函数在闭区间上的最值问题
二次函数在闭区间上的最值问题

龙源期刊网
二次函数在闭区间上的最值问题
作者:宋验兵
来源:《新课程·教研版》2011年第14期
摘要:二次函数f(x)=ax2+bx+c(a≠0)在闭区间[p,q]上的最值问题实质是利用函
数的单调性,就对称轴与区间的“定”“动”关系,分类解析
关键词:定轴定区间;定轴动区间;动轴定区间;动轴动区间
二次函数f(x)=ax2+bx+c(a≠0)在闭区间[p,q]上的最值问题是二次函数的重要题
型之一,求解的关键是判断对称轴和区间的位置关系,其实质是利用函数的单调性。
现就对称轴与区间的“定”“动”关系,分类解析如下:
一、定轴定区间
例1.已知函数f(x)=2x2+x-3,求f(x)在[-1,2]上的最值。
函数专题:二次函数在闭区间上的最值问题-【题型分类归纳】

函数专题:二次函数在闭区间上的最值问题一、二次函数的三种形式1、一般式:()()20=++≠f x ax bx c a2、顶点式:若二次函数的顶点为(),h k ,则其解析式为()()()20=-+≠f x a x h k a 3、两根式:若相应一元二次方程20++=ax bx c 的两个根为1x ,2x ,则其解析式为()()()()120=--≠f x a x x x x a二、二次函数在闭区间上的最值二次函数在区间上的最值,核心是函数对称轴与给定区间的相对位置讨论, 一般为:对称轴在区间的左边、中间、右边三种情况.设()()20=++≠f x ax bx c a ,求()f x 在[],∈x m n 上的最大值与最小值。
将()f x 配方,得顶点为24,24⎛⎫-- ⎪⎝⎭b ac b a a ,对称轴为2=-b x a (1)当[],2-∈bm n a时, ()f x 的最小值为2424-⎛⎫-=⎪⎝⎭b ac bf a a , ()f x 的最大值为()f m 与()f n 中的较大值; (2)[],2-∉bm n a时, 若2-<bm a,由()f x 在[],m n 上是增函数,则()f x 的最小值为()f m ,最大值为()f n ;若2->bn a,由()f x 在[],m n 上是减函数,则()f x 的最小值为()f n ,最大值为()f m ;三、二次函数在闭区间上的最值类型1、定轴定区间型:即定二次函数在定区间上的最值,其区间和对称轴都是确定的,要将函数配方,再根据对称轴和区间的关系,结合函数在区间上的单调性,求其最值(可结合图象);2、动轴定区间型:即动二次函数在定区间上的最值,其区间是确定的,而对称轴是变化的,应根据对称轴在区间的左、右两侧和穿过区间这三种情况分类讨论,再利用二次函数的示意图,结合其单调性求解;3、定轴动区间型:即定二次函数在动区间上的最值,其对称轴确定而区间在变化,只需对动区间能否包含抛物线的定点横坐标进行分类讨论;4、动轴动区间型:即动二次函数在动区间上的最值,其区间和对称轴均在变化,根据对称轴在区间的左、右两侧和穿过区间这三种情况讨论,并结合图形和单调性处理。
高一数学复习考点知识与题型讲解12---二次函数在闭区间上的最值问题

高一数学复习考点知识与题型讲解第12讲二次函数在闭区间上的最值问题二次函数在闭区间上的最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论.一般分为:对称轴在区间的左边,中间,右边三种情况.设,求在上的最大值与最小值.分析:将配方,得顶点为、对称轴为;当时,它的图象是开口向上的抛物线,数形结合可得在上的最值:(1)当时,的最小值是的最大值是中的较大者.(2)当时,由在上是增函数,则的最小值是,最大值是.(3)当时,由在上是减函数,则的最大值是,最小值是.当时,可类比得结论.【题型一】定轴动区间已知是二次函数,不等式的解集是,且在区间上的最大值是.(1)求的解析式;(2)设函数在上的最小值为,求的表达式.【解析】(1)是二次函数,且的解集是,可设-.(待定系数法,二次函数设为交点式)在区间-上的最大值是.由已知得,,-.