高中立体几何题型分类训练(附详细复习资料)

合集下载

2020新课标Ⅱ年高考数学总复习专题立体几何分项练习含解析理8

2020新课标Ⅱ年高考数学总复习专题立体几何分项练习含解析理8

专题10 立体几何一.基础题组1. 【2013课标全国Ⅱ,理4】已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l ⊥m,l⊥n,lα,lβ,则( ).A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】:D【解析】因为m⊥α,l⊥m,lα,所以l∥α.同理可得l∥β.又因为m,n为异面直线,所以α与β相交,且l平行于它们的交线.故选D.2. 【2012全国,理4】已知正四棱柱ABCD-A1B1C1D1中,AB=2,122CC ,E为CC1的中点,则直线AC1与平面BED的距离为( )A.2 B.3 C.2 D.1【答案】 D又△AC C1为等腰直角三角形,∴CH=2.∴HM=1.3. 【2011新课标,理6】在一个几何体的三视图中,正视图和俯视图如下图所示,则相应的侧视图可以为( )(正视图)(俯视图)【答案】D 【解析】4. 【2006全国2,理4】过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为 A.163B.169 C.83 D.329【答案】:A5. 【2006全国2,理7】如图,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α,β所成的角分别为4π和6π.过A ,B 分别作两平面交线的垂线,垂足为A ′,B ′,则AB ∶A ′B ′等于 A.2∶1B.3∶1C.3∶2D.4∶3【答案】:A6. 【2005全国3,理4】设三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B —APQC 的体积为( ) A .16VB .14VC .13VD .12V【答案】C【解析】连接11,BA BC ,在侧面平行四边形11AAC C 中,∵1PA QC =, ∴ 四边形APQC 的面积1S =四边形11PQA C 的面积2S , 记B 到面11AAC C 的距离为h ,∴113B APQC V S h -=,11213B PQAC V S h -=, ∴11B APQC B PQA C V V --=,∵11113B A B C V V -=,∴11233B APQC B PQA C V V V V V --+=-=,∴3B APQC V V -=. 7. 【2005全国2,理2】正方体1111ABCD A B C D -中,P 、Q 、R 分别是AB 、AD 、11B C 的中点.那么,正方体的过P 、Q 、R 的截面图形是( )(A) 三角形 (B) 四边形(C) 五边形(D) 六边形【答案】D8. 【2015高考新课标2,理6】一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51【答案】D【解析】由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,,设正方体棱【考点定位】三视图.9. 【2017课标II ,理4】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π 【答案】B 【解析】试题分析:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B .【考点】 三视图、组合体的体积【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.二.能力题组1. 【2014新课标,理6】如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A. 1727 B.59 C.1027D.13【答案】C2. 【2010全国2,理9】已知正四棱锥S—ABCD中,SA=3它的高为( )A.3.2 D.3【答案】:C3. 【2011新课标,理15】已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC =23,则棱锥O­ABCD的体积为__________.【答案】83【解析】4. 【2015高考新课标2,理9】已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )A.36π B.64π C.144π D.256π【答案】C【解析】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144SR ππ==,故选C .BOAC【考点定位】外接球表面积和椎体的体积.5. 【2016高考新课标2理数】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20(B )24(C )28(D )32【答案】C【考点】三视图,空间几何体的表面积 【名师点睛】由三视图还原几何体的方法:6.【2016高考新课标2理数】α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有 .(填写所有正确命题的编号)【答案】②③④【考点】空间中的线面关系【名师点睛】求解本题时应注意在空间中考虑线、面位置关系.7.【2017课标II,理10】已知直三棱柱111ABC A B C-中,120ABC∠=︒,2AB=,11BC CC==,则异面直线1AB与1BC所成角的余弦值为A.3B.15C.10D.3【答案】C【解析】试题分析:如图所示,补成直四棱柱1111ABCD A B C D-,则所求角为21111,2,21221cos603,5 BC D BC BD C D AB∠==+-⨯⨯⨯︒===Q,易得22211C D BD BC=+,因此111210cos55BCBC DC D∠===,故选C.【考点】异面直线所成的角、余弦定理、补形的应用【名师点睛】平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是(0,]2,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围. 三.拔高题组1. 【2014新课标,理11】直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( )A. 110B. 25C. 30D.2【答案】C2. 【2013课标全国Ⅱ,理7】一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ).【答案】:A3. 【2010全国2,理11】与正方体ABCD—A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点( )A.有且只有1个 B.有且只有2个C.有且只有3个 D.有无数个【答案】:D【解析】经验证线段B1D上的点B,D,中点,四等分点均满足题意,故由排除法知应有无数个点.4. 【2005全国2,理12】将半径为1的4个钢球完全装入形状为正四面体的容器里.这个正四面体的高的最小值为()326+(B)262(C)2644326+【答案】C【解析】由题意知,底面放三个钢球,上再落一个钢球时体积最小,于是把钢球的球心连接,则又可得到一个棱长为2的小正四面体,26,且由正四面体的性质可知:正四面体的中心到底面的距离是高的14,且小正四面体的中心和正四面体容器的中心应该是重合的,∴小正四面体的中心到底面的距离是26164⨯=,正四面体的中心到底面的距离是61+(1即小钢球的半径),所以可知正四棱锥的高的最小值为626(1)44+⨯=+,故选 C . 5. 【2012全国,理16】三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长都相等,∠BAA 1=∠CAA 1=60°,则异面直线AB 1与BC 1所成角的余弦值为__________.【答案】:666. 【2010全国2,理16】已知球O 的半径为4,圆M 与圆N 为该球的两个小圆,AB 为圆M 与圆N 的公共弦,AB =4,若OM =ON =3,则两圆圆心的距离MN =________.【答案】:3【解析】:∵|OM |=|ON |=3,∴圆M 与圆N 2243-7.取AB 中点C ,连结MC 、NC ,则MC ⊥AB ,NC ⊥AB , |MC |=|NC |22(7)2-3,易知OM 、CN 共面且OM ⊥MC ,ON ⊥NC ,|OC |223(3)+3,sin ∠OCM 233 ∴|MN |=2|MC |·sin∠OCM =33=3.7. 【2005全国2,理20】(本小题满分12分)如图,四棱锥P ABCD=,E、F分-中,底面ABCD为矩形,PD⊥底面ABCD,AD PD别为CD、PB的中点.(Ⅰ) 求证:EF⊥平面PAB;(Ⅱ) 设2=,求AC与平面AEF所成的角的大小.AB BC∵PB、FA为平面PAB内的相交直线∴EF⊥平面PAB方法二以D为坐标原点,DA的长为单位,建立如图所示的直角坐标系。

最新高中立体几何题型分类训练(附详细答案)

最新高中立体几何题型分类训练(附详细答案)

