天我说课的题目是《二次函数的图像》,这是北师大版必修1第二章的第四节课。

下面我将围绕本节课“教什么?”、“怎样教?”、“为什么这样教?”三个问题,从教材内容、教法学法、教学过程这三个方面逐一分析说明。

一、教材内容分析:1、本节课内容在整个教材中的地位和作用。

概括地讲,二次函数的图像在教材中起着承上启下的作用,它的地位体现在它的思想的基础性。

一方面,本节课是对初中有关内容的深化,为后面进一步学习二次函数的性质打下基础;另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。

2、教学目标定位。

根据教学大纲要求、新课程标准精神和高一学生心理认知特征,我确定了三个层面的教学目标。

第一个层面是基础知识与能力目标:理解二次函数的图像中a、b、c、k、h的作用,能熟练地对二次函数的一般式进行配方,会对图像进行平移变换,领会研究二次函数图像的方法,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力;第二个层面是过程和方法:让学生经历作图、观察、比较、归纳的学习过程,使学生掌握类比、化归等数学思想方法,养成即能自主探索,又能合作探究的良好学习习惯;第三个层面是情感、态度和价值观:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

3、教学重难点。

重点是二次函数各系数对图像和形状的影响,利用二次函数图像平移的特例分析过程,培养学生数形结合的思想和划归思想。

难点是图像的平移变换,关键是二次函数顶点式中h、k的正负取值对函数图像平移变换的影响。

二、教法学法分析:数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。

北师大版数学九年级下册2.2.2《二次函数的图象与性质》说课稿

北师大版数学九年级下册2.2.2《二次函数的图象与性质》说课稿

北师大版数学九年级下册2.2.2《二次函数的图象与性质》说课稿一. 教材分析北师大版数学九年级下册2.2.2《二次函数的图象与性质》这一节的内容,是在学生已经掌握了二次函数的一般形式和自变量与函数值的关系的基础上进行讲解的。

二次函数的图象与性质是二次函数的重要内容,对于学生来说,理解二次函数的图象与性质有助于更好地理解和应用二次函数。

本节课的主要内容包括二次函数的图象、顶点的性质、开口方向的性质、对称轴的性质和增减性。

这些内容是理解二次函数图象的关键,也是学生学习本节课的重点。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于二次函数的一般形式和自变量与函数值的关系已经有了一定的了解。

但是,对于二次函数的图象与性质的理解还需要进一步的引导和讲解。

此外,学生的空间想象能力和逻辑思维能力还需要进一步的培养。

三. 说教学目标1.知识与技能:使学生掌握二次函数的图象与性质,能够通过图象理解和应用二次函数。

2.过程与方法:通过观察、分析和推理,培养学生空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的探究精神和合作精神。

四. 说教学重难点1.教学重点:二次函数的图象与性质。

2.教学难点:二次函数的图象与性质的理解和应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。

2.教学手段:利用多媒体课件和数学软件进行教学。

六. 说教学过程1.导入:通过复习二次函数的一般形式和自变量与函数值的关系,引导学生进入本节课的学习。

2.讲解:讲解二次函数的图象与性质,通过多媒体课件和数学软件进行演示,让学生直观地理解二次函数的图象与性质。

3.练习:让学生通过练习题目的方式,巩固对二次函数图象与性质的理解。

4.总结:对本节课的内容进行总结,强调二次函数的图象与性质的重要性。

5.作业:布置相关的作业,让学生进一步巩固对二次函数图象与性质的理解。

七. 说板书设计板书设计要清晰、简洁,能够突出二次函数的图象与性质的重点内容。

九年级数学下册《二次函数的图像与性质》教学教案(通用3篇)

九年级数学下册《二次函数的图像与性质》教学教案(通用3篇)

九年级数学下册《二次函数的图像与性质》教学教案(通用3篇)九年级数学下册《二次函数的图像与性质》教学篇1【知识与技能】1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?问题2 如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思考探究,获取新知探究1 画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.如图(1)就是y=x2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形.如图(2)就是漏掉点(0,0)的y=x2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.九年级数学下册《二次函数的图像与性质》教学教案篇2 【知识与技能】1.会用描点法画二次函数y=ax2+bx+c的图象.2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.【教学重点】①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.【教学难点】能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.一、情境导入,初步认识请同学们完成下列问题.1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.3.画y=-2x2+6x-1的图象.4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.5.二次函数y=-2x2+6x-1的y随x的增减性如何?【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k的转化过程.二、思考探究,获取新知探究1 如何画y=ax2+bx+c图象,你可以归纳为哪几步?学生回答、教师点评:一般分为三步:1.先用配方法求出y=ax2+bx+c的对称轴和顶点坐标.2.列表,描点,连线画出对称轴右边的部分图象.3.利用对称点,画出对称轴左边的部分图象.探究2 二次函数y=ax2+bx+c图象的性质有哪些?你能试着归纳吗?九年级数学下册《二次函数的图像与性质》教学教案篇3 【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质. 【教学难点】二次函数图象的性质及其探究过程和方法的体会.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次函数的图像和性质》说课稿
尊敬的老师、亲爱的同学们:
大家好!今天我说课的题目是《二次函数的图像和性质》,这是九年级下册第26章的内容。

