高中物理学习思想、方法:深刻理解概念

合集下载

高中物理学习方法

高中物理学习方法

高中物理学习方法高中物理学习方法(篇1)一、要重视复习和预习。

做到上课前对将要学习的知识有所了解。

这样在听课时,能将注意力很快集中到最重要、最关键的知识点上,提高听课效率,丰富感性认识,从而验证自己预习时对知识的理解,掌握所学的知识。

也为自己在课外少留疑难问题,以便有更多的时间供自己支配。

二、要学以致用。

学到的知识,要善于运用到实际中去。

不注意知识的运用,你得到的知识还是死的,不丰满的,而且不能在运用中学会分析问题的方法。

要在不断的运用中,扩展和加深自己的知识,学会对具体问题具体分析,提高分析和解决问题的能力。

同时,注重纵横联系。

随着高考模式的改革,对同学们学习物理提出了更高的要求。

在学习的过程,不能仅仅局限于掌握本学科知识,而且还要利用本学科的知识,去分析处理其它学科中与本学科有关联的问题。

三、要重视观察和实验物理知识来源于实践,特别是来源于观察和实验。

观察是收集材料,积累数据获得感性认识和认识客观规律的一条重要途径。

要认真观察物理现象,分析物理现象产生的条件和原因。

要认真做好物理学生实验,学会使用仪器和处理数据,了解用实验研究问题的基本方法。

要通过观察和实验,有意识地提高自己的观察能力和实验能力。

同时,观察要有目的性,在观察时要明确观察对象、条件、要求及观察的计划和步骤。

四、要重视练习。

做练习是学习物理知训的一个环节,是运用知识的一个方面。

每做—题,务求真正弄懂,务求有所收获。

我国物理学家严济慈先生曾说:“做习题可以加深理解,融会贯通,锻炼思考问题和解决问题的能力。

一道习题做不出来,说明你还没有真懂;即使所有的习题都做出来了,也不一定说明你全懂了,因为你做习题时有时只是在凑公式而已。

如果知道自己懂在什么地方,不懂又在什么地方,还能设法去弄懂它,到了这种地步,习题就可以少做。

”所以说,做习题时要做到质与量的有机统一,限度地提高学习效率,少做无用功。

建议大家准备一个专门的笔记本,用于收集、整理平常练习及考试中出错的问题,让自己在这些地方不在犯第二次同样的错误。

高中物理学习思想、方法:物理基本概念和基本规律

高中物理学习思想、方法:物理基本概念和基本规律

物理基本概念和基本规律1.机械运动,参考系,质点用来代替物体的只有质量、没有形状和大小的点,它是一个理想化地模型2.位移和路程位移是描述质点位置改变的物理量,是矢量,是初位置指向末位置的有向线段。

路程是标量,是物体实际运动的轨迹长度。

3.匀速直线运动,速度,速率。

位移公式s=vt,s-t图,v-t图匀速直线运动的,s-t图是过原点的一条倾斜直线。

斜率为物体速度。

匀速直线运动的v-t图是平行于时间横轴的直线。

速度是位移与时间的比值,是矢量。

速率是路程与时间的比值,是标量。

4。

变速直线运动,平均速度,瞬时速度(简称速度)平均速度是描述物体在一定时间内运动快慢的物理量。

大小为位移与时间的比值,粗略反映了物理运动的快慢。

瞬时速度是描述物体在某一时刻运动快慢的物理量。

与某一时刻相对应,精确的反映了物体运动的快慢。

5.匀变速直线运动:加速度定义式为a=vt-v0/t 加速度表明速度变化快慢的物理量,是矢量。

加速度大,只表示速度变化快,不表示速度变化大,也不表示速度大。

上述表达式仅是加速度的定义式,并不是决定式,物体的加速度由物体的质量和物体本身受的合外力共同决定,即牛顿第二定律F=ma.速度公式:vt=v0+at位移公式s=v0t+1/2at2 位移与速度公式: vt2-vo2=2as, v-t 图:是过原点的倾斜的直线,直线的斜率是物体的加速度。