立体几何题型分类解答第一节空间简单几何体的结构与三视图、直观图及其表面积和体积一、选择题1.(2009年绵阳月考)下列三视图所对应的直观图是( )2.(2010年惠州调研)下列几何体(如下列图)各自的三视图中,有且仅有两个视图相同的是( )A.①②B.①③C.①④D.②④3.如下图所示,甲、乙、丙是三个立体图形的三视图,甲、乙、丙对应的标号正确的是( )①长方体②圆锥③三棱锥④圆柱A.④③② B.②①③ C.①②③ D.③②④4.(2009年常德模拟)用单位立方块搭一个几何体,使它的主视图和俯视图如下图所示,则它的体积的最小值与最大值分别为( )A.9与13 B.7与10 C.10与16 D.10与155.(2009年山东卷)一空间几何体的三视图如图所示,则该几何体的体积为( )A .2π+2 3B .4π+2 3C .2π+233D .4π+233二、填空题6.在下列图的几何体中,有________个是柱体.7.(2009年全国卷)直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC=120°,则此球的表面积等于__________.8.一个长方体共顶点的三个面的面积分别为2、3、6,这个长方体对角线的长是________. 三、解答题9.如右图所示,在正三棱柱ABC —A 1B 1C 1中,AB =3,AA 1=4,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC 1到M 的最短路线长为29,设这条最短路线与CC 1的交点为N.求:(1)该三棱柱的侧面展开图的对角线长; (2)PC 和NC 的长.10.一几何体的表面展开图如右图,则这个几何体是哪一种几何体?选择适当的角度,画出它水平放置时的直观图与三视图.并计算该几何体的体积.参考答案1.C2.解析:正方体的三视图都相同,而三棱台的三视图各不相同,正确答案为D.答案:D3.A 4.C 5.C6.解析:柱体包括棱柱与圆柱,图中第①,③,⑤,⑦个几何体都是柱体. 答案:47.解析:在△ABC 中AB =AC =2,∠BAC=120°,可得BC =23,由正弦定理,可得△ABC 外接圆半径r =2,设此圆圆心为O′,球心为O ,在RT△OBO′中,易得球半径R =5,故此球的表面积为4πR 2=20π.答案:20π8.解析:不妨设三棱长为a ,b ,c ,则ab =2,bc =3,ac =6,解得abc =6从而a =2,b =1,c =3,其对角线长为a 2+b 2+c 2= 6.答案: 69.解析:(1)该三棱柱的侧面展开图为一边长分别为4和9的矩形所以对角线长为42+92=97;(2)将该三棱柱的侧面沿棱BB 1展开,如右图,设PC 的长为x ,则MP 2=MA 2+(AC +x)2,因为MP =29,MA =2,AC =3,所以x =2即PC 的长为2,又因为NC∥AM所以PC PA =NC AM 即25=NC 2,所以NC =45.注意:几何体中,沿侧面上的最短线路问题常考虑几何体的侧面展开图或表面展开图来考虑.10.解析:该几何体为四棱锥,底面是正方形,有一条侧棱与底面垂直,(直观图,三视图略)其体积为: 13×6×6×6=72 cm 3.第二节 空间图形的基本关系与公理一、选择题1.下列四个命题:①分别在两个平面内的两条直线是异面直线 ②和两条异面直线都垂直的直线有且只有一条 ③和两条异面直线都相交的两条直线必异面④若a 与b 是异面直线,b 与c 是异面直线,则a 与c 也是异面直线 其中是真命题的个数为( )A .3B .2C .1D .02.以下命题中:①点A,B,C∈直线a,A,B∈平面α,则C∈α;②点A∈直线a,a⊄平面α,则A∈α;③α,β是不同的平面,a⊂α,b⊂β,则a,b异面;④三条直线两两相交,则这三条直线共面;⑤空间有四点不共面,则这四点中无三点共线.真命题的个数为( )A.0 B.1 C.2 D.33.对于空间三条直线,有下列四个条件:①三条直线两两相交且不共点;②三条直线两两平行;③三条直线共点;④有两条直线平行,第三条直线和这两条直线都相交.其中,使三条直线共面的充分条件有( )A.1个 B.2个 C.3个 D.4个4.(2008年四川延考)在正方体ABCD-A1B1C1D1中,E是棱A1B1的中点,则A1B与D1E所成角的余弦值为( )A.510B.1010C.55D.1055.(2008年全国卷Ⅱ)已知正四棱锥S-ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成的角的余弦值为( )A.13B.23C.33D.23二、填空题6.空间内五个点中的任意三点都不共线,由这五个点为顶点只构造出四个三棱锥,则这五个点最多可以确定________个平面.7.在长方体ABCD-A1B1C1D1中,经过其对角线BD1的平面分别与棱AA1、CC1相交于E,F两点,则四边形EBFD1的形状为________.8.P是直线a外一定点,经过P且与直线a成30°角的直线有________条.三、解答题9.如右图所示,在三棱锥A-BCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.(1)求证:四边形EFGH是平行四边形;(2)若AC=BD,求证:四边形EFGH是菱形;(3)当AC与BD满足什么条件时,四边形EFGH是正方形.10.如右图所示,已知四边形ABCD 为直角梯形,AD∥BC,∠ABC=90°,PA⊥平面AC ,且PA =AD =AB =1,BC =2.(1)求PC 的长;(2)求异面直线PC 与BD 所成角的余弦值的大小.参考答案1.D2.解析:只有①⑤为真命题. 答案:C 3.B4.解析:连结D 1C ,EC ,用余弦定理解三角形可以求得答案. 答案:B5.解析:连接AC 、BD 交于O ,连接OE ,因OE∥SD.所以∠AEO 为所求.设侧棱长与底面边长都等于2,则在△AEO 中,OE =1,AO =2,AE =22-1=3,于是cos∠AEO=()32+12-222×3×1=13=33. 答案:C6.7 7.平行四边形8.解析:无数条,它们组成一个以P 为顶点的圆锥面. 答案:无数9.解析:(1)证明:在△ABC 中,E ,F 分别是边AB ,BC 中点,所以EF∥AC,且EF =12AC ,同理有GH∥AC,且GH =12AC ,∴EF∥GH 且EF =GH ,故四边形EFGH 是平行四边形;(2)证明:仿(1)中分析,EH∥BD 且EH =12BD ,若AC =BD ,则有EH =EF ,又因为四边形EFGH 是平行四边形,∴四边形EFGH 是菱形.(3)由(2)知,AC =BD(四边形EFGH 是菱形,欲使EFGH 是正方形,还要得到∠EFG=90°,而∠EFG 与异面直线AC ,BD 所成的角有关,故还要加上条件AC⊥BD.∴当AC =BD 且AC⊥BD 时,四边形EFGH 是正方形.10.解析:(1)因为PA⊥平面AC ,AB⊥BC,∴PB⊥BC,即∠PBC=90°,由勾股定理得PB =PA 2+AB 2= 2. ∴PC=PB 2+BC 2= 6. (2)如右图所示,过点C 作CE∥BD 交AD 的延长线于E ,连结PE ,则∠PCE 为异面直线PC 与BD 所成的角或它的补角.∵CE=BD =2,且PE =PA 2+AE 2=10. ∴由余弦定理得cos∠PCE=PC 2+CE 2-PE 22PC·CE =-36.∴PC 与BD 所成角的余弦值为36.第三节 空间图形的平行关系一、选择题1.α、β是两个不重合的平面,a 、b 是两条不同直线,在下列条件下,可判定α∥β的是( ) A .α、β都平行于直线a 、bB .α内有三个不共线点A 、B 、C 到β的距离相等 C .a 、b 是α内两条直线,且a∥β,b∥βD .a 、b 是两条异面直线且a∥α,b∥α,a∥β,b∥β2.(2009年滨州模拟)给出下列命题:①若平面α内的直线l 垂直于平面β内的任意直线,则α⊥β; ②若平面α内的任一直线都平行于平面β,则α∥β; ③若平面α垂直于平面β,直线l 在平面α内,则l⊥β; ④若平面α平行于平面β,直线l 在平面α内,则l∥β. 其中正确命题的个数是( )A .4B .3C .2D .13.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于点A ,C ,过点P 的直线n 与α,β分别交于点B ,D ,且PA =6,AC =9,PD =8,则BD 的长为( )A .16B .24或245C .14D .204.a 、b 是两条异面直线,A 是不在a 、b 上的点,则下列结论成立的是( ) A .过A 有且只有一个平面平行于a 、b B .过A 至少有一个平面平行于a 、b C .过A 有无数个平面平行于a 、b D .过A 且平行a 、b 的平面可能不存在5.给出下列关于互不相同的直线m ,l ,n 和平面α,β的四个命题: ①若m ⊂α,l∩α=A ,点A ∉m ,则l 与m 不共面; ②若l∥α,m∥β,α∥β,则l∥m;③若l ⊂α,m ⊂α,l∩m=点A ,l∥β,m∥β,则α∥β; ④m∥α,m ⊂β,α∩β=l ,则m∥l. 其中为假命题的是( )A .①B .②C .③D .④ 二、填空题6.设D 是线段BC 上的点,BC∥平面α,从平面α外一定点A(A 与BC 分居平面两侧)作AB 、AD 、AC 分别交平面α于E 、F 、G 三点,BC =a ,AD =b ,DF =c ,则EG =________.7.在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别为棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件________时,有MN∥平面B 1BDD 1.8.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.在上面结论中,正确结论的编号是________.(写出所有正确结论的编号) 三、解答题9.(2009年柳州模拟)如右图所示,ABCD -A 1B 1C 1D 1是正四棱柱,侧棱长为1,底面边长为2,E 是棱BC 的中点.(1)求证:BD 1∥平面C 1DE ;(2)求三棱锥D -D 1BC 的体积.10.(2009年宁夏模拟)如右图所示,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA⊥底面ABCD ,PA =AB =1,AD =3,点F 是PB 的中点,点E 在边BC 上移动.(1)求三棱锥E —PAD 的体积;(2)当点E 为BC 的中点时,试判断EF 与平面PAC 的位置关系,并说明理由; (3)证明:无论点E 在边BC 的何处,都有PE⊥AF.参考答案1.解析:A 错,若a∥b,则不能断定α∥β;B 错,若A 、B 、C 三点不在β的同一侧,则不能断定α∥β; C 错,若a∥b,则不能断定α∥β;D 正确. 答案:D 2.B3.解析:利用△PAB 与△PCD 相似可得,当α,β在点P 的同侧时,BD 为245;α,β在点P 的异侧时,BD为24.答案:B4.解析:过点A 可作直线a′∥a,b′∥b, 则a′∩b′=A.∴a′、b′可确定一个平面,记为α. 如果a ⊄α,b ⊄α,则a∥α,b∥α.由于平面α可能过直线a 、b 之一,因此,过A 且平行于a 、b 的平面可能不存在. 答案:D5.解析:本题考查线线,线面及面面位置关系的判定. 答案:B 6.ab -acb7.点M 在线段FH 上8.解析:如右图所示,A 1D 与BC 1在平面ABCD 上的射影互相平行; AB 1与BC 1在平面ABCD 上的射影互相垂直;DD 1与BC 1在平面ABCD 上的射影是一条直线及其外一点. 答案:①②④9.解析:(1)证明:连接D 1C 交DC 1于F ,连结EF. ∵ABCD—A 1B 1C 1D 1为正四棱柱, ∴四边形DCC 1D 1为矩形, ∴F 为D 1C 中点.在△CD 1B 中,∵E 为BC 中点,∴EF∥D 1B. 又∵D 1B ⊄面C 1DE ,EF ⊂面C 1DE ,∴BD 1∥平面C 1DE. (2)连结BD ,VD -D 1BC =VD 1-DBC ,∵AC′是正四棱柱, ∴D 1D⊥面DBC.∵DC=BC =2,∴S △BCD =12×2×2=2.VD 1-DBC =13·S △BCD ·D 1D =13×2×1=23.∴三棱锥D -D 1BC 的体积为23.10.解析:(1)三棱锥E —PAD 的体积 V =13PA·S △ADE =13PA·⎝ ⎛⎭⎪⎫12AD·AB =36.(2)当点E 为BC 的中点时,EF 与平面PAC 平行. ∵在△PBC 中,E 、F 分别为BC 、PB 的中点, ∴EF∥PC,又EF ⊄平面PAC ,而PC ⊂平面PAC , ∴EF∥平面PAC.(3)证明:∵PA⊥平面ABCD ,BE ⊂平面ABCD ,∴EB⊥PA, 又EB⊥AB,AB∩AP=A ,AB ,AP ⊂平面PAB , ∴EB⊥平面PAB ,又AF ⊂平面PAB ,∴AF⊥EB, 又PA =AB =1,点F 是PB 中点,∴AF⊥PB 又∵PB∩BE=B ,PB ,BE ⊂面PBE ,∴AF⊥面PBE ,∵PE⊂面PBE,∴PE⊥AF.第四节空间图形的垂直关系一、选择题1.(2008年安徽卷)已知m、n是两条不同直线,α、β、γ是三个不同平面,下列命题中正确的是( ) A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥β D.若m⊥α,n⊥α,则m∥n2.(2009年浙江卷)设α,β是两个不同的平面,l是一条直线,以下命题正确的是( )A.若l⊥α,α⊥β,则l⊂β B.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥β D.若l∥α,α⊥β,则l⊥β3.(2009年广东卷)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( )A.①和② B.②和③C.③和④ D.②和④4.关于直线m、n与平面α与β,有下列四个命题:①若m∥α,n∥β且α∥β,则m∥n;②若m⊥α,n⊥β且α⊥β,则m⊥n;③若m⊥α,n∥β且α∥β,则m⊥n;④若m∥α,n⊥β且α⊥β,则m∥n;其中真命题的序号是( )A.①② B.③④ C.①④D.②③5.已知两条直线m、n,两个平面α、β,给出下面四个命题①m∥n,m⊥α⇒n⊥α②α∥β,m⊂α,n⊂β⇒m∥n③m∥n,m∥α⇒n∥α④α∥β,m∥n,m⊥α⇒n⊥β其中正确命题的序号是( )A.①③ B.②④ C.①④D.②③二、填空题6.下列命题中,设α、β、γ为不同平面,a、b为不同直线,下列命题是真命题的有________.①a⊥α,a⊥β⇒α∥β.②a⊥α,a∥b⇒b⊥α.③α⊥β,a⊂α,b⊂β⇒a⊥b.④a⊥α,a⊥b⇒b∥α.7.设三棱锥P-ABC的顶点P在平面ABC上的射影是H,给出以下命题:①若PA⊥BC,PB⊥AC,则H是△ABC的垂心②若PA、PB、PC两两互相垂直,则H是△ABC的垂心③若∠ABC=90°,H是AC的中点,则PA=PB=PC④若PA=PB=PC,则H是△ABC的外心其中正确命题的命题是________.8.(2009年浙江)如下图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点.现将△AFD沿AF折起,使平面ABD⊥平面ABC.在平面ABD内过点D作DK⊥AB,K为垂足.设AK=t,则t的取值范围是_____________.三、解答题9.如右图所示,四棱锥P-ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD= 2.(1)求证:PA⊥平面ABCD;(2)求四棱锥P-ABCD的体积.10.如右图,A、B、C、D为空间四点.在△ABC中,AB=2,AC=BC= 2.等边三角形ADB以AB为轴运动.(1)当平面ADB⊥平面ABC时,求CD;(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.参考答案1.解析:m、n均为直线,其中m、n平行α,m、n可以相交也可以异面,故A不正确;m⊥α,n⊥α则同垂直于一个平面的两条直线平行;故选D.答案:D2.解析:对于A 、B 、D 均可能出现l∥β,而对于C 是正确的.答案:C3.D4.D5.解析:用线面垂直的性质和面面平行的性质可判断①④正确,②中m ,n 可以平行或异面;③中n 可以在α内.答案:C6.①②7.①②③④8.解析:此题的破解可采用二个极端位置法,即对于F 位于DC 的中点时,t =1,随着F 点到C 点时,因CB⊥AB,CB⊥DK,∴CB⊥平面ADB ,即有CB⊥BD,对于CD =2,BC =1,∴BD=3,又AD =1,AB =2,因此有AD⊥BD,则有t =12,因此t 的取值范围是⎝ ⎛⎭⎪⎫12,1.答案:⎝ ⎛⎭⎪⎫12,1 9.解析:(1)证明:因为四棱锥P -ABCD 的底面是边长为1的正方形,PA =1,PD =2,所以PD 2=PA 2+AD 2,所以PA⊥AD.又PA⊥CD,AD∩CD=D ,所以PA⊥平面ABCD.(2)四棱锥P -ABCD 的底面积为1,因为PA⊥平面ABCD ,所以四棱锥P -ABCD 的高为1,所以四棱锥P -ABCD 的体积为13. 10.解析:(1)取AB 的中点E ,连结DE ,CE ,因为ADB 是等边三角形,所以DE⊥AB.当平面ADB⊥平面ABC 时,因为平面ADB∩平面ABC =AB ,所以DE⊥平面ABC ,可知DE⊥CE,由已知可得DE=3,EC=1,在Rt△DEC中,CD=DE2+EC2=2.(2)当△ADB以AB为轴转动时,总有AB⊥CD.证明:①当D在平面ABC内时,因为AC=BC,AD=BD,所以C,D都在线段AB的垂直平分线上,即AB⊥CD.②当D不在平面ABC内时,由(1)知AB⊥DE.又因AC=BC,所以AB⊥CE.又DE,CE为相交直线,所以AB⊥平面CDE,由CD⊂平面CDE,得AB⊥CD.综上所述,总有AB⊥CD.。