(2)由(1)得,函数图象的开口向上,对称轴为(讨论对称轴与闭区间的相对位置)①当时,即时,在上单调递减,(对称轴在区间右侧)此时的最小值;②当时,在上单调递增,(对称轴在区间左侧)此时的最小值;③当时,函数在对称轴处取得最小值(对称轴在区间中间)此时,-综上所述,得的表达式为:.【点拨】①利用待定系数法求函数解析式;②对于二次函数,对称轴是确定的,而函数的定义域不确定,则按照对称轴在区间的“左、中、右”分成三种情况进行讨论.【题型二】动轴定区间求在区间上的最大值和最小值.【解析】的对称轴为.①当时,如图①可知,在上递增,,.②当时,在上递减,在上递增,而,(此时最大值为和中较大者)当时,,如图,当时,,如图③,③当时,由图④可知,在上递减,,.综上所述,当时,,;当时,,;当时,,;当时,,.【点拨】①题目中的函数的对称轴是不确定的,定义域是确定的,在求最小值时与“定轴动区间”的思考一样分对称轴在区间的“左、中、右”分成三种情况(即)进行讨论.②在求最大值时,当,还需要判断和时谁离对称轴更远些,才能确定、哪个是最大值,则还有分类;【题型三】逆向题型已知函数在区间上最大值为,求实数的值.【解析】若,(注意函数不一定是二次函数)则而在上的最大值,(2)若则的对称轴为,则的最大值必定是、、这三数之一,若,解得,此时而为最大值与为最大值矛盾,故此情况不成立.若,解得,此时而距右端点较远,最大值符合条件,.若,解得,当时,,则最大值不可能是;当时,此时最大值为,;综上所述或【点拨】本题没有按照分对称轴在定义域的“左、中、右”分离讨论,否则计算量会很大,还要考虑开口方向呢.思路是最大值必定是、、这三数之一,那逐一讨论求出值后再检验就行.巩固练习1 (★★) 已知函数.当时,求函数在区间上的值域;当时,求函数在区间上的最大值;求在上的最大值与最小值.【答案】(1) (2) ;(3)时, 最小值为,最大值为;时,最小值为,最大值为.时,最大值为,最小值为.【解析】(1)当时,,函数在--上单调递减,在-上单调递增,-,,,,函数在区间上的值域是;(2)当时,,,函数在区间上的最大值;,函数在区间上的最大值;函数在区间上的最大值;(3)函数的对称轴为,①当,即时,函数在-上是增函数,当时,函数y取得最小值为;当时,函数取得最大值为.②当,即时,当时,函数取得最小值为;当时,函数取得最大值为.③当-,即-时,-a时,函数取得最小值为-;当-时,函数取得最大值为-.④当-,即-时,函数在-上是减函数,故当-时,函数取得最大值为-;当时,函数取得最小值为.2(★★) 已知函数.(1)若,求在上的最大值和最小值;(2)若在为单调函数,求的值;(3)在区间上的最大值为4,求实数的值.【答案】(1)最大值是,最小值(2)或(3)或【解析】(1)时,;在-上的最大值是,最小值是-;(2)在为单调函数;区间-在f(x)对称轴-的一边,即--,或-;或-;-(3)-,中必有一个最大值;若---;--,符合-最大;若,;,符合最大;或.3(★★) 已知函数在上恒大于或等于,其中实数求实数的范围.【答案】【解析】若时,在上是减函数,即则条件成立,令(Ⅰ)当时,即则函数在上是增函数,=即,解得或,(Ⅱ)当即若解得与矛盾;(2)若时即解得与矛盾;综上述:.4(★★★)已知函数在区间上的最小值是,最大值是,求的值.【答案】【解析】解法1:讨论对称轴中与的位置关系。
最大值最小值问题

bx o a
bx o a
bx
(3) y f ( x)的最大值、最小值一定在 f ' ( x) 0或f ' ( x)不存在的点及区间的端 点取得;
(4) 极大值、极小值是局部的概念,而 最大值、最小值是全局的概念。
步骤:
1.求驻点和不可导点;
2.求区间端点及驻点和不可导点的函数值,比 较大小,那个大那个就是最大值,那个小那个就 是最小值;
0.5公里
s(t ) A
B 4公里
解 (1)建立敌我相距函数关系
设 t 为我军从B处发起 追击至射击的时间(分).
0.5公里
s(t ) A
敌我相距函数 s(t)
B
s(t) (0.5 t)2 (4 2t)2
4公里
(2) 求s s(t)的最小值点.
s(t)
5t 7.5 .