6.运动的的合成和分解合运动与分运动的关系,等时性和独立性。

运动的合成:加速度,速度,位移都是矢量,遵守平行四边形定则。

(注不要求掌握相对速度)小船渡河时若V船> V水船头垂直河岸时,过河时间最小;航向(合速度)垂直河岸时,过河的位移最小。

若V船< V水船头垂直河岸时,过河时间最小;只有当V船⊥ V合时,过河的位移最小。

7.曲线运动中质点的速度沿轨道的切线方向,且必具有加速度。

曲线运动的质点的速度方向沿轨道的切线的方向,曲线运动的速度方向时刻在发生变化,所以曲线运动一定是变速运动,一定具有加速度。

高中物理思想方法总结

高中物理思想方法总结

高中物理思想方法总结引导语:物理是一门很多学生都掌握不好的学科,其实学好物理是非常需要方法的,接下来是为你带来收集的高中物理思想方法总结,欢迎阅读!1.微元法与极限法它本是高等数学中的知识领域问题,但在高中物理中只是思想方法领域的问题。

在高中也根本不可能把具体知识体系教给学生,但作为思想方法,它的地位反而更高。

虽然对问题的分析都是定性的,却反应了思维的质量和深度。

在处理匀变速直线运动的位移、瞬时速度,曲线运动速度方向、万有引力由“质点”向“大的物体”过渡、变力做功,等等,要大力向学生渲染这种思想方法。

2.隔离法除前面提到的对物体系统进行隔离的例子,还有对问题的过程或问题性质进行隔离的思想方法问题。

例如我们把电源隔离成无阻理想电源和电阻串联的两部分;把碰撞问题分隔成纯粹碰撞阶段和纯粹运动阶段──很多教师说“碰撞瞬间完成,还没来得及运动,忽略其位移”,其实这话不严密:不是没位移,而是把位移成分(哪怕很微小的位移)在运动阶段中体现了。

再如,在讨论卫星运行中的变轨问题时,往往分隔成变速、变轨,再变速、稳定在另一轨道等等几个理想段,实际中这些过程并不是界限分明分阶段进行的,而是交融在一起、伴随在一起的。

隔离法的运用,不是忽略了什么,也不是允许了什么误差,而是思维的一种方法与技巧。

运用这种方法,研究的结果是精确的。

3.忽略次要因素思想很多学生在讨论问题时,有两个误区:一是看问题不全面,类似的如电路中的功率等于电压与电流二者的积,电压增大为原来二倍时,有的学生就说功率就变为原来二倍;二是不知道多个因素影响中,需要忽略无穷小的和次要的因素。