高三高考数学总复习《立体几何》题型归纳与汇总

高三高考数学总复习《立体几何》题型归纳与汇总

(3)当 PA// 平面 BDE 时, PA 平面 PAC ,且平面 PAC 平面 BDE DE ,可得 PA//DE .由 D 是 AC 边的中 点知, E 为 PC 边的中点.故而 ED 1 PA 1, ED∥PA ,因为 PA 平面 ABC ,所以 ED 平面 BDC .
2
由 AB BC 2 ,AB BC ,D 为 AC 边中点知,BD CD 2. 又 BD AC ,有 BD DC ,即 BDC 90.
3 【解析】(1)∵ PA PD, N 为 AD 的中点,∴ PN AD, ∵底面 ABCD为菱形, BAD 60 ,∴ BN AD, ∵ PN BN N ,∴ AD 平面 PNB . (2)∵ PN PD AD 2 , ∴ PN NB 3 , ∵平面 PAD 平面 ABCD,平面 PAD 平面 ABCD AD , PN AD, ∴ PN 平面 ABCD, ∴ PN NB ,
【易错点】 外接球球心位置不好找 【思维点拨】 应用补形法找外接球球心的位置
题型四 立体几何的计算
例 1 如图,已知三棱锥的底面是直角三角形,直角 边边长分别为 3 和 4 ,过直角顶点的侧棱长为 4 ,且 垂直于底面,该三棱锥的主视图是 ( )
【答案】 B 【解析】显然由空间直角坐标系可知,该几何体在 xoy 面内的点保持不动,在 y 轴上的点在 xoy 面内的射影为坐标原 点,所以该几何体的主视图就是其在面 xoy 面的表面图形,即主视图应为高为 4 ,底面边长为 3 的直角三角形.故选 B.
以 PA BD . (2)因为 AB BC , AB BC , D 为线段 AC 的中点,所以在等腰 Rt△ABC 中, BD AC .又 由(1)可知, PA BD,PA AC A,所以 BD 平面 PAC .由 E 为线段 PC 上一点,则 DE 平面 PAC ,