(0.5 t)2 (4 2t)2
令s(t) 0,
得唯一驻点 t 1.5. 故得我军从B处发起追击后 1.5 分钟射击最好.
实际问题求最值应注意:
(1)建立目标函数; (2)求最值;
若目标函数只有唯一驻点,则该点的 函数值即为所求的最大(或最小)值.
例3 某房地产公司有50套公寓要出租,当租金定 为每月180元时,公寓会全部租出去.当租 金每月增加10元时,就有一套公寓租不出去, 而租出去的房子每月需花费20元的整修维护 费.试问房租定为多少可获得最大收入?
f (2) 34;
f (1) 7;
f (4) 142;
y 2x3 3x2 12x 14
比较得 最大值 f (4) 142,最小值 f (1) 7.
例2 敌人乘汽车从河的北岸A处以1千米/分钟 的速度向正北逃窜,同时我军摩托车从河的 南岸B处向正东追击,速度为2千米/分钟.问 我军摩托车何时射击最好(相距最近射击最 好)?
人教高中数学必修一3.《二次函数在闭区间上的最值问题》课件

【教学过程】
一、复习旧知,导入新课
1、二次函数的图像是什么形状?
( 请
学
2、二次函数的性质有哪些?
生
回
3、二次函数一般式如何转化为顶点式?
答 )
上节课我们学习了定义域为实数的函数的最
值问题。如果我们遇到指定闭区间上的函数求最值 或值域应该如何来做,这节课我们来研究这个问题。
的最值。
人教高中数学必修一3.《二次函数在 闭区间 上的最 值问题 》课件
人教高中数学必修一3.《二次函数在 闭区间 上的最 值问题 》课件
课堂小结
二次函数在闭区间上最值问题有三类: (1)定轴定区间;(2)定轴动区间;
(3)动轴定区间。本节课我们主要学习了 前两类,第一类一般要根据二次函数的图 像及单调性来求最值,第二类问题通常要 分对称轴在区间左、中、右三种情况讨论 来求最值。
学生观察并说出结果:
1
3
2
2
–1 0 1 2 3 4 x
当x= 1时, f(x)有最小值–4;
当x=
1 2
时,f(x)有最大值
7 4
。
例1、已知函数f(x)= x2 – 2x – 3.
(1)若x∈[–2,0],求函数f(x)的最值;
(2)若x∈[ 2,4],求函数f(x)的最值;
15
(3)若x∈[ , ],求函数f(x)的最值;
22 (4)若x∈[ 1 , 3 ],求
y
22
函数f(x)的最值;
三、知识深化,拓展研究
例1中将知识进行深化、迁移
t
t +2
–1 0 1 2 3 4 x
(5)若 x∈[t,t+2]时, 求函数f(x)的最小值.
例谈二次函数在闭区间上的最值问题

例谈二次函数在闭区间上的最值问题作者:何英林来源:《中学教学参考·理科版》2010年第03期二次函数是高中数学中最基本也最重要的内容之一,而二次函数在某一区间上的最值问题,是初中二次函数内容的继续,随着区间的确定或变化,以及系数中参变数的变化,它又成为高考数学的热点.一、求定二次函数在定区间上的最值当二次函数的区间和对称轴都确定时,要将函数式配方,再根据对称轴和区间的关系,结合函数在区间上的单调性,求其最值.【例1】已知2x2≤3x,求函数f(x)=x2-x+1的最值.解:由已知2x2≤3x,可得0≤x≤32,即函数f(x)是定义在区间[0,32]上的二次函数,将二次函数配方得f(x)=(x-12)2+34,其图象开口向上,且对称轴方程x=12∈[0,32],故二、求动二次函数在定区间上的最值当二次函数的区间确定而对称轴变化时,应根据对称轴在区间的左、右两侧和穿过区间这三种情况分别讨论,再利用二次函数的示意图,结合其单调性求解.【例2】已知二次函数f(x)=ax2+4ax+a2-1在区间[-4,1]上的最大值是5,求实数a的值.解:将二次函数配方得f(x)=a(x+2)2+a2-4a-1,其对称轴方程为x=-2,顶点坐标为(-2,a2-4a-1),图象开口方向由a决定,很明显,其顶点横坐标在区间[-4,1]上.若a2-4a-1=5,解得a=2-10(a=2+10舍去);若a>0,则函数图象开口向上,当x=1时,函数取得最大值5,即f(1)=5a+a2-1=5,解得a=1(a=-6舍去).综上讨论,函数f(x)在区间[-4,1]上取得最大值5时,a=2-10或a=1.