原子吸收分光光度法原理

合集下载

原子吸收分光光度法

原子吸收分光光度法

原子吸收分光光度法1原子吸收分光光度法基本原理:原子吸收光谱分析是利用分析处于基态的待测原子蒸汽对特征辐射的吸收来测定样品中该元素含量的一种办法。

2共振吸收线:原子从基态激发到能量最低的激发态,产生的谱线称为共振吸收线。

由于元素的原子结构和外层电子排布不同,吸收的能量不同,共振吸收线各具有特征性,这种共振线称为元素的特征谱线,是元素所有谱线中最灵敏的谱线。

3原子吸收谱线轮廓和谱线宽度:谱线轮廓是指谱线具有一定频率范围和形状。

吸收线轮廓常用吸收系数K v随频率(或波长)的变化曲线来描述,而原子吸收线的特点是用谱线中心频率(由各原子能级分布特征所决定)、半宽度(最大吸收系数一半处峰的频率差)和强度来表征。

4原子吸收分光光度计:主要部件:瑞线光源、原子化器、单色器、检测器。

①光源:作用是发射待测元素的特征曲线,发射辐射波长的半宽度要明显小于吸收线的宽度,辐射强度大,稳定且背景信号小。

常用空心阴极灯。

②原子化器:将试样中的待测元素转变成原子蒸气。

主要有火焰原子化器和无火焰原子化器两类。

③单色器:衍射光栅是常用的分光元件。

单色器的作用是将所需的共振吸收线与邻近干扰线分离。

④检测系统:作用是将单色器分出的光信号进行光电转换,常用光电倍增管。

4仪器类型:①单光束原子吸收分光光度计:光源辐射不稳定引起基线漂移,仪器需预热。

②双光束原子吸收分光光度计:一束光通过火焰照样品,另一束光照参比,不通过火焰直接经单色器投射到光电元件上。

可克服光源的任何漂移及检测器灵敏度的变动。

5干扰及其消除:①电离干扰:某些易电离元素在原子化条件下电离,致使基态原子数减少,测定结果降低。

消除方法:加入消电剂。

②物理干扰:试样的物理性质(如表面张力、黏度、比重、温度等)变化影响吸收强度,导致测定误差。

标准加入法是常用的消除方法。

③光学干扰:主要指光谱线干扰和背景干扰。

谱线干扰是试样中共存元素的吸收线与被测元素的分析线相近而产生的干扰,使分析结果偏高。

原子吸收分光光度法基本原理

原子吸收分光光度法基本原理

原子吸收分光光度法基本原理一. 原子吸收光谱的产生及共振线在一般情况下,原子处于能量最低状态(最稳定态),称为基态(E0= 0)。

当原子吸收外界能量被激发时,其最外层电子可能跃迁到较高的不同能级上,原子的这种运动状态称为激发态。

处于激发态的电子很不稳定,一般在极短的时间(10-8-10-7s)便跃回基态(或较低的激发态),此时,原子以电磁波的形式放出能量:(1)图1 原子光谱的发射和吸收示意图共振发射线:原子外层电子由第一激发态直接跃迁至基态所辐射的谱线称为共振发射线;共振吸收线:原子外层电子从基态跃迁至第一激发态所吸收的一定波长的谱线称为共振吸收线;共振线:共振发射线和共振吸收线都简称为共振线。

由于第一激发态与基态之间跃迁所需能量最低,最容易发生,大多数元素吸收也最强;因为不同元素的原子结构和外层电子排布各不相同,所以“共振线” 也就不同,各有特征,又称“特征谱线”,选作“分析线”。

二. 原子吸收值与原子浓度的关系(一)吸收线轮廓及变宽图2 基态原子对光的吸收若将一束不同频率,强度为I0 的平行光通过厚度为1cm的原子蒸气时,一部分光被吸收,(2)透射光的强度Iν仍服从朗伯-比尔定律:式中:Kν——基态原子对频率为的光的吸收系数,它是光源辐射频率的ν函数由于外界条件及本身的影响,造成对原子吸收的微扰,使其吸收不可能仅仅对应于一条细线,即原子吸收线并不是一条严格的几何线(单色λ),而是具有一定的宽度、轮廓,即透射光的强度表现为一个相似于下图的频率分布:图3 Iν与ν的关系若用原子吸收系数Kν随ν变化的关系作图得到吸收系数轮廓图:图4 原子吸收线的轮廓图①K0 :峰值吸收系数或中心吸收系数(最大吸收系数);②ν0:中心频率,最大吸收系数K0 所对应的波长;③∆ν:吸收线的半宽度,K0 /2 处吸收线上两点间的距离;④:积分吸收,吸收线下的总面积。