高中数学立体几何大题综合归类(原卷版)

高中数学立体几何大题综合归类(原卷版)

高中数学立体几何大题综合归类(原卷版)目录题型01平行:无交线型 (1)题型02平行:线面平行探索性 (3)题型03平行:面面平行探索性 (4)题型04垂直:线面垂直探索性 (5)题型05垂直:面面垂直翻折探索性 (7)题型06证明与建系:斜棱柱垂面法建系 (8)题型07证明与建系:斜棱柱垂线法建系 (10)题型08证明与建系:三棱柱投影法建系 (12)题型09证明与建系:角平分线法建系 (13)题型10二面角延长线法 (15)题型11翻折型 (16)题型12台体型 (18)高考练场..............................................................................................................................................................................19热点题型归纳题型01平行:无交线型【解题攻略】两个平面相交:1.两点确定一条直线,只需确定两平面的两个公共点即可2.由于两平面有一个公共点A ,再找一个公共点即可确定交线3.一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行,在平面内,过两平面的公共点作直线与已知直线平行,则此直线即为两平面的交线【典例1-1】如图,在平行四边形ABCD 中,60ABC ∠=︒,24==A D A B ,E 为AD 的中点,以EC 为折痕将CDE △折起,使点D 到达点P 的位置,且=10PB ,F ,G 分别为BC ,PE 的中点.(1)证明://PB 平面AFG .(2)若平面PAB 与平面PEF 的交线为l ,求直线l 与平面PBC 所成角的正弦值.【变式1-1】如图所示,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,//AB CD ,24AB CD ==,0=60BAD ∠,侧棱1DD ⊥底面ABCD 且1DD DC =.(1)指出棱1CC 与平面1ADB 的交点E 的位置(无需证明);(2)求点B 到平面1ADB 的距离.【变式1-2】如图,P 为圆锥的顶点,O 为圆锥底面的圆心,圆锥的底面直径4AB =,母线22PH =,M 是PB 的中点,四边形OBCH 为正方形.设平面POH ⋂平面PBC l =,证明://l BC ;.题型02平行:线面平行探索性【解题攻略】平行的常用构造方法①三角形中位线法;②平行四边形线法;③比例线段法.注意:平行构造主要用于:①异面直线求夹角;②平行关系的判定.【典例1-1】如图,在三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,112AC A C A A ===,AB BC =,且AB BC ⊥,O 为AC 中点.(1)求证AC ⊥平面1A OB(2)在1BC 上是否存在一点E ,使得OE 平面1A AB ,若不存在,说明理由;若存在,确定点E 的位置.【变式1-1】如图,四边形ABCD 中,AB AD ⊥,//AD BC ,6AD =,24BC AB ==,E ,F 分别在BC ,AD 上,//EF AB ,现将四边形ABCD 沿EF 折起,使BE EC ⊥.(1)若1BE =,在折叠后的线段AD 上是否存在一点P ,使得//CP 平面ABEF ?若存在,求出AP PD 的值;若不存在,说明理由.(2)求三棱锥A CDF -的体积的最大值,并求出此时点F 到平面ACD 的距离.【变式1-2】如图,在直角梯形ABCD 中,AB ∥DC ,∠BAD =90°,AB =4,AD =2,DC =3,点E 在CD 上,且DE =2,将△ADE 沿AE 折起,使得平面ADE ⊥平面ABCE ,G 为AE 中点.(1)求证:DG ⊥平面ABCE ;(2)求四棱锥D -ABCE 的体积;(3)在线段BD 上是否存在点P ,使得CP ∥平面ADE ?若存在,求BP BD的值;若不存在,请说明理由.题型03平行:面面平行探索性【解题攻略】证明平行(1)线线平行:设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)线面平行:设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(3)面面平行:设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.【典例1-1】在三棱柱111ABC A B C 中,(1)若,,,E F G H 分别是1111,,,AB AC A B AC 的中点,求证:平面1//EFA 平面BCHG .(2)若点1,D D 分别是11,AC AC 上的点,且平面1//BC D 平面11AB D ,试求AD DC 的值.【变式1-1】.在长方体1111ABCD A B C D -中,1222AB BC AA ===,P 为11A B 的中点.已知过点1 A的平面α与平面1BPC 平行,平面α与直线11,AB C D 分别相交于点M ,N ,请确定点M ,N的位置;【变式1-2】已知正方体1111ABCD A B C D -中,P 、Q 分别为对角线BD 、1CD 上的点,且123CQ BP QD PD ==.(1)求证://PQ 平面11A D DA ;(2)若R 是AB 上的点,AR AB的值为多少时,能使平面//PQR 平面11A D DA ?请给出证明.题型04垂直:线面垂直探索性【解题攻略】垂直的常见构造:①等腰三角形三线合一法;②勾股定理法;③投影法.④菱形的对角线互相垂直【典例1-1】已知正方体1111ABCD A B C D -的棱长为2,E 、F 、G 分别是1AA 、11A B 、11AD 的中点.(1)求证://EF 平面1BC D ;(2)在线段BD 上是否存在点H ,使得EH ⊥平面1BC D ?若存在,求线段BH 的长;若不存在,请说明理由;(3)求EF 到平面1BC D 的距离.【变式1-1】如图,在四棱锥S -ABCD 中,四边形ABCD 是边长为2的菱形,∠ABC =60°,△SAD 为正三角形.侧面SAD ⊥底面ABCD ,E ,F 分别为棱AD ,SB 的中点.(1)求证:AF ∥平面SEC ;(2)求证:平面ASB ⊥平面CSB ;(3)在棱SB 上是否存在一点M ,使得BD ⊥平面MAC ?若存在,求BMBS 的值;若不存在,请说明理由.【变式1-2】如图,在直三棱柱111ABC A B C -中,90ABC ∠= ,1AB BC ==,13AA =,M 为棱AC 上靠近A 的三等分点,N 为棱11AB 上靠近1A 的三等分点.(1)证明://MN 平面11BB C C ;(2)在棱1BB 上是否存在点D ,使得1C D ⊥面1B MN ?若存在,求出1B D 的大小并证明;若不存在,说明理由.题型05垂直:面面垂直翻折探索性【解题攻略】翻折1.翻折前后,在同一平平面内的点线关系不变2.翻折过程中是否存在垂直或者平行等特殊位置关系3.翻折过程中,角度是否为定值4.翻折过程中,体积是否存在变化【典例1-1】如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,PA =AB =BC =3,AD =CD =1,∠ADC =120°,点M是AC 与BD 的交点,点N 在线段PB 上,且PN =14PB .(1)证明:MN //平面PDC ;(2)在线段BC 上是否存在一点Q ,使得平面MNQ ⊥平面PAD ,若存在,求出点Q 的位置;若不存在,请说明理由.【变式1-1】如图,在三棱台ABC-DEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在,请确定G点的位置;若不存在,请说明理由.【变式1-2】如图(1),点E是直角梯形ABCD底边CD上的一点,∠ABC=90°,BC=CE=1,AB=DE =2,将DAE沿AE折起,使得D-AE-B成直二面角,连接CD和BD,如图(2).(1)求证:平面ABD 平面BCD;(2)在线段BD上确定一点F,使得CF∥平面ADE.题型06证明与建系:斜棱柱垂面法建系【解题攻略】斜棱柱垂线型建系如果存在垂线(投影型)斜棱柱,则可以直接借助垂线作为z轴建系,下底面,可以寻找或者做出一对垂线作为xy轴。

高考理科数学《立体几何》题型归纳与训练

高考理科数学《立体几何》题型归纳与训练

高考理科数学《立体几何》题型归纳与训练题型归纳】题型一线面平行的证明1例 1 如图,高为 1 的等腰梯形 ABCD 中,AM =CD =3AB =1.现将△AMD 沿 MD 折起,使平面 AMD ⊥平面 MBCD ,连接 AB , AC .试判断:在 AB 边上是否存在点 P ,使 AD ∥平面 MPC ?并说明理由1答案】当 AP =3AB 时,有 AD ∥平面 MPC .3理由如下:DN DC 1在梯形 MBCD 中, DC ∥MB ,NB =MB =2AP 1 在△ADB 中, = ,∴AD ∥PN . PB 2∵AD ? 平面 MPC ,PN ? 平面 MPC , ∴AD ∥平面 MPC .【解析】 线面平行, 可以线线平行或者面面平行推出。