下面我将围绕本节课“教什么?”、“怎样教?”、“为什么这样教?”三个问题,从教材内容、教法学法、教学过程这三个方面逐一分析说明。

一、教材内容分析:
1、本节课内容在整个教材中的地位和作用。

概括地讲,二次函数的图像在教材中起着承上启下的作用,它的地位体现在它的思想的基础性。

一方面,本节课是对一次函数有关内容的推广,为后面进一步学习二次函数的性质打下基础;另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。

2、教学目标定位。

根据教学大纲要求、新课程标准精神和初中学生心理认知特征,我确定了三个层面的教学目标。

第一个层面是基础知识与能力目标:理解二次函数的图像中a、b、c、k的作用,能熟练地对二次函数的一般式进行配方,会对图像进行平移变换,领会研究二次函数图像的方法,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力;第二个层面是过程和方法:让学生经历作图、观察、比较、归纳的学习过程,使学生掌握类比、化归等数学思想方法,养成即能自主探索,又能合作探究的良好学习习惯;第三个层面是情感、态度和价值观:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

3、教学重难点。

重点是二次函数各系数对图像和形状的影响,利用二次函数图像平移的特例分析过程,培养学生数形结合的思想和划归
思想。

难点是图像的平移变换,关键是二次函数顶点式中k的正负取值对函数图像平移变换的影响。

二、教法学法分析:
数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。

为了更好地体现在课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。

为此,我设计了5个环节:①创设情景——引入新课;②交流探究——发现规律;③启发引导——形成结论;
④训练小结——深化巩固;⑤思维拓展——提高能力。

这五个环节环环相扣、层层深入,注重关注整个过程和全体学生,充分调动了学生的参与性。

三、教学过程分析:
1、创设情景——引入新课。

教学应充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习乐趣。

根据教材内容,我首以y=2x²的相关知识为引例,让学生画y=x²、y=2x²和y=1/2 x²图像,进而比较这三个图像的相同点和不同点为背景切入,一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,最后引导学生总结出函数y=x²、y=2x²、y=1/2 x²和y=- x²图像的关系,得出本节课的第一个知识点,即二次项系数a决定图像的开口方向和开口大小。

由浅入深,下面让学生画y=2x²,y=2x²+1 的图像并寻找它们的联系,再让学生与多媒体课件展示出的图像进行对比,最后总结出图像的变换规律:a决定开口方向、k决定顶点坐标。

由于二次函数的重要性,本节课我以考题为背景引入新课,可
以提高学生的学习兴趣,吸引学生的课堂注意力,可以让学生
实实在在感受到高考题就在我们的课本中,就在我们平常的练
习中。

2、探究交流——发现规律。

23122+-=x y 23
121--=x y 231x y -=从特别到一般是我们发现问题、寻求规律、揭示本质最常用的方法之一。

让学生在同一
直角坐标系中画出函数
、 的图像,在进一步让学生观看PPT
上的绘画过程。

3、启发引导——形成结论。

前面的练习和例题,基本涵盖了二次函数图像变换的各种
情况,启发并引导了学生将实例的结论进行总结,试说出函数y
=ax 2+k (a 、k 是常数,a ≠0)的图像的开口方向、对称轴和
顶点坐标,并填写下表.
4、练习小结——巩固深化。

为了巩固和加深二次函数接下来组织学生进行课题练习,
1.把抛物线 向下平移2个单位,可以得到抛物
线 ,再向上平移5个单位,可以得到抛
物线 ;
2.对于函数y = –x 2
+1,当x 时,函数值y 随x 的增大而
增大;当x 时,函数值y 随x 的增大而减小;当x 时,函数取得最 值,为 。

3.函数y =3x 2
+5与y =3x 2
的图像的不同之处是( ) A.对称轴 B.开口方向 C.顶点 D.形状
4.已知抛物线y =2x 2
–1上有两点(x
1,y 1 ) ,(x 2,y 2 )且x 1<x 2<0,
则y 1 y 2(填“<”或“>”)
221x y 5.已知抛物线 ,把它向下平移,得到的抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,若⊿ABC 是直角三角形,那么原抛物线应向下平移几个单位?。

上课时间有限,为保证在完成教学任务的前提下,尽量让学生充分练习和讨论。

5、延伸拓广——提高能力。

课堂教学既要面对全体学生,又应关注学生的个体差异,体现分类推进,分层教学原则。

为此,可以设计了一个提高练习题组,供学有余力的学生能够更好的展示自己的解题能力,取得进一步提高。

以上是我对本节课的一些粗浅的熟悉和构想,望大家给予批评指正。

谢谢大家!。

相关文档
最新文档