引起谱线变宽的主要因素有:1. 自然宽度:在无外界条件影响下的谱线宽度谓之根据量子力学的 Heisenberg 测不准原理,能级的能量有不确定量∆E,可由下式估算:τ—激发态原子的寿命,当τ为有限值时,则能级能量的不确定量∆E 为有限值,此能级不是一条直线,而是一个“带”。

原子吸收分光光度法的原理及应用

原子吸收分光光度法的原理及应用

原子吸收分光光度法的原理及应用
原子吸收分光光度法(Atomic Absorption Spectrophotometry,AAS)是一种常用的分析技术,通过测量样品中金属元素的
吸收光谱,确定元素的浓度。

原理:
原子吸收分光光度法的原理基于原子在特定波长的光束中吸收特定能量的电磁辐射。

该方法利用样品中金属元素的吸收特性,根据洛仑兹定律(Lambert-Beer's Law)计算样品中金属元素
的浓度。

具体过程为:
1. 将样品原子化:将样品通过加热或气体火焰等方法转化为气态原子或原子离子。

2. 光谱测量:通过光源,将特定波长的光束传递到样品吸收室中,原子在该波长光束中吸收特定能量。

3. 吸收测量:检测样品吸收光的强度,利用洛仑兹定律计算元素浓度,分析样品中金属元素的浓度。

应用:
原子吸收分光光度法在化学分析中有广泛的应用,特别是对金属元素的测定。

主要应用领域包括:
1. 环境监测:用于土壤、水、大气等环境样品的金属元素浓度分析,如重金属的检测。

2. 食品检测:用于食品中金属元素的浓度分析,如铅、汞、镉等有害金属的检测。

3. 药物分析:用于药品中金属元素的浓度分析,如药品中的微
量金属离子的检测。

4. 工业应用:用于金属材料、矿石等工业样品中金属元素浓度分析。

5. 地质矿物分析:用于地质矿石、岩石等样品中金属元素的浓度分析。

总之,原子吸收分光光度法具有准确、灵敏度高、选择性好等特点,在金属元素浓度分析中具有广泛的应用。

原子吸收分光光度法的基本原理

原子吸收分光光度法的基本原理

原子吸收分光光度法的基本原理一、引言原子吸收分光光度法是一种常用的化学分析方法,用于测定溶液中金属元素的含量。

其基本原理是利用原子吸收光谱仪测量样品中金属元素原子在特定波长的光线下的吸收程度,通过测定吸光度来推断样品中金属元素的浓度。

本文将介绍原子吸收分光光度法的基本原理和仪器结构,以及其在实际应用中的一些注意事项。

二、原理原子吸收分光光度法的基本原理是利用金属元素原子对特定波长的光线的吸收特性。

当金属元素原子处于激发态时,它们会吸收特定波长的光线,使原子处于激发态能级上的电子跃迁到高能级。

而当金属元素原子处于基态时,它们不会吸收这些特定波长的光线。

通过测量样品溶液中特定波长的光线经过吸收后的光强度变化,可以推断出样品中金属元素的浓度。

三、仪器结构原子吸收分光光度法的仪器主要包括光源、光切割器、样品室、光路系统和检测器等部分。

光源产生特定波长的光线,光切割器用于选择特定波长的光线,样品室用于容纳待测样品溶液,光路系统将光线引导到样品室中,检测器测量经过样品溶液后的光线强度。

通过调节光切割器选择不同的波长,并测量不同波长下的吸光度,可以得到样品中金属元素的浓度信息。

四、注意事项在使用原子吸收分光光度法进行分析时,需要注意以下几点:1. 样品的制备:样品的制备对于分析结果的准确性至关重要。

样品应该经过适当的预处理,如酸溶解、稀释等,以保证样品中金属元素的浓度在合适的范围内。

2. 标准曲线的绘制:在分析过程中,需要绘制标准曲线来确定样品中金属元素的浓度。

标准曲线应该覆盖待测样品浓度范围,并包括多个浓度点,以提高分析结果的准确性。

3. 仪器的校准:在进行分析之前,需要对仪器进行校准,以保证测量结果的准确性。

校准可以通过使用已知浓度的标准溶液进行,根据标准溶液的吸光度和浓度的关系绘制标准曲线。

4. 光路系统的清洁:光路系统是原子吸收分光光度法中的关键部分,需要保持清洁以避免杂质对测量结果的影响。

定期清洁光路系统,以确保光线传输的准确性。

原子吸收分光光度法 原子吸收

原子吸收分光光度法 原子吸收