此类题的难点就是如何构造辅助线。

构造完辅助线, 证明过程只须注意规范的符号语言描述即可。

本题用到的是线线平行推出面面平行。

【易错点】不能正确地分析 DN 与 BN 的比例关系,导致结果错误。

【思维点拨】此类题有两大类方法:连接 BD 交 MC 于点 N ,连接 NP .1. 构造线线平行,然后推出线面平行。

此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。

在 此,我们需要借助倒推法进行分析。

首先,此类型题目大部分为证明题,结论必定是正确的,我们以此 为前提可以得到线面平行。

再次由线面平行的性质可知, 过已知直线的平面与已知平面的交线必定平行 于该直线,而交线就是我们要找的线,从而做出辅助线。

从这个角度上看我们可以看出线线平行推线面 平行的本质就是过已知直线做一个平面与已知平面相交即可。

如本题中即是过 AD 做了一个平面 ADB 与平面MPC 相交于线 PN 。

最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。

即先 证 AD 平行于 PN ,最后得到结论。

构造交线的方法我们可总结为如下三个图形。

高中数学空间几何体知识点归纳与常考题型专题练习(附解析)

高中数学空间几何体知识点归纳与常考题型专题练习(附解析)

( 7)球体:定义: 以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征: ①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影) 俯视图(从上向下)
;侧视图(从左向右) 、
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
B.
C. D.
29.如图是某几何体的三视图,则该几何体的体积为(

A. 1 B. C. D. 30.某几何体的三视图如图所示,且该几何体的体积是 是( )
,则正视图中的 x 的值
A. 2 B. C. D.3
31.将边长为 a 的正方形 ABCD 沿对角线 AC 折起,使得 BD=a,则三棱锥 D﹣ ABC 的体积为( )
设三棱锥 F﹣ADE 的体积为 V 1,三棱柱 A 1B1C1﹣ ABC 的体积为 V 2,则 V 1:
V2=

39.如图,在圆柱 O1O2 内有一个球 O,该球与圆柱的上、下底面及母线均相切,
记圆柱 O1O2 的体积为 V 1,球 O 的体积为 V 2,则 的值是

40.若某几何体的三视图(单位: cm3.
( 1)要使倾斜后容器内的溶液不会溢出,角 α的最大值是多少; ( 2)现需要倒出不少于 3000cm3 的溶液,当 α=60°时,能实现要求吗?请说明 理由. 47.如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为 32cm,容器Ⅰ的底面对角线 AC 的长为 10 cm,容器Ⅱ的两底面对角线 EG, E1G1 的长分别为 14cm 和 62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为 12cm.现有一根玻璃棒 l,其长度为 40cm.(容器厚度、 玻璃棒粗细均忽略不计) ( 1)将 l 放在容器Ⅰ中, l 的一端置于点 A 处,另一端置于侧棱 CC1 上,求 l