例如随温度的增加导体的电阻究竟增加还是减小?再如在研究光学的成像时不用考虑色散、在研究干涉问题时不考虑衍射影响、在研究声速时不考虑温度影响等。

对此,应该让学生归纳出理性化的思绪:第一,精确度方面。

例如,研究铁球的自由落体运动,不做精确测量时,不考虑空气阻力。

但要进行精确研究,即便下落的是铁球,也要考虑空气阻力。

高中物理思想方法总结

高中物理思想方法总结

高中物理思想方法总结高中物理思想方法总结高中物理作为一门自然科学学科,主要研究物质的运动、力、能量等基本规律。

在学习高中物理的过程中,要掌握一定的思想方法,以提高学习效果。

以下是我对高中物理思想方法的总结。

首先,物理学习的基本思想方法是观察法。

物理现象和实验现象是物理学研究的基础,学生要通过观察实验现象,提炼出规律和原理。

观察法要求学生全面、准确地观察实验现象,尽可能收集到更多的信息,并通过观察实验现象的变化来找出规律和原理。

其次,物理学习的思想方法是实验法。

物理学研究的基本手段是实验,学生要通过实验来验证和探究物理规律。

实验法要求学生有观察、精确测量、记录实验数据的能力,并能够分析、总结实验结果,从而得出正确的结论。

实验法还要求学生在实验中发现问题,解决问题,提高实验能力。

再次,物理学习的思想方法是抽象概括法。

物理学研究的对象是客观存在的物理现象,需要将其抽象为概念和定律。

学生要根据实际物理现象,提炼出相应的概念和定律,形成物理学的体系。

抽象概括法要求学生对物理现象有深刻的认识和理解,并具备归纳、概括的能力,从具体到抽象,从实验事实中找到规律和原理。

最后,物理学习的思想方法是逻辑推理法。

物理学研究的过程是一个不断推理的过程,学生要通过逻辑推理来分析、解决物理问题。

逻辑推理法要求学生善于运用严密的逻辑思维,根据已有的物理原理,推导和演绎出新的结论。

逻辑推理法要求学生具备处理信息、区分主次、抓住重点的能力,能够从不同角度思考问题,形成合理的思维链条。

总之,高中物理学习的思想方法是观察法、实验法、抽象概括法和逻辑推理法的有机结合。

学生要通过观察实验现象,学会发现物理规律;通过实验验证和探究物理规律;通过抽象概括将物理现象抽象成概念和定律;通过逻辑推理分析和解决物理问题。

只有灵活运用这些思维方法,才能加深对物理规律的理解,提高物理学习能力。

高中物理基本思路总结教案

高中物理基本思路总结教案

高中物理基本思路总结教案
教学目标:通过本节课的学习,学生能够理解高中物理的基本思路,掌握物理学习的方法和技巧,提高物理学习的效果。

一、认识物理学
1. 物理学的定义和研究对象
2. 物理学的研究方法和基本思路
二、物理学习的方法
1. 培养科学的思维方式
2. 独立思考和解决问题的能力
3. 注重实践操作和实验探究
三、物理学习的技巧
1. 理清概念,掌握基本知识
2. 善于归纳总结,深度理解
3. 多练习,多复习,巩固知识
四、物理学习的心得体会
1. 要有求知欲和好奇心
2. 积极参与实践活动和科学研究
3. 不断提高自己的学习能力和思维能力
教学过程:
1. 通过讲解物理学的定义和研究对象,引出物理学的研究方法和基本思路。

2. 给学生介绍物理学习的方法和技巧,强调科学的思维方式和实践操作的重要性。

3. 组织学生进行实践活动和实验探究,培养他们独立思考和解决问题的能力。

4. 引导学生总结物理学习的心得体会,鼓励他们积极参与科学研究和实践活动。

教学反思:
本节课主要是帮助学生理解高中物理学习的基本思路,掌握物理学习的方法和技巧。

通过本节课的学习,学生能够提高自己的学习效果,增强对物理学的兴趣和热爱。

希望学生在今后的学习中能够继续努力,不断提高自己的学习能力和思维能力。

浅谈物理思维在高中物理教学中的意义及方式

浅谈物理思维在高中物理教学中的意义及方式

浅谈物理思维在高中物理教学中的意义及方式物理思维是指在解决物理问题时所采用的思路和方法。

物理思维在高中物理教学中具有重要的意义,它可以帮助学生在学习物理知识的同时提高解决问题的能力,并在将来的科学研究和工作中发挥重要作用。

本文将就物理思维在高中物理教学中的意义及方式进行浅谈。

1.提高学生的物理问题解决能力物理思维是解决物理问题的思考方式和方法,这种思维方式可以使学生掌握科学方法论,使学生知道如何将物理知识应用于解决实际问题,提高学生的物理问题解决能力。

2.培养学生的科学态度和科学精神物理思维在高中物理教学中的运用可以培养学生的科学态度和科学精神,让学生能够领会科学的本质和科学的价值。

通过学习物理科学,可以让学生学会合理的质疑和探究,培养学生的创新思维能力。

3.帮助学生更好地理解物理概念物理思维的特点是从具体到抽象,从表面现象到深层次的规律,不仅是解决问题的过程,也是把握物理概念的方式。

学生通过物理思维的训练,能够更好地理解物理概念、规律和原理,提高物理学习的效果。

4.促进学生创新和发展能力的提高物理思维的应用可以帮助学生开发出更多新颖的解题方法和探索途径,促进学生创新和发展能力的提高,为日后的科学研究和工作打好基础。

1.提出问题在教学过程中,教师可以提出一系列具有启发性的问题,引导学生通过物理思维方法找寻解决问题的线索,培养创新思维能力,同时提高同学们的自主学习能力。

2.举例说明在物理问题的解决中,通过举例说明家庭、社会、生产中实际问题的解决方法和手段,可以让学生在体验和实践的过程中学习物理知识和物理思维。

3.实验探究通过实验探究的方式让学生亲身体验和感受物理规律,通过实验验证物理概念和规律,让学生更深刻地理解物理规律和应用物理思维的方法。

4.巧妙引导在教学过程中,通过巧妙引导,让学生跟随教师的思路去推导和探究物理问题,如通过巧妙引导让学生提出各种猜测,进而验证是否正确。

综上所述,物理思维在高中物理教学中的应用具有极大的意义,可以帮助学生提高物理问题解决能力,培养学生的科学态度和科学精神,帮助学生更好地理解物理概念,促进学生创新和发展能力的提高。

