中国科学院811量子力学1991年(回忆版)考研专业课真题试卷
中科院量子力学题90-11

a 2
中国科学院研究生院 2010 年招收攻读硕士研究生学位研究生入学统一考试试题 811 ) 试题名称:量子力学( 试题名称:量子力学(811 811)
ˆ、B ˆ 与泡利算符对易,证明: 一、 (1)设 A ˆ )(σ ˆ ⋅B ˆ ⋅B ˆ) = A ˆ + iσ ˆ) ˆ⋅A ˆ ⋅B ˆ(A (σ ˆ、σ ˆ 为单位算符。 ˆ x + iσ ˆ y ) 2 表示成 I ˆ x、σ ˆ y、σ ˆ z 的线性叠加, I (2)试将 ( Iˆ + σ
θ 2
θ 2
(4)求演化成 −ψ ( x, t ) 所需要的最短时间 tmin 。 三、设基态氢原子处于弱电场中,微扰哈密顿量是:
-2-
t ≤ 0; ⎧ 0, ˆ' =⎪ 其中 λ、T 为常数。 H t ⎨ − T ⎪ > λ ze , t 0. ⎩
(1) 求很长时间后 t ≫ T 电子跃迁到激发态的概率,已知基态中 a 为玻尔半 径,基态和激发态波函数为:
0 ⎤ ⎡1 λ ⎢ ˆ 三、 在 H = ⎢λ 3 0 ⎥ 中的粒子的本征值, 设 λ ≪ 1, 利用微扰求其本征值 (精 ⎥ ⎢0 0 λ − 2⎦ ⎥ ⎣ ⎧ 0, 0 < ϕ < ϕ0 ,求粒 other ⎩∞,
确到二级近似) ,并与精确求解相比较。
⎡ cos θ e −iωt ⎤ ⎡1 ⎤ ℏ 四、两个自旋为 的粒子,两个粒子分别为 X 1 = ⎢ ⎥ , X 2 = ⎢ ,求系统处 − iωt ⎥ 2 ⎣0 ⎦ ⎣ sin θ e ⎦
一、在一维无限深方势阱 ( 0 < x < a ) 中运动的粒子受到微扰
a 2a ⎧ < x<a 0, 0 < x < , ⎪ ⎪ 3 3 ' ˆ H ( x) = ⎨ 作用。试求基态能量的一级修正。 a 2a ⎪ −V , < x< 1 ⎪ 3 3 ⎩
811《量子力学》 - 中国科学院

811《量子力学》中科院研究生院硕士研究生入学考试《量子力学》考试大纲本《量子力学》考试大纲适用于中国科学院研究生院物理学相关各专业(包括理论与实验类)硕士研究生的入学考试。
本科目考试的重点是要求熟练掌握波函数的物理解释,薛定谔方程的建立、基本性质和精确的以及一些重要的近似求解方法,理解这些解的物理意义,熟悉其实际的应用。
掌握量子力学中一些特殊的现象和问题的处理方法,包括力学量的算符表示、对易关系、不确定度关系、态和力学量的表象、电子的自旋、粒子的全同性、泡利原理、量子跃迁及光的发射与吸收的半经典处理方法等,并具有综合运用所学知识分析问题和解决问题的能力。
一.考试内容:(一)波函数和薛定谔方程波粒二象性,量子现象的实验证实。
波函数及其统计解释,薛定谔方程,连续性方程,波包的演化,薛定谔方程的定态解,态叠加原理。
(二)一维势场中的粒子一维势场中粒子能量本征态的一般性质,一维方势阱的束缚态,方势垒的穿透,方势阱中的反射、透射与共振,d--函数和d-势阱中的束缚态,一维简谐振子。
(三)力学量用算符表示坐标及坐标函数的平均值,动量算符及动量值的分布概率,算符的运算规则及其一般性质,厄米算符的本征值与本征函数,共同本征函数,不确定度关系,角动量算符。
连续本征函数的归一化,力学量的完全集。
力学量平均值随时间的演化,量子力学的守恒量。
(四)中心力场两体问题化为单体问题,球对称势和径向方程,自由粒子和球形方势阱,三维各向同性谐振子,氢原子及类氢离子。
(五)量子力学的矩阵表示与表象变换态和算符的矩阵表示,表象变换,狄拉克符号,谢振子的占有数表象。
(六)自旋电子自旋态与自旋算符,总角动量的本征态,碱金属原子光谱的双线结构与反常塞曼效应,电磁场中的薛定谔方程,自旋单态与三重态,光谱线的精细和超精细结构,自旋纠缠态。
(七)定态问题的近似方法定态非简并微扰轮,定态简并微扰轮,变分法。
(八)量子跃迁量子态随时间的演化,突发微扰与绝热微扰,周期微扰和有限时间内的常微扰,光的吸收与辐射的半经典理论。
(NEW)中国科学技术大学《828量子力学》历年考研真题汇编(含部分答案)