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。

考题难度中等,常结合空间向量知识进行考查。

2024年高考有很大可能延续往年的出题方式。

题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

高中立体几何题型分类训练(附详细答案)只是分享

高中立体几何题型分类训练(附详细答案)只是分享

立体几何题型分类解答第一节空间简单几何体的结构与三视图、直观图及其表面积和体积一、选择题1.(2009年绵阳月考)下列三视图所对应的直观图是( )2.(2010年惠州调研)下列几何体(如下列图)各自的三视图中,有且仅有两个视图相同的是( )A.①②B.①③C.①④D.②④3.如下图所示,甲、乙、丙是三个立体图形的三视图,甲、乙、丙对应的标号正确的是( )①长方体②圆锥③三棱锥④圆柱A.④③② B.②①③ C.①②③ D.③②④4.(2009年常德模拟)用单位立方块搭一个几何体,使它的主视图和俯视图如下图所示,则它的体积的最小值与最大值分别为( )A.9与13 B.7与10 C.10与16 D.10与155.(2009年山东卷)一空间几何体的三视图如图所示,则该几何体的体积为( )A .2π+2 3B .4π+2 3C .2π+233D .4π+233二、填空题6.在下列图的几何体中,有________个是柱体.7.(2009年全国卷)直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC=120°,则此球的表面积等于__________.8.一个长方体共顶点的三个面的面积分别为2、3、6,这个长方体对角线的长是________. 三、解答题9.如右图所示,在正三棱柱ABC —A 1B 1C 1中,AB =3,AA 1=4,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC 1到M 的最短路线长为29,设这条最短路线与CC 1的交点为N.求:(1)该三棱柱的侧面展开图的对角线长; (2)PC 和NC 的长.10.一几何体的表面展开图如右图,则这个几何体是哪一种几何体?选择适当的角度,画出它水平放置时的直观图与三视图.并计算该几何体的体积.参考答案1.C2.解析:正方体的三视图都相同,而三棱台的三视图各不相同,正确答案为D.答案:D3.A 4.C 5.C6.解析:柱体包括棱柱与圆柱,图中第①,③,⑤,⑦个几何体都是柱体. 答案:47.解析:在△ABC 中AB =AC =2,∠BAC=120°,可得BC =23,由正弦定理,可得△ABC 外接圆半径r =2,设此圆圆心为O′,球心为O ,在RT△OBO′中,易得球半径R =5,故此球的表面积为4πR 2=20π.答案:20π8.解析:不妨设三棱长为a ,b ,c ,则ab =2,bc =3,ac =6,解得abc =6从而a =2,b =1,c =3,其对角线长为a 2+b 2+c 2= 6.答案: 69.解析:(1)该三棱柱的侧面展开图为一边长分别为4和9的矩形所以对角线长为42+92=97;(2)将该三棱柱的侧面沿棱BB 1展开,如右图,设PC 的长为x ,则MP 2=MA 2+(AC +x)2,因为MP =29,MA =2,AC =3,所以x =2即PC 的长为2,又因为NC∥AM所以PC PA =NC AM 即25=NC 2,所以NC =45.注意:几何体中,沿侧面上的最短线路问题常考虑几何体的侧面展开图或表面展开图来考虑.10.解析:该几何体为四棱锥,底面是正方形,有一条侧棱与底面垂直,(直观图,三视图略)其体积为: 13×6×6×6=72 cm 3.第二节 空间图形的基本关系与公理一、选择题1.下列四个命题:①分别在两个平面内的两条直线是异面直线 ②和两条异面直线都垂直的直线有且只有一条 ③和两条异面直线都相交的两条直线必异面④若a 与b 是异面直线,b 与c 是异面直线,则a 与c 也是异面直线 其中是真命题的个数为( )A .3B .2C .1D .02.以下命题中:①点A,B,C∈直线a,A,B∈平面α,则C∈α;②点A∈直线a,a⊄平面α,则A∈α;③α,β是不同的平面,a⊂α,b⊂β,则a,b异面;④三条直线两两相交,则这三条直线共面;⑤空间有四点不共面,则这四点中无三点共线.真命题的个数为( )A.0 B.1 C.2 D.33.对于空间三条直线,有下列四个条件:①三条直线两两相交且不共点;②三条直线两两平行;③三条直线共点;④有两条直线平行,第三条直线和这两条直线都相交.其中,使三条直线共面的充分条件有( )A.1个 B.2个 C.3个 D.4个4.(2008年四川延考)在正方体ABCD-A1B1C1D1中,E是棱A1B1的中点,则A1B与D1E所成角的余弦值为( )A.510B.1010C.55D.1055.(2008年全国卷Ⅱ)已知正四棱锥S-ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成的角的余弦值为( )A.13B.23C.33D.23二、填空题6.空间内五个点中的任意三点都不共线,由这五个点为顶点只构造出四个三棱锥,则这五个点最多可以确定________个平面.7.在长方体ABCD-A1B1C1D1中,经过其对角线BD1的平面分别与棱AA1、CC1相交于E,F两点,则四边形EBFD1的形状为________.8.P是直线a外一定点,经过P且与直线a成30°角的直线有________条.三、解答题9.如右图所示,在三棱锥A-BCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.(1)求证:四边形EFGH是平行四边形;(2)若AC=BD,求证:四边形EFGH是菱形;(3)当AC与BD满足什么条件时,四边形EFGH是正方形.10.如右图所示,已知四边形ABCD 为直角梯形,AD∥BC,∠ABC=90°,PA⊥平面AC ,且PA =AD =AB =1,BC =2.(1)求PC 的长;(2)求异面直线PC 与BD 所成角的余弦值的大小.参考答案1.D2.解析:只有①⑤为真命题. 答案:C 3.B4.解析:连结D 1C ,EC ,用余弦定理解三角形可以求得答案. 答案:B5.解析:连接AC 、BD 交于O ,连接OE ,因OE∥SD.所以∠AEO 为所求.设侧棱长与底面边长都等于2,则在△AEO 中,OE =1,AO =2,AE =22-1=3,于是cos∠AEO=()32+12-222×3×1=13=33. 答案:C6.7 7.平行四边形8.解析:无数条,它们组成一个以P 为顶点的圆锥面. 答案:无数9.解析:(1)证明:在△ABC 中,E ,F 分别是边AB ,BC 中点,所以EF∥AC,且EF =12AC ,同理有GH∥AC,且GH =12AC ,∴EF∥GH 且EF =GH ,故四边形EFGH 是平行四边形;(2)证明:仿(1)中分析,EH∥BD 且EH =12BD ,若AC =BD ,则有EH =EF ,又因为四边形EFGH 是平行四边形,∴四边形EFGH 是菱形.(3)由(2)知,AC =BD(四边形EFGH 是菱形,欲使EFGH 是正方形,还要得到∠EFG=90°,而∠EFG 与异面直线AC ,BD 所成的角有关,故还要加上条件AC⊥BD.∴当AC =BD 且AC⊥BD 时,四边形EFGH 是正方形.10.解析:(1)因为PA⊥平面AC ,AB⊥BC,∴PB⊥BC,即∠PBC=90°,由勾股定理得PB =PA 2+AB 2= 2. ∴PC=PB 2+BC 2= 6. (2)如右图所示,过点C 作CE∥BD 交AD 的延长线于E ,连结PE ,则∠PCE 为异面直线PC 与BD 所成的角或它的补角.∵CE=BD =2,且PE =PA 2+AE 2=10. ∴由余弦定理得cos∠PCE=PC 2+CE 2-PE 22PC·CE =-36.∴PC 与BD 所成角的余弦值为36.第三节 空间图形的平行关系一、选择题1.α、β是两个不重合的平面,a 、b 是两条不同直线,在下列条件下,可判定α∥β的是( ) A .α、β都平行于直线a 、bB .α内有三个不共线点A 、B 、C 到β的距离相等 C .a 、b 是α内两条直线,且a∥β,b∥βD .a 、b 是两条异面直线且a∥α,b∥α,a∥β,b∥β2.(2009年滨州模拟)给出下列命题:①若平面α内的直线l 垂直于平面β内的任意直线,则α⊥β; ②若平面α内的任一直线都平行于平面β,则α∥β; ③若平面α垂直于平面β,直线l 在平面α内,则l⊥β; ④若平面α平行于平面β,直线l 在平面α内,则l∥β. 其中正确命题的个数是( )A .4B .3C .2D .13.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于点A ,C ,过点P 的直线n 与α,β分别交于点B ,D ,且PA =6,AC =9,PD =8,则BD 的长为( )A .16B .24或245C .14D .204.a 、b 是两条异面直线,A 是不在a 、b 上的点,则下列结论成立的是( ) A .过A 有且只有一个平面平行于a 、b B .过A 至少有一个平面平行于a 、b C .过A 有无数个平面平行于a 、b D .过A 且平行a 、b 的平面可能不存在5.给出下列关于互不相同的直线m ,l ,n 和平面α,β的四个命题: ①若m ⊂α,l∩α=A ,点A ∉m ,则l 与m 不共面; ②若l∥α,m∥β,α∥β,则l∥m;③若l ⊂α,m ⊂α,l∩m=点A ,l∥β,m∥β,则α∥β; ④m∥α,m ⊂β,α∩β=l ,则m∥l. 其中为假命题的是( )A .①B .②C .③D .④ 二、填空题6.设D 是线段BC 上的点,BC∥平面α,从平面α外一定点A(A 与BC 分居平面两侧)作AB 、AD 、AC 分别交平面α于E 、F 、G 三点,BC =a ,AD =b ,DF =c ,则EG =________.7.在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别为棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件________时,有MN∥平面B 1BDD 1.8.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.在上面结论中,正确结论的编号是________.(写出所有正确结论的编号) 三、解答题9.