原子吸收分光光度法原子吸收分光光度法是一种强大的分析化学技术,用于测量样品中特定元素的浓度。

这种技术能够提供高灵敏度和高选择性的分析结果,因此在环境监测、食品安全、生物医学和矿产资源等领域都得到了广泛的应用。

原子吸收分光光度法能够通过测量样品中特定元素吸收特定波长的光线来实现分析,从而可以得到目标元素的浓度信息。

1. 深入探讨原理原子吸收分光光度法的原理是基于原子在特定波长的光线激发下发生能级跃迁的现象。

当原子处于基态时,吸收特定波长的光线会使得原子中的电子跃迁到高能级,形成激发态;而当电子从高能级跃迁回基态时,会释放出特定波长的光线。

通过测量样品对特定波长光线的吸收量,就可以得到目标元素的浓度信息。

2. 工作原理原子吸收分光光度法的工作原理是通过光源、样品室、光谱仪和信号处理系统四个主要部分相互配合来实现的。

光源会产生特定波长的光线,并经过样品室中的样品后被光谱仪检测。

光谱仪会将不同波长的光线进行分离,并通过信号处理系统转换成对应的吸收量。

通过比对吸收量和标准曲线,就可以得到目标元素在样品中的浓度。

3. 应用领域原子吸收分光光度法在环境监测中有着重要的应用,例如大气颗粒物中重金属元素的测定;在食品安全领域,可以用于检测食品中的微量元素;在生物医学和生物化学研究中,可以用于体液中微量元素的测定;在矿产资源勘探和开发中,也可以用于矿石中目标元素的测定。

4. 总结与展望原子吸收分光光度法作为一种高灵敏度、高选择性的分析技术,为各个领域的分析化学研究提供了重要的支持。

随着科学技术的不断进步,原子吸收分光光度法的灵敏度和分辨率将得到进一步提升,从而能够更准确地测定样品中微量元素的含量。

该技术也将更广泛地应用于新的领域,并为人类健康、环境保护和资源利用等方面带来更多的益处。

个人观点原子吸收分光光度法作为一种重要的分析化学技术,对于解决实际中的分析难题具有重要的意义。

我对这一技术深信不疑,并且认为在科学研究和工程应用中,原子吸收分光光度法将会发挥越来越重要的作用。

简述原子吸收分光光度法的基本原理

简述原子吸收分光光度法的基本原理

简述原子吸收分光光度法的基本原理原子吸收分光光度法是一种常用的化学分析方法,用于测量物质的吸收光谱。

其基本原理是,当物质吸收光子时,其分子或原子会与光子相互作用,导致分子或原子振动并改变其能量。

根据能量与波长的关系,物质的吸收光谱可以被记录下来,并用于确定物质的吸收程度和化学性质。

原子吸收分光光度法使用一种称为原子吸收装置的设备。

原子吸收装置中包含一个光源(如LED或激光)和一个吸收剂(如气体或液体)。

当光源发出光子时,这些光子会被吸收剂吸收,并激发原子或分子。

这些原子或分子随后振动并释放光子,这个过程被称为原子吸收。

根据原子吸收光谱的波长范围,吸收剂可以吸收不同波长的光子,导致其光谱变化。

原子吸收分光光度法的基本步骤包括:1. 光源发出光子,被吸收剂吸收。

2. 原子或分子被激发并释放光子。

3. 测量释放光子的波长,并计算出吸收剂的吸收光谱。

4. 根据吸收光谱确定吸收剂的吸收程度和化学性质。

原子吸收分光光度法的基本原理可以应用于许多领域,如分析化学、有机合成、环境科学、生物学等。

例如,在化学分析中,原子吸收分光光度法可以用于检测化合物的吸收光谱,以确定其化学性质和结构。

在有机合成中,原子吸收分光光度法可以用于检测有机化合物的吸收光谱,以确定其结构和活性。

在环境科学中,原子吸收分光光度法可以用于检测污染物的吸收光谱,以确定其毒性和来源。

除了基本的原子吸收装置外,原子吸收分光光度法还可以使用多个技术和设备,如多孔板分光光度法、荧光分光光度法等,以满足不同的应用需求。

随着技术的发展,原子吸收分光光度法在化学分析、环境科学和生命科学等领域中的应用越来越广泛。

原子吸收分光光度计原理

原子吸收分光光度计原理

原子吸收分光光度计原理
原子吸收分光光度计(Atomic Absorption Spectrophotometer,AAS)的原理是利用原子的特定吸收行为来定量分析样品中特定元素的浓度。