高中物理学科的特点及学习方法指导

高中物理学科的特点及学习方法指导

高中物理学科的特点及学习方法指导高中物理学科的特点1.知识深度,理解加深高中物理,要加深对重要物理知识的理解,有些将由定性讨论进入定量计算,如力和运动的关系、动能概念、电磁感应、核能等。

2.知识广度,范围扩大高中物理,要扩大物理知识的范围,学习很多初中未学过的新内容,如力的合成与分解、牛顿万有引力定律、动量定理、动量守恒定律、光的本性等。

3.知识应用,能力提高高中不仅要学习物理知识,更重要的是提高学习物理知识和应用物理知识的能力,高中阶段主要是自学能力和物理解题能力,并学会一些常用的物理研究的方法。

学好物理,我们可以从4大方面入手:1 思维思维,是人脑对客观世界的一种间接的、概括的反映,是将观察、实验所取得的感性材料进行思维加工,上升为理性认识的过程。

学习过程就是一种思维活动,而思维活动也有一定的程序和方法。

1.1 物理思维的基本方法物理思维的方法包括分析、综合、比较、抽象、概括、归纳、演绎等,在物理学习过程中,形成物理概念以抽象、概括为主,建立物理规律以演绎、归纳、概括为主,而分析、综合与比较的方法渗透到整个物理思维之中。

特别是解决物理问题时,分析、综合方法应用更为普遍,如下面介绍的顺藤摸瓜法和发散思维法就是这些方法的具体体现。

①顺藤摸瓜法,即正向推理法,它是从已知条件推论其结果的方法。

②发散思维法,即从某条物理规律出发,找出规律的多种表述。

这是形成熟练的技能技巧的重要方法。

例如,从欧姆定律以及串并联电能的特点出发,推出如下结论:串联电路的总电阻大于任何一个分电阻、并联电路的总电阻小于任何一个分电阻;串联电路中,阻值大的电阻两端的电压大,阻值小的电阻两端的电压小;并联电路中,阻值大的电阻通过的电流小,阻值小的电阻通过的电流大。

1.2 物理思维的程序物理思维是将物理现象与物理实验所得到的感性认识,上升为理性认识,并从已有的理性认识上获得新的理性认识。

物理思维的主要程序是质疑与释疑。

① 质疑:质疑不是一般地提出不懂的问题,而主要指观察者在充分运用了自己的知识却仍不能解释的,带有一定难度的问题。

高中物理学习思想、方法:深刻理解概念

高中物理学习思想、方法:深刻理解概念

深刻理解概念什么是物理概念呢?物理概念是对物理现象的概括,是从个别的物理现象.具体过程和状态中抽象出的具有相同本质的物理实体。

在中学物理中主要有两大类。

一类是用词语直接表达的概念。

如力、重心、点电荷、理想气体、干涉、静电平衡、匀速直线运动、衰变等等。

另一类是用数学语言表达的概念,常称为物理量。

如加速度a=△V/△t,动能Ek=1/2mv2,动量P=MV,电场强度E=F/q等等。

对一个物理概念的认识,一般需经三个阶段:一、感性的具体,二、理性的抽象,三、理性的具体。

老师每讲一个新的概念的时候,总是首先引入我们比较熟悉的一些具体物理现象,物理实例或做一些物理实验,使我们产生具体的感性的认识;再经过去粗取精,去伪存真,由表及里的分析比较,抽象出本质属性,上升到理性认识;再经过演绎的练习,使物理的抽象上升为理性的具体,实现应用所学概念有针对性的解决有关问题。