(2009年柳州模拟)如右图所示,ABCD -A 1B 1C 1D 1是正四棱柱,侧棱长为1,底面边长为2,E 是棱BC 的中点.(1)求证:BD 1∥平面C 1DE ;(2)求三棱锥D -D 1BC 的体积.10.(2009年宁夏模拟)如右图所示,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA⊥底面ABCD ,PA =AB =1,AD =3,点F 是PB 的中点,点E 在边BC 上移动.(1)求三棱锥E —PAD 的体积;(2)当点E 为BC 的中点时,试判断EF 与平面PAC 的位置关系,并说明理由; (3)证明:无论点E 在边BC 的何处,都有PE⊥AF.参考答案1.解析:A 错,若a∥b,则不能断定α∥β;B 错,若A 、B 、C 三点不在β的同一侧,则不能断定α∥β; C 错,若a∥b,则不能断定α∥β;D 正确. 答案:D 2.B3.解析:利用△PAB 与△PCD 相似可得,当α,β在点P 的同侧时,BD 为245;α,β在点P 的异侧时,BD为24.答案:B4.解析:过点A 可作直线a′∥a,b′∥b, 则a′∩b′=A.∴a′、b′可确定一个平面,记为α. 如果a ⊄α,b ⊄α,则a∥α,b∥α.由于平面α可能过直线a 、b 之一,因此,过A 且平行于a 、b 的平面可能不存在. 答案:D5.解析:本题考查线线,线面及面面位置关系的判定. 答案:B 6.ab -acb7.点M 在线段FH 上8.解析:如右图所示,A 1D 与BC 1在平面ABCD 上的射影互相平行; AB 1与BC 1在平面ABCD 上的射影互相垂直;DD 1与BC 1在平面ABCD 上的射影是一条直线及其外一点. 答案:①②④9.解析:(1)证明:连接D 1C 交DC 1于F ,连结EF. ∵ABCD—A 1B 1C 1D 1为正四棱柱, ∴四边形DCC 1D 1为矩形, ∴F 为D 1C 中点.在△CD 1B 中,∵E 为BC 中点,∴EF∥D 1B. 又∵D 1B ⊄面C 1DE ,EF ⊂面C 1DE ,∴BD 1∥平面C 1DE. (2)连结BD ,VD -D 1BC =VD 1-DBC ,∵AC′是正四棱柱, ∴D 1D⊥面DBC.∵DC=BC =2,∴S △BCD =12×2×2=2.VD 1-DBC =13·S △BCD ·D 1D =13×2×1=23.∴三棱锥D -D 1BC 的体积为23.10.解析:(1)三棱锥E —PAD 的体积 V =13PA·S △ADE =13PA·⎝ ⎛⎭⎪⎫12AD·AB =36. (2)当点E 为BC 的中点时,EF 与平面PAC 平行. ∵在△PBC 中,E 、F 分别为BC 、PB 的中点, ∴EF∥PC,又EF ⊄平面PAC ,而PC ⊂平面PAC , ∴EF∥平面PAC.(3)证明:∵PA⊥平面ABCD ,BE ⊂平面ABCD ,∴EB⊥PA, 又EB⊥AB,AB∩AP=A ,AB ,AP ⊂平面PAB , ∴EB⊥平面PAB ,又AF ⊂平面PAB ,∴AF⊥EB, 又PA =AB =1,点F 是PB 中点,∴AF⊥PB 又∵PB∩BE=B ,PB ,BE ⊂面PBE ,∴AF⊥面PBE ,∵PE⊂面PBE,∴PE⊥AF.第四节空间图形的垂直关系一、选择题1.(2008年安徽卷)已知m、n是两条不同直线,α、β、γ是三个不同平面,下列命题中正确的是( ) A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥β D.若m⊥α,n⊥α,则m∥n2.(2009年浙江卷)设α,β是两个不同的平面,l是一条直线,以下命题正确的是( )A.若l⊥α,α⊥β,则l⊂β B.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥β D.若l∥α,α⊥β,则l⊥β3.(2009年广东卷)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( )A.①和② B.②和③C.③和④ D.②和④4.关于直线m、n与平面α与β,有下列四个命题:①若m∥α,n∥β且α∥β,则m∥n;②若m⊥α,n⊥β且α⊥β,则m⊥n;③若m⊥α,n∥β且α∥β,则m⊥n;④若m∥α,n⊥β且α⊥β,则m∥n;其中真命题的序号是( )A.①② B.③④ C.①④D.②③5.已知两条直线m、n,两个平面α、β,给出下面四个命题①m∥n,m⊥α⇒n⊥α②α∥β,m⊂α,n⊂β⇒m∥n③m∥n,m∥α⇒n∥α④α∥β,m∥n,m⊥α⇒n⊥β其中正确命题的序号是( )A.①③ B.②④ C.①④D.②③二、填空题6.下列命题中,设α、β、γ为不同平面,a、b为不同直线,下列命题是真命题的有________.①a⊥α,a⊥β⇒α∥β.②a⊥α,a∥b⇒b⊥α.③α⊥β,a⊂α,b⊂β⇒a⊥b.④a⊥α,a⊥b⇒b∥α.7.设三棱锥P-ABC的顶点P在平面ABC上的射影是H,给出以下命题:①若PA⊥BC,PB⊥AC,则H是△ABC的垂心②若PA、PB、PC两两互相垂直,则H是△ABC的垂心③若∠ABC=90°,H是AC的中点,则PA=PB=PC④若PA=PB=PC,则H是△ABC的外心其中正确命题的命题是________.8.(2009年浙江)如下图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点.现将△AFD沿AF折起,使平面ABD⊥平面ABC.在平面ABD内过点D作DK⊥AB,K为垂足.设AK=t,则t的取值范围是_____________.三、解答题9.如右图所示,四棱锥P-ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD= 2.(1)求证:PA⊥平面ABCD;(2)求四棱锥P-ABCD的体积.10.如右图,A、B、C、D为空间四点.在△ABC中,AB=2,AC=BC= 2.等边三角形ADB以AB为轴运动.(1)当平面ADB⊥平面ABC时,求CD;(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.参考答案1.解析:m、n均为直线,其中m、n平行α,m、n可以相交也可以异面,故A不正确;m⊥α,n⊥α则同垂直于一个平面的两条直线平行;故选D.答案:D2.解析:对于A 、B 、D 均可能出现l∥β,而对于C 是正确的.答案:C3.D4.D5.解析:用线面垂直的性质和面面平行的性质可判断①④正确,②中m ,n 可以平行或异面;③中n 可以在α内.答案:C6.①②7.①②③④8.解析:此题的破解可采用二个极端位置法,即对于F 位于DC 的中点时,t =1,随着F 点到C 点时,因CB⊥AB,CB⊥DK,∴CB⊥平面ADB ,即有CB⊥BD,对于CD =2,BC =1,∴BD=3,又AD =1,AB =2,因此有AD⊥BD,则有t =12,因此t 的取值范围是⎝ ⎛⎭⎪⎫12,1. 答案:⎝ ⎛⎭⎪⎫12,1 9.解析:(1)证明:因为四棱锥P -ABCD 的底面是边长为1的正方形,PA =1,PD =2,所以PD 2=PA 2+AD 2,所以PA⊥AD.又PA⊥CD,AD∩CD=D ,所以PA⊥平面ABCD.(2)四棱锥P -ABCD 的底面积为1,因为PA⊥平面ABCD ,所以四棱锥P -ABCD 的高为1,所以四棱锥P -ABCD 的体积为13. 10.解析:(1)取AB 的中点E ,连结DE ,CE ,因为ADB是等边三角形,所以DE⊥AB.当平面ADB⊥平面ABC时,因为平面ADB∩平面ABC=AB,所以DE⊥平面ABC,可知DE⊥CE,由已知可得DE=3,EC=1,在Rt△DEC中,CD=DE2+EC2=2.(2)当△ADB以AB为轴转动时,总有AB⊥CD.证明:①当D在平面ABC内时,因为AC=BC,AD=BD,所以C,D都在线段AB的垂直平分线上,即AB⊥CD.②当D不在平面ABC内时,由(1)知AB⊥DE.又因AC=BC,所以AB⊥CE.又DE,CE为相交直线,所以AB⊥平面CDE,由CD⊂平面CDE,得AB⊥CD.综上所述,总有AB⊥CD.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何题型分类解答第一节空间简单几何体的结构与三视图、直观图及其表面积和体积一、选择题1.(2009年绵阳月考)下列三视图所对应的直观图是( )2.(2010年惠州调研)下列几何体(如下列图)各自的三视图中,有且仅有两个视图相同的是( )A.①②B.①③C.①④D.②④3.如下图所示,甲、乙、丙是三个立体图形的三视图,甲、乙、丙对应的标号正确的是( )①长方体②圆锥③三棱锥④圆柱A.④③② B.②①③ C.①②③ D.③②④4.(2009年常德模拟)用单位立方块搭一个几何体,使它的主视图和俯视图如下图所示,则它的体积的最小值与最大值分别为( )A.9与13 B.7与10 C.10与16 D.10与155.(2009年山东卷)一空间几何体的三视图如图所示,则该几何体的体积为( )A.2π+2 B.4π+2C.2π+ D.4π+二、填空题6.在下列图的几何体中,有个是柱体.7.(2009年全国卷)直三棱柱-A1B1C1的各顶点都在同一球面上,若==1=2,∠=120°,则此球的表面积等于.8.一个长方体共顶点的三个面的面积分别为、、,这个长方体对角线的长是.三、解答题9.如右图所示,在正三棱柱—A1B1C1中,=3,1=4,M为1的中点,P是上一点,且由P沿棱柱侧面经过棱1到M的最短路线长为,设这条最短路线与1的交点为N.求:(1)该三棱柱的侧面展开图的对角线长;(2)和的长.10.一几何体的表面展开图如右图,则这个几何体是哪一种几何体?选择适当的角度,画出它水平放置时的直观图与三视图.并计算该几何体的体积.参考答案1.C2.解析:正方体的三视图都相同,而三棱台的三视图各不相同,正确答案为D.答案:D3.A 4 56.解析:柱体包括棱柱与圆柱,图中第①,③,⑤,⑦个几何体都是柱体.答案:47.解析:在△中==2,∠=120°,可得=2,由正弦定理,可得△外接圆半径r=2,设此圆圆心为O′,球心为O,在△′中,易得球半径R=,故此球的表面积为4πR2=20π.答案:20π8.解析:不妨设三棱长为a,b,c,则=,=,=,解得=从而a=,b=1,c=,其对角线长为=.答案:9.解析:(1)该三棱柱的侧面展开图为一边长分别为4和9的矩形所以对角线长为=;(2)将该三棱柱的侧面沿棱1展开,如右图,设的长为x,则2=2+(+x)2,因为=,=2,=3,所以x=2即的长为2,又因为∥所以=即=,所以=.