其基本原理包括以下几个步骤:
1. 光源辐射:AAS中常用的光源是中空阴极灯,灯管内填充有待测元素的金属盐。

光源被加热电流激发后产生特定波长的吸收光谱。

2. 光-物质相互作用:将待测样品溶液通过喷射器或电感耦合等方式引入光程中。

在光程内,特定波长的光与待测元素中的原子发生相互作用。

3. 吸收:待测元素的原子吸收入射光,在特定波长下,原子中的电子从基态跃迁至激发态,吸收特定波长的光。

4. 检测:经过吸收后的光经过样品后,进入检测系统。

检测系统采用光电二极管、光电倍增管等探测器将光信号转化为电信号。

5. 信号处理:电信号经过放大、滤波等处理后,可通过计算机或其他方式对信号进行处理和分析。

6. 分析结果:通过比对待测物质吸收信号和标准曲线,可以定量分析出样品中待测元素的浓度。

总体来说,原子吸收分光光度计利用待测样品在特定波长下对光的吸收特性来分析元素的浓度。

原子吸收分光光度法的原理

原子吸收分光光度法的原理

原子吸收分光光度法的原理
原子吸收分光光度法(atomic absorption spectrophotometry)原子吸收法,是利
用被测元素基态原子蒸气对其共振辐射线的吸收特性进行元素定量分析的方法。

特点:
1、灵敏度低:常规分析法对大多数元素可以达至ppm级;利用特定手段可以达至ppb 级的浓度范围;
2、精密度好:测定rsd为1%~3%,利用特殊方法精密度可小于1%;
3、应用领域范围广:周期表中70多种元素可以利用该法测定;
4、干扰少:原子吸收光谱为分立的锐线光谱,且谱线重叠性少,干扰性小;
5、试样用量太少:使用石墨炉并无火焰原子稀释法,每次测量仅须要5~20μl试液
或0.05~10mg的液态试样;
6、快速简便,易于自动化:液体试样常可直接进样,一般样品无需进行预分离处理,新型号商品仪器的进样和测定步骤全部自动化完成。

原子稀释分光光度法应用领域的主要管制就是:该法就可以展开无机元素的含量分析,无法轻易用作有机化合物的含量分析和结构分析;另外,常规原子稀释分光光度法每测量
一种元素,必须更改一次空心阴极灯光源,无法同时展开多元素分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原子吸收分光光度法测定矿石中的铜
原子吸收光谱法基于从光源发出的被测元素的特征辐射通过样品蒸气时,被待测元素基态原子所吸收,由辐射的减弱程度求得样品中被测元素的含量。

在锐线光源条件下,光源的发射线通过一定厚度的原子蒸气,并被基态原子所吸收,吸光度与原子蒸气中待测元素的基态原子数间的关系遵循朗伯-比耳定律:
A=log I0/I =KLN
式中A为吸光度;I0为入射光强度;I为经过原子蒸气吸收后的透射光强度;K 为吸光系数,L为光波所经过的原子蒸气的光程长度,N为基态原子密度。

在火焰温度低于3000K的条件下,可以认为原子蒸气中基态原子的数目实际上接近于原子总数。

特定的实验条件下,原子总数与试样浓度c B的比例是恒定的,所以,上式又可以写成:
这就是原子吸收分光光度法的定量基础。

常用的定量方法为标准曲线法和标准加入法等。

原子吸收分光光度计主要组成部分包括光源、原子化器、分光系统和检测系统。

其光路如图32-1所示。

图32-1 原子吸收分光光度计光路图
1.空心阴极灯;2.火焰;3.入射狭缝;4.凹面反射镜;5.光栅;6.出射
狭缝;7.检测器
原子吸收分光光度计的光源用空心阴极灯,它是一种锐线光源。

灯管由硬质玻璃制成,一端由石英或玻璃制成光学窗口,两根钨棒封入管内,一根连有由钛、锆、钽等有吸气性能金属制成的阳极,另一根上镶有一个圆筒形的空心阴极。

筒内衬上或熔入被测元素,管内充有几百Pa低压载气,常用氖或氩气。

当在阴阳两极间加上电压时,气体发生电离,带正电荷的气体离子在电场作用下轰击阴极,使阴极表面的金属离子溅射出来,金属原子与电子、惰性气体的原子及离子碰撞激发而发出辐射。

最后,金属原子又扩散回阴极表面而重新沉积下来。

通常,改变空心阴极灯的电流可以改变灯的发射强度。

在忽略自吸收的前提下,其经验公式为I=ai n,其中a、n均为常数,i为电流强度。

n与阴极材料、灯内所充气体及谱线的性质有关。

对于Ne、Ar等气体,n值在2~3之间,由此可见,灯的发光强度受灯电流的影响较大,影响吸光度值。

THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。

相关文档
最新文档