(a)请考察A的厄米性;
(b)请写出A用 阵;
展开的表达式,其中
为著名的Pauli矩
(c)请求解A的本征方程,得出本征值和相应本征态。
5.(30分)假设自由空间中有两个质量为m、自旋为 /2的粒子,它们 按如下自旋相关势
相互作用,其中r为两粒子之间的距离,g>0为常量,而 (i=l,2)为 分别作用于第1个粒子自旋的Pauli矩阵。
。算符 , 与升降算符之间的关系为:
其中
。对于体系基态,相关的平均值为:
所以,
,
最终得到:
。 4.(20分〉设有2维空间中的如下矩阵
(a)请考察A的厄米性;
(b)请写出A用 阵;
展开的表达式,其中
为著名的Pauli矩
(c)请求解A的本征方程,得出本征值和相应本征态。
解:(a)矩阵A的转置共轭为:
因此,矩阵A为厄米矩阵。 (b)Pauli矩阵分别为:
令
,则 , 与哈密顿量对易。对于 ,此结果是显然的。对
于,
体系的角动量 显然也与哈密顿量及自旋对易。因此力学量组 即为体系的一组可对易力学量完全集。
(b)为考虑体系的束缚态,需要在质心系中考查,哈密顿量可改写 为:
其中 为质心动量。由于质心的运动相当于一自由粒子,体系的波函数 首先可分离为空间部分和自旋部分,空间部分可以进一步分解为质心部 分和与体系内部结构相关的部分。略去质心部分,将波函数写成力学量 完全集的本征函数:
目 录
2014年中国科学技术大学828量子力学 考研真题
2013年中国科学技术大学828量子力学 考研真题
2012年中国科学技术大学828量子力学 考研真题
2011年中国科学技术大学809量子力学 考研真题
《中科院量子力学考研真题及答案详解(1990—2010共40套真题)》

ˆ和J ˆ 间夹角的可能值,并画出 L ˆ和S ˆ, S ˆ 的矢量模型图。 (3) 确定(2)中 L 五、求在一维常虚势场 iV (V E ) 中运动粒子的波函数,计算几率流密度,并证明虚 势代表粒子的吸收,求吸收系数(用 V 表示) 。
试题名称:1990 量子力学(实验型) 第1页 共1页
试题名称:1992 量子力学(理论型)
第1页
共1页
6
中国科学院-中国科技大学 1992 年招收攻读硕士学位研究生入学试卷
试题名称: 量子力学(实验型)
说明:共五道大题,无选择题,计分在题尾标出,满分 100 分。
一、简单回答下列问题: (1) 举出一个实验事实说明微观粒子具有波粒二象性。 (2) 量子力学的波函数与经典的波场有何本质的区别? (3) 如图所示,一个光子入射到半透半反镜面 M , P 1和P 2 为光电 探测器,试分别按照经典与量子的观点说明 P 1和P 是否能同时 接收到光信号( l1 l2 ) 。
E
n
n
E0 n x 0
2
常数
ˆ2 ˆ p 这里 En 是哈密顿量 H V ( x) 的本征能量,相应的本征态为 n 。求出该常数。 2m 三、设一质量为 的粒子在球对称势 V (r ) kr (k 0) 中运动。利用测不准关系估算其 基态的能量。 四、电子偶素( e e 束缚态)类似于氢原子,只是用一个正电子代替质子作为核,在非 相对论极限下,其能量和波函数与氢原子类似。今设在电子偶素的基态里,存在一 ˆ 和M ˆ 8 M ˆ M ˆ 其中 M ˆ 是电子和正电子的自旋磁矩 种接触型自旋交换作用 H e p e p 3 ˆ , q e) 。利用一级微扰论,计算此基态中自旋单态与三重态之间的能 ˆ q S (M mc 量差,决定哪一个能量更低。对普通的氢原子,基态波函数: 1 r a e2 1 2 100 e , a , 3 2 me a c 137
中科院2015考研量子力学(811)真题.pdf