三、求定二次函数在动区间上的最值当二次函数的对称轴确定而区间在变化时,只需对动区间能否包含抛物线的顶点的横坐标进行分类讨论.【例3】已知函数f(x)=-x2+8x,求f(x)在区间[t,t+1]上的最大值g(t).解:函数f(x)=-x2+8x=-(x-4)2+16,其对称轴方程为x=4,顶点坐标为(4,16),其图象开口向下.(1)当顶点横坐标在区间[t,t+1]右侧时,有t+12+8(t+1)=-t2+6t+7.(2)当顶点横坐标在区间[t,t+1]上时,有t≤4≤t+1,即3≤t≤4,当x=4时,g(t)=f(4)=16.(3)当顶点横坐标在区间[t,t+1]左侧时,有t>4,当x=t时,g(t)=f(t)=-t2+8t.综上,g(t)=-t2+6t+7,当t2+8t,当t>4时.四、求动二次函数在动区间上的最值当二次函数的区间和对称轴均在变化时,亦可根据对称轴在区间的左、右两侧及穿过区间三种情况讨论,并结合其图形和单调性处理.【例4】已知y2=4a(x-a)(a>0),且当x≥a时,S=(x-3)2+y2的最小值为4,求参数a的值.解:将y2=4a(x-a)代入S的表达式得S=(x-3)2+4a(x-a)=[x-(3-2a)]2+12a-8a2.S是关于x的二次函数,其定义域为x∈[a,+∞),对称轴方程为x=3-2a,顶点坐标为(3-2a,12a-8a2),图象开口向上.若3-2a≥a,即02=4,此时a=1或a=12.若3-2a1,则当x=a时-(3-2a)]2+12a-8a2=4,此时a=5(a=1舍去).综上讨论,参变数a的取值为a=1或a=12或a=5.(责任编辑金铃)。
二次函数在闭区间上的最值问题

第三讲 二次函数在闭区间上的最值问题 一.知识点介绍1.区间的概念设a 、b 是两个实数,且a<b ,规定:说明:① 对于[a,b],(a,b),[a,b),(a,b]都称数a 和数b 为区间的端点,其中a 为左端点,b 为右端点,称b-a 为区间长度;②在数轴上,这些区间都可以用一条以a 和b 为端点的线段来表示,在图中,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点;③实数集R 也可以用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”,还可以把满足x ≥a, x>a, x ≤b, x<b 的实数x 的全体分别表示为[a,+∞)、(a,+∞)、(-∞,b]、(-∞,b)。
我们把以上区间记为A ,若x 是A 中的一个数,就说x 属于A ,记作x ∈A 。
否则就说x 不属于A ,记作x ∉A 。
2. 二次函数f(x)=ax 2+bx+c(a≠0)在x ∈[α,β]上的最值: 当a>0时,有三种情况:从上述a>0的三种情况可得结论:(1)若[,]2baαβ-∈,则当2b x a =-时,2min4()24b ac b y f a a-=-=,它的最大值为()f α与()f β中较大的一个。
(2) 若[,]2baαβ-∉,则最大值为()f α与()f β中较大的一个,另一个即为最小值。
当a<0可作同样处理。
二.例题讲解:类型一“轴定区间定”例1:已知f(x)=x 2-x+2,当x 在以下区间内取值时,求f(x)的最大值与最小值。
(1) x ∈[-1,0] (2) x ∈[0,1] (3) x ∈[1,2]变式1:求y =的最值。
变式2:已知0≤x≤1,求y =的最值。
变式3:求函数y x =+的最小值。
类型二“轴变区间定”例2:求函数f(x)=2x 2-2ax+3在区间[-1,1]上的最小值。
含参数的二次函数在闭区间上的最值问题

含参数的二次函数在闭区间上的最值问题在数学中,含参数的二次函数在闭区间上的最值问题是一个常见且重要的数学概念。
这个问题涉及到求解一个含参数的二次函数在指定闭区间内的最大值或最小值,并且需要考虑参数对函数图像的影响。
在本文中,我们将深入探讨这个问题,并根据不同的参数取值情况给出具体的解决方法和结论。
1. 含参数的二次函数的一般形式我们来回顾一下含参数的二次函数的一般形式。
一个含参数的二次函数通常可以写成如下形式:\[ f(x) = ax^2 + bx + c \]其中,\(a\)、\(b\) 和 \(c\) 分别是函数的参数,\(x\) 是自变量。