例如:学习静电平衡这个概念时候,老师首先举出把一个中性导体放在匀强电场中的例子。

引导同学认识自由电子在电场力的作用下发生定向移动,产生感应电荷,发生静电感应的现象。

再透过这个现象认识感应电荷产生的附加电场与原来匀强电场的迭加,直到感应电荷的场强与原电场的场强大小相等时导体内部合场强为零,自由电子定向移动停止,导体达到了静电平衡状态。

从而再总结出静电平衡等体的一些性质:内部合场强为零,导体是个等势体等等。

在我们头脑中形成一个反映静电平衡本性的理性的抽象。

进而应用到其它各种电场中,由此及彼,在具体运用中升华到理性具体,得心应用地解决多变的物理问题。

对于一些物理量,还要清楚以下内容:引入目的、定义式、单位、是标量还是是矢量、由什么因素决定、测量方法等等。

如加速度这个概念,引入的目的是为了描述物体速度变化的快慢,定义式a=△V/△t,国际制中的单位是米/ 秒,是矢量,一个物体的加速度由它的质量和它所受的合外力事决定。

测量方法很多,课本中专门安排了一个测定匀变速直线运动的物体的加速度的学生实验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深刻理解概念什么是物理概念呢?物理概念是对物理现象的概括,是从个别的物理现象.具体过程和状态中抽象出的具有相同本质的物理实体。

在中学物理中主要有两大类。

一类是用词语直接表达的概念。

如力、重心、点电荷、理想气体、干涉、静电平衡、匀速直线运动、衰变等等。

另一类是用数学语言表达的概念,常称为物理量。

如加速度a=△V/△t,动能Ek=1/2mv2,动量P=MV,电场强度E=F/q等等。

对一个物理概念的认识,一般需经三个阶段:一、感性的具体,二、理性的抽象,三、理性的具体。

老师每讲一个新的概念的时候,总是首先引入我们比较熟悉的一些具体物理现象,物理实例或做一些物理实验,使我们产生具体的感性的认识;再经过去粗取精,去伪存真,由表及里的分析比较,抽象出本质属性,上升到理性认识;再经过演绎的练习,使物理的抽象上升为理性的具体,实现应用所学概念有针对性的解决有关问题。

例如:学习静电平衡这个概念时候,老师首先举出把一个中性导体放在匀强电场中的例子。

引导同学认识自由电子在电场力的作用下发生定向移动,产生感应电荷,发生静电感应的现象。

再透过这个现象认识感应电荷产生的附加电场与原来匀强电场的迭加,直到感应电荷的场强与原电场的场强大小相等时导体内部合场强为零,自由电子定向移动停止,导体达到了静电平衡状态。

从而再总结出静电平衡等体的一些性质:内部合场强为零,导体是个等势体等等。

在我们头脑中形成一个反映静电平衡本性的理性的抽象。

进而应用到其它各种电场中,由此及彼,在具体运用中升华到理性具体,得心应用地解决多变的物理问题。

对于一些物理量,还要清楚以下内容:引入目的、定义式、单位、是标量还是是矢量、由什么因素决定、测量方法等等。

如加速度这个概念,引入的目的是为了描述物体速度变化的快慢,定义式a=△V/△t,国际制中的单位是米/ 秒,是矢量,一个物体的加速度由它的质量和它所受的合外力事决定。

测量方法很多,课本中专门安排了一个测定匀变速直线运动的物体的加速度的学生实验。

这里还特别提出的是,有些物理概念不是只在一节课上,通过一两个例子就是能够认识清楚的。

需要在长期的学习过程中不断地认识,不断地理解。

如力这个概论,从初中二年级就开始学习,有了一个初步认识。

升入高中后,第一章第一节又开始学习,并给予初步的概括:力是物体对物体的作用。

第三章中学习了牛顿第一定律,又进一步认识了力作用的相互性。

到此,也只是停留在机械力的范筹之内。

到学习了电磁力后,才从不同领域,不同类型的力的作用情况,通过联想和类比,形成比较深刻的认识。

也就是说,认识一个物理概念有一个不断发现,不断提高的过程。

这就要求我们在学习中多观察,多扩大自己头脑中的信息量,经过加工比较,实现对概念的深刻理解与掌握。

同学们在学习物理概念中往往存在以下蔽病,应注意克服。

(一)只记结论,不注意引过程。

现举两道习题说明。

例一:关于物体的加速度,下例说法正确是的:[ ]A.加速度越大,物体运动的越快;B.加速度越大,物体速度变化越大;C.加速度越大,物体速度变化越快;D.加速度为零时,物体的速度也为零。