中国科学院研究生院2015年招收硕士学位研究生入学统一考试试题科目名称:量子力学(811)考生须知:1.本试卷满分为150分,全部考试时间总计为180分钟。
所有的答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。
一、一个质量为µ的粒子在一个一维的盒匣()0x L <<里自由运动,波函数()x ψ满足条件()()()()0'0'L L ψψψψ==,1)求系统的能级2)将第一激发态写成归一化动量本征态的组合形式,并给出当p <>为0时,组合系数满足的条件二、一个三维简谐振子受到微扰()22'H xyz x y y x λ=++的作用,试用微扰论求系统的基态能量,并精确到2λ量级。
三、两个粒子的自旋分别为12,s s ,相对取向为n ,设两个粒子的相互作用为()()1212=3H s n s n s s ××-×,记12s s s =+,证明:1)2212s 3=24s s ×-ℏ,()()()22121=24s n s n s n ×××-ℏ2)[]0H s =,四、一个质量为µ的粒子在势场(){ 0 0x V x Bx x ¥£=>中运动1)用变分法求基态的能量可以选取下列的哪个作为近似波函数,并说明理由a)/x a e -,b)/x a xe -,c)/1x a e --()a 为变分参数2)用所选的近似波函数求基态能量。
五、一个二能级系统,哈密顿量为:()()01020=0E H E éùêúêúëû()()()0012E E <当0t =,系统处于基态,当0t >时,开始受到的微扰0'=0H λλéùêúêúëû1)求0t >时,系统跃迁到激发态的概率()02()E P t (精确值)2)用含时微扰论重求上题的概率,与精确值对比,指出结果成立的条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求: (1)在后来某一时刻 t = t0 时的波函数; (2)在 t = 0 和 t = t0 时的体系平均 能量。 三、 精确到微扰的一级近似, 试计算如图所示宽度 OB 为 a ,
AO 为 V0 , AOB 被切去的无限深方势阱(如图 CABD )的最
( 3) ( 3) ⎤ 子核与中子的作用可用下面的简化势代替: V (r ) = −V0 ⎡ ⎣δ ( r + a ) + δ ( r − a )⎦ ,
�
�
�
�
�
其中 V0 是常数, a 是常矢量( a 与 −a 分别是两核的位置矢量) 。试求高能下的 中子散射微分截面,并指出散射截面的一个极大的方向。
∞
ˆ n = E n ,H ˆ m = E m , ∑ 是对 n 的完全求和。 H n n
n
- 39 -
putiansong 3@
中国科学院 -中国科技大学 中国科学院1991 年招收攻读硕士研究生学位研究生入学考试试题 试题名称:量子力学(理论型)
一、一个带电粒子在电磁场中运动,请推导相应的几率守恒定律,求出几率 密度与几率流密度的表达式。 二、当两个质量为 m 的粒子通过球对称势 V (r ) = A ln ⎜ ⎟ ( A > 0, r0 > 0缚在一起, 其第一激发态能量与基态能量之差为 ∆E 。 今有一个质量为 m 的粒子与另一个质量为 1840m 的粒子通过同一位势形成束缚态,则这一系统 的第一激发态与基态能量之差是多少?说出理由,并证明之。 三、 一束极化的 s 波 ( l = 0 ) 电子通过一个不均匀的磁场后分裂为强度不同的两 束,其中自旋反平行于磁场的一束与自旋平行于磁场的一束之强度之比为
2
-中国科技大学 中国科学院 中国科学院1990 年招收攻读硕士研究生学位研究生入学考试试题 试题名称:量子力学(实验型)
- 40 -
putiansong 3@
�
�
�
-中国科技大学 中国科学院 中国科学院1991 年招收攻读硕士研究生学位研究生入学考试试题 试题名称:量子力学(实验型)
一、 (1)电子双窄缝实验中,什么结果完全不能用粒子性而必须用波动性来 解释,为什么?(2)解释钠原子光谱主线系 ( np → 3s ) 的精细结构。 (3)量子 力学角动量用矢量图表示时,和经典角动量有什么不同,为什么? 二、一个质量为 µ 的粒子,处于 0 ≤ x ≤ a 的无限深方势阱中, t = 0 时,其归一 化波函数为ψ ( x, t = 0 ) =
E →0
五、质量为 m 的粒子在一维势场 V ( z ) = ⎨
⎧ ∞, z < 0 (1)用变分 ( G > 0 ) 中运动。 ⎩Gz , z > 0
法求基态能量,则在 z ≥ 0 区域中的试探波函数应取下列函数中的哪一个?为 什么? z + α z 2 , e −α z , ze−α z ,sin α z (2)算出基态能量值。
3:1 ,求入射电子自旋方向与磁场方向夹角大小。
四、质量为 µ 的粒子在一个三维球方势阱中运动 V ( r ) = ⎨
⎧ 0, r > a (V0 > 0 ) : ⎩−V0 , r < a
问: (1)存在 s 波束缚态的条件是什么?(2)当粒子能量 E > 0 时,求粒子的
s 波相移 δ 0 ; (3)证明 lim δ 0 = nπ , n 为整数。
低三个态的能量。 四、质量为 µ 的粒子在势场 V (r ) = − 估算基态能量。
ˆ ] ,证明能量表象中 五、如系统的哈密顿量不显含时间,用算符对易关系 [ x, p
λ r
− 3 2
(常数 λ > 0 )中运动,试用测不准关系
有 ∑ ( En − Em ) xnm
n
∞
2
ℏ2 其中 µ 为系统质量, En 与 Em 是能量本征值,满足 = 2µ