在这个函数中,参数 \(a\) 的取值会对函数的开口方向产生影响,参数 \(b\) 会对函数的位置产生影响,而参数 \(c\) 则会对函数的纵向平移产生影响。
在求解含参数的二次函数在闭区间上的最值问题时,我们需要关注这些参数的取值对函数图像的影响。
2. 含参数的二次函数在闭区间上的最值问题的求解方法接下来,我们将按照从简到繁、由浅入深的方式来讨论含参数的二次函数在闭区间上的最值问题的求解方法。
我们将分析当参数 \(a\) 的取值为正、负和零时,函数图像的特点及最值的情况。
2.1 当参数 \(a\) 的取值为正时当参数 \(a\) 的取值为正时,函数的图像是一个开口向上的抛物线。
在闭区间上,这样的抛物线的最小值一定在抛物线的顶点处取得。
要求解函数在闭区间上的最小值,只需要找到抛物线的顶点,并判断这个顶点是否在给定的闭区间内。
2.2 当参数 \(a\) 的取值为负时当参数 \(a\) 的取值为负时,函数的图像是一个开口向下的抛物线。
同样地,在闭区间上,这样的抛物线的最大值一定在抛物线的顶点处取得。
要求解函数在闭区间上的最大值,也只需要找到抛物线的顶点,并判断这个顶点是否在给定的闭区间内。
2.3 当参数 \(a\) 的取值为零时当参数 \(a\) 的取值为零时,函数退化成一次函数或常数函数,最值情况可以直接通过函数的表达式和给定的闭区间进行分析和判断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数在闭区间上的最值问题
教学目标:
① 掌握二次函数在闭区间上的最值的求法。
② 对于其他类型的函数在闭区间上的最值问题,可转化为二次函数在闭区间上的最值问题。
③ 通过教学使学生掌握数形结合,分类讨论,数学建模等重要的数学思想。
重点和难点:
重点 :二次函数在闭区间上的最值的求法;其他类型函数在闭区间上的最值问题转化为
二次函数在闭区间上最值问题。
难点 :对参变量的分类讨论
教学过程:
一、知识回顾:
二次函数的一般形式:y=ax 2
+bx+c,(a ≠0)
对称轴:__________;顶点坐标____________;开口方向____________________; 当____________函数有最大值_________;当__________函数有最小值__________。
二、二次函数在闭区间上的最值问题:
1.不含参变量
例1.(1)求[]上的最值。
,在30x ,3x 4x 2-y 2∈++=
(2)求[]上的最值。
,在30x ,3x 4x 2y 2∈++=
2.含参变量
类型一:“轴变,区间定”
例2.求[]上的最值。
,在30x )R a (,a ax 2-x y 2∈∈+=
练习:求[]上的最值。
,在31x )R k (,3kx 4x -2y 2∈∈++=
变式训练:若函数[]的值。
,求上有最大值,在k 423-x )R k (,1kx 2x k y 2
∈∈++=
类型二:“轴定,区间变”
例3.讨论y=x 2-2x+2在x∈[m,m+1]上的最值。
练习:求函数y=-3x 2-6x+7,在区间[n-1,n]上的最值。
变式训练:对[],1x a a ∈+时,
恒为正,求实数a 的取值范围。
类型三:“轴变,区间变”
例4. 求函数
21(0)y tx x t =+-≠在(,1)x t t ∈+上的最值。
变式训练:已知()2
34()(0)y x a x a a =-+->,且当x a ≥时,y 的最小值为4,求参数a 的值。
总结:二次函数在闭区间上的最值的求法:
1.判断对称轴跟区间的关系;
2.若对称轴在区间内,则函数的最值在区间端点所对应的值和顶点函数值中取;
3.若对称轴在区间外,则函数的最值在区间端点上取。
三、三角函数中的最值问题
例5.若
2()122cos 2sin f x a a x x =---的最大值为g (a ),求g (a )表达式。
例6.已知当02πθ
≤≤时,对任意实数θ恒小于零,求实数m 的取值范
围。
四、其它类型的函数的最值问题: 例7.已知已知22log (24)y x ax =-+,
(1) 若定义域为R,求a 的取值范围;
(2) 试讨论该函数在[]2,4x ∈上的最值。