该题正确答案是C。

在初学阶段,很容易选错。

原因何在?老师引入加速度概念时,一般都要举出几个变速速运动的例子,分析比较,最后强调了描述物体速度变化快慢,引入加速度。

如果听课时,注意这些清楚的。

之所以选错是忽略了引入过程。

例二:如图(2),带电量为的正电荷A,半径为R的不带电的金属球的感应电荷在球内的电场强度的大小与方向是()A.kq/4R2;B.kq/6R2;C.方向指向A;D.方向背向A 。

答案为ABC,很多同学都不选B。

只要我们回顾一下初学静电平衡概念时,老师分析的静电感应过程,注意到导体发生静电感应时内部有原电场,还有一个感应电荷的电场,这两个电场反向迭加,合场强为零时达到静电平衡,意味着导体中任一点感应电荷场强都与原电场的场强等大反向。

此题中原电荷q在金属球中场强大小范围为kq/9R——kq/R2,自然就含有kq/4R2和kq/6R2。

(二)只背公式,不理解其含义和条件。

如静电一章,给出三个场强公式,E=F/q、E=KQ/r2和E=U/d 。

这三个公式都能计算场强,但各自含义和适用条件是不同的。

E=F/q 是定义式,对某点场强有一种量度功能,任何电场都适用,但它不能决定场强的大小。

E=KQ/r2是真空中点电荷场强的决定式,只适用真空中点电荷产生的电场。

而E=U/d反映是匀强电场中U.E.d三者的关系。

如果不清楚这些,解题时就会出现张冠李戴的情况。

有些物理量还受状态.时空等因素的影响。

如我们常常认为一个物体的重力是恒定的,只在高低及纬度变化不太大时才成立。

一段导体的电阻跟它的长度成正比,跟它的横截面积成反比,是在电阻率ρ不变时才成立,对于一般金属,温度变化ρ发生显著变化时,计算电阻时就得考虑ρ的影响。

(三)只重视物理,不重视用词语直接表达的概念。

中学物理课本中用语言直接表达的物理概念比物理量还要多。

如:重心.质点.平动.共振.内能.点电荷.电磁振荡.光心.焦点光谱等等。

这些概念不仅定义严谨,而且能与其它物理概念形成一个完整的系统。

如果模糊不清不,不但直接影响解答习题,而且对于学习新知识,对于系统掌握物理知识都造成障碍。

比如:重心概念不清楚,涉及重力势能变化的一些题目就难以处理;光心.焦点的概念不清楚,焦距的概念就建不起来;衰变的意义不清楚,半衰期就无从谈起。

物理学本身就是研究物质最基本的运动及其规律的一门科学。

物理规律反映了各物概念之间的相互制约关系,反映在一定条件下一定物理过程的必然性。

中学物理规律主要有:1.物理定理:如动能定理,动量定理等。

2.物理定律:如牛顿运动定律.动量守恒定律.法拉第电磁感应定律,光的折射定律等。

3.物理定则:如平行四边形法则等。

4.物理方程:如理想气体状态方程等。

5.物理学说:如分子运动论,原子核式结构学说等。

对于这些课本中明确出来的规律,不但要记住它的内容表述和对应表达式。

更重要的是透彻理解。

一般应抓住以下几个方面:(一)实验基础。

验证牛顿第二定律实验,研究楞次定律实验等。

(二)导出方式。

如根据动量定理和牛顿它三定律推导动量守恒定律;据玻-玛定律和查理定律推导一定质量的理想气体状态方程等。

(三)清楚规律揭示的内涵及公式中各字母的含义。

如动量定理:Ft= △P,从整体上揭示物体所受合外力的冲量与它的动量变化的直接对应关系,即两者大小相等,方向相同。

如果题目中要求合外力冲量,就有了两条思路:一是用合外力乘时间,二是先求其动量变化。

分解看:式中F为合外力,解题时就需从受力分析入手,找出合外力,等号右边为动量变化,特定要求末态动量减初态动量。

该式为矢量式,中学大纲只要求一维情况,解题时一定规定正方向,列代数式方程。

变形有:F=△p/t ,说明物体所受的合外力等于它的动量的变化率,等。

(四)注意适用条件。

如:库仑定律F=Kθ1θ2/r2 只适用于真空中点电荷。

动量定守恒定律用于不受外力或合外力为零的系统。

动量定理对一于不论直线还是曲线,恒力还是变力,物理过程是单一的还是多阶段组合的,几个力作用于物体上的时间是否相同都适用。

在中学阶段对处理打击.碰撞一类问题尤为方便。

(五)物理图象。

物理图象是物理规律的更直观.更形象的表达方式。

如v-t图象,波的图象,P-V图象,此外还有一些在题目中出现的图象如F-t图象,B-t图象等。

对图象一般应抓住以下方面:1横纵坐标.斜率.交点的含义;2对应规律煤数学表达式;3反映的物理情景。

以上所说,者是课本中明确出来的规律。

物理学中还有许多规律,需在老师指导下发现和总结,实现知识系统化。

(一)单元知识结构的概括和总结。

现以磁场一章为例总结如下:(二)跨单元知识联系规律。

举两例:瞬时作用效果:F=ma1.力的作用效果对时间累积效果:Ft=△P对空间累积效果:W=△Ex2.功能关系:功是能力转化量度。

1)量度重力势能变化: WG=△Ep2)量度弹性势能变化: W弹=△Ep3)量度分子势能变化:W分子=△Ep4)量度电势能变化: W电=△E5)量度动能变化: W总=△Ek6)量度机械能变化:W其它=△E前四式把整个中丌涉及到的势能与之对应的功总结到一起,找到了共同规律:某种势能的变化都对应着一种功,都是做正功时势能减少,做负功时势能增加,且所做功与对应势能变化在数值上是相等的。

五个式子综合比较,使我们对功和能的关系理解的非常清楚了。

(三)从课本内容中提炼规律。

如:力学中判断物体做直线或曲线运动的方法;判断物体做加速运动或减速运动的方法。

热学中分子力随分子距离的变化规律。

电学中根据电力线方向比较电势高低的方法;直流电路中电压分配规律。

几何光学中像距.像的虚实大小随物距的变化规律等。

这些方法或规律几乎遍布物理课的每章每节,虽然没有形成定理或定律,也是解决物理问题中不可缺少的工具。

如能随时系统总结出来是大有益处的。

(四).在解题中发现规律。

先看三道习题:1.一辆汽车在发动机的额定功率为P,行驶中所受阻力恒为f,求它由静止起动后能达到的最大速度。

2.磁感应强度为B的匀强磁场中有一些直平行光滑导轨,串有电阻R,两轨间距为l,现有一条质量为m电阻不计的导体棒AB,由静止开始沿导轨滑下,求AB棒的最大速度。

(见图(3))。

3.如图(4),气缸竖直放置,气缸内活塞面积S=1平方厘米,质量m=200克。

缸内气体压强P1=2×10 帕,温度T1 =480开,活塞到缸底距离H1= 12厘米。

拔出销钉,活塞向上无摩擦滑动,当它达到最大速度时缸内气体温度T2 =300开,求此时活塞到缸底距离。

(P0 =1.0×10 帕)这三个题目一个是力学题,一个是电学题一个是热学题。

它们有一个共同点即汽车.AB 棒.活塞都遵守这样一个运动模式:都由静止开始做加速度减小的加速运动,当a=0时速度v达到最大。

搞清这一物理情景正是解答这三个题的关键。

又如:加速度a=△V/△t ,F=△P/△t ,ε= △φ/△t ,加速度.合外力.感应电动势本来三个不同的物理量,也有一个共同点:都对应着一种变化率,即对应变化的快慢,反映到图象上就对应着斜率。

物理习题千变尤化,只要留心,总是会找到一些共同规律的。

总之,抓住了物理概念和物理规律,就抓住了物理学的精髓,就具备了驾驭物理学的本领。

相关文档
最新文档