注意:几何体中,沿侧面上的最短线路问题常考虑几何体的侧面展开图或表面展开图来考虑.10.解析:该几何体为四棱锥,底面是正方形,有一条侧棱与底面垂直,(直观图,三视图略)其体积为:×6×6×6=72 3.第二节空间图形的基本关系与公理一、选择题1.下列四个命题:①分别在两个平面内的两条直线是异面直线②和两条异面直线都垂直的直线有且只有一条③和两条异面直线都相交的两条直线必异面④若a与b是异面直线,b与c是异面直线,则a与c也是异面直线其中是真命题的个数为( )A.3 B.2 C.1 D.02.以下命题中:①点A,B,C∈直线a,A,B∈平面α,则C∈α;②点A∈直线a,a⊄平面α,则A∈α;③α,β是不同的平面,a⊂α,b⊂β,则a,b异面;④三条直线两两相交,则这三条直线共面;⑤空间有四点不共面,则这四点中无三点共线.真命题的个数为( )A.0 B.1 C.2 D.33.对于空间三条直线,有下列四个条件:①三条直线两两相交且不共点;②三条直线两两平行;③三条直线共点;④有两条直线平行,第三条直线和这两条直线都相交.其中,使三条直线共面的充分条件有( )A.1个 B.2个 C.3个 D.4个4.(2008年四川延考)在正方体-A1B1C1D1中,E是棱A1B1的中点,则A1B与D1E所成角的余弦值为( )5.(2008年全国卷Ⅱ)已知正四棱锥S-的侧棱长与底面边长都相等,E是的中点,则,所成的角的余弦值为( )二、填空题6.空间内五个点中的任意三点都不共线,由这五个点为顶点只构造出四个三棱锥,则这五个点最多可以确定个平面.7.在长方体-A1B1C1D1中,经过其对角线1的平面分别与棱1、1相交于E,F两点,则四边形1的形状为.8.P是直线a外一定点,经过P且与直线a成30°角的直线有条.三、解答题9.如右图所示,在三棱锥A-中,E,F,G,H分别是边,,,的中点.(1)求证:四边形是平行四边形;(2)若=,求证:四边形是菱形;(3)当与满足什么条件时,四边形是正方形.10.如右图所示,已知四边形为直角梯形,∥,∠=90°,⊥平面,且===1,=2.(1)求的长;(2)求异面直线与所成角的余弦值的大小.参考答案1.D2.解析:只有①⑤为真命题.答案:C3.B4.解析:连结D1C,,用余弦定理解三角形可以求得答案.答案:B5.解析:连接、交于O,连接,因∥.所以∠为所求.设侧棱长与底面边长都等于2,则在△中,=1,=,==,于是∠===.答案:C6.7 7.平行四边形8.解析:无数条,它们组成一个以P为顶点的圆锥面.答案:无数9.解析:(1)证明:在△中,E,F分别是边,中点,所以∥,且=,同理有∥,且=,∴∥且=,故四边形是平行四边形;(2)证明:仿(1)中分析,∥且=,若=,则有=,又因为四边形是平行四边形,∴四边形是菱形.(3)由(2)知,=(四边形是菱形,欲使是正方形,还要得到∠=90°,而∠与异面直线,所成的角有关,故还要加上条件⊥.∴当=且⊥时,四边形是正方形.10.解析:(1)因为⊥平面,⊥,∴⊥,即∠=90°,由勾股定理得==.∴==.(2)如右图所示,过点C作∥交的延长线于E,连结,则∠为异面直线与所成的角或它的补角.∵==,且==.∴由余弦定理得∠==-.∴与所成角的余弦值为.第三节空间图形的平行关系一、选择题1.α、β是两个不重合的平面,a、b是两条不同直线,在下列条件下,可判定α∥β的是( )A.α、β都平行于直线a、bB.α内有三个不共线点A、B、C到β的距离相等C.a、b是α内两条直线,且a∥β,b∥βD.a、b是两条异面直线且a∥α,b∥α,a∥β,b∥β2.(2009年滨州模拟)给出下列命题:①若平面α内的直线l垂直于平面β内的任意直线,则α⊥β;②若平面α内的任一直线都平行于平面β,则α∥β;③若平面α垂直于平面β,直线l在平面α内,则l⊥β;④若平面α平行于平面β,直线l在平面α内,则l∥β.其中正确命题的个数是( )A.4 B.3 C.2 D.13.已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于点A,C,过点P的直线n 与α,β分别交于点B,D,且=6,=9,=8,则的长为( )A.16 B.24或C.14 D.204.a、b是两条异面直线,A是不在a、b上的点,则下列结论成立的是( )A.过A有且只有一个平面平行于a、bB.过A至少有一个平面平行于a、bC.过A有无数个平面平行于a、bD.过A且平行a、b的平面可能不存在5.给出下列关于互不相同的直线m,l,n和平面α,β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若l∥α,m∥β,α∥β,则l∥m;③若l⊂α,m⊂α,l∩m=点A,l∥β,m∥β,则α∥β;④m∥α,m⊂β,α∩β=l,则m∥l.其中为假命题的是( )A.① B.② C.③ D.④二、填空题6.设D是线段上的点,∥平面α,从平面α外一定点A(A与分居平面两侧)作、、分别交平面α于E、F、G 三点,=a,=b,=c,则=.7.在正四棱柱-A1B1C1D1中,E、F、G、H分别为棱1、C1D1、D1D、的中点,N是的中点,点M在四边形及其内部运动,则M满足条件时,有∥平面B11.8.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.在上面结论中,正确结论的编号是.(写出所有正确结论的编号)三、解答题9.(2009年柳州模拟)如右图所示,-A1B1C1D1是正四棱柱,侧棱长为1,底面边长为2,E是棱的中点.(1)求证:1∥平面C1;(2)求三棱锥D-D1的体积.10.(2009年宁夏模拟)如右图所示,在四棱锥P—中,底面是矩形,⊥底面,==1,=,点F是的中点,点E在边上移动.(1)求三棱锥E—的体积;(2)当点E为的中点时,试判断与平面的位置关系,并说明理由;(3)证明:无论点E在边的何处,都有⊥.参考答案1.解析:A错,若a∥b,则不能断定α∥β;B错,若A、B、C三点不在β的同一侧,则不能断定α∥β;C错,若a∥b,则不能断定α∥β;D正确.答案:D2.B3.解析:利用△与△相似可得,当α,β在点P的同侧时,为;α,β在点P的异侧时,为24. 答案:B4.解析:过点A可作直线a′∥a,b′∥b,则a′∩b′=A.∴a′、b′可确定一个平面,记为α.如果a⊄α,b⊄α,则a∥α,b∥α.由于平面α可能过直线a、b之一,因此,过A且平行于a、b的平面可能不存在.答案:D5.解析:本题考查线线,线面及面面位置关系的判定.答案:B67.点M在线段上8.解析:如右图所示,A1D与1在平面上的射影互相平行;1与1在平面上的射影互相垂直;1与1在平面上的射影是一条直线及其外一点.答案:①②④9.解析:(1)证明:连接D1C交1于F,连结.∵—A1B1C1D1为正四棱柱,∴四边形1D1为矩形,∴F为D1C中点.在△1B中,∵E为中点,∴∥D1B.又∵D1B⊄面C1,⊂面C1,∴1∥平面C1.(2)连结,-D1=1-,∵′是正四棱柱,∴D1D⊥面.∵==2,∴S△=×2×2=2.1-=·S△·D1D=×2×1=.∴三棱锥D-D1的体积为.10.解析:(1)三棱锥E—的体积V=·S△=·=.(2)当点E为的中点时,与平面平行.∵在△中,E、F分别为、的中点,∴∥,又⊄平面,而⊂平面,∴∥平面.(3)证明:∵⊥平面,⊂平面,∴⊥,又⊥,∩=A,,⊂平面,∴⊥平面,又⊂平面,∴⊥,又==1,点F是中点,∴⊥又∵∩=B,,⊂面,∴⊥面,∵⊂面,∴⊥.第四节空间图形的垂直关系一、选择题1.(2008年安徽卷)已知m、n是两条不同直线,α、β、γ是三个不同平面,下列命题中正确的是( ) A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥β D.若m⊥α,n⊥α,则m∥n2.(2009年浙江卷)设α,β是两个不同的平面,l是一条直线,以下命题正确的是( )A.若l⊥α,α⊥β,则l⊂β B.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥β D.若l∥α,α⊥β,则l⊥β3.(2009年广东卷)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( )A.①和② B.②和③C.③和④ D.②和④4.关于直线m、n与平面α与β,有下列四个命题:①若m∥α,n∥β且α∥β,则m∥n;②若m⊥α,n⊥β且α⊥β,则m⊥n;③若m⊥α,n∥β且α∥β,则m⊥n;④若m∥α,n⊥β且α⊥β,则m∥n;其中真命题的序号是( )A.①② B.③④ C.①④D.②③5.已知两条直线m、n,两个平面α、β,给出下面四个命题①m∥n,m⊥α⇒n⊥α②α∥β,m⊂α,n⊂β⇒m∥n③m∥n,m∥α⇒n∥α④α∥β,m∥n,m⊥α⇒n⊥β其中正确命题的序号是( )A.①③ B.②④ C.①④D.②③二、填空题6.下列命题中,设α、β、γ为不同平面,a、b为不同直线,下列命题是真命题的有.①a⊥α,a⊥β⇒α∥β.②a⊥α,a∥b⇒b⊥α.③α⊥β,a⊂α,b⊂β⇒a⊥b.④a⊥α,a⊥b⇒b∥α.7.设三棱锥P-的顶点P在平面上的射影是H,给出以下命题:①若⊥,⊥,则H是△的垂心②若、、两两互相垂直,则H是△的垂心③若∠=90°,H是的中点,则==④若==,则H是△的外心其中正确命题的命题是.8.(2009年浙江)如下图,在长方形中,=2,=1,E为的中点,F为线段(端点除外)上一动点.现将△沿折起,使平面⊥平面.在平面内过点D作⊥,K为垂足.设=t,则t的取值范围是.三、解答题9.如右图所示,四棱锥P-的底面是边长为1的正方形,⊥,=1,=.(1)求证:⊥平面;(2)求四棱锥P-的体积.10.如右图,A、B、C、D为空间四点.在△中,=2,==.等边三角形以为轴运动.(1)当平面⊥平面时,求;(2)当△转动时,是否总有⊥?证明你的结论.参考答案1.解析:m、n均为直线,其中m、n平行α,m、n可以相交也可以异面,故A不正确;m⊥α,n⊥α则同垂直于一个平面的两条直线平行;故选D.答案:D2.解析:对于A、B、D均可能出现l∥β,而对于C是正确的.答案:C3.D4.D5.解析:用线面垂直的性质和面面平行的性质可判断①④正确,②中m,n可以平行或异面;③中n可以在α内.答案:C6.①②7.①②③④8.解析:此题的破解可采用二个极端位置法,即对于F位于的中点时,t=1,随着F点到C点时,因⊥,⊥,∴⊥平面,即有⊥,对于=2,=1,∴=,又=1,=2,因此有⊥,则有t=,因此t的取值范围是.答案:9.解析:(1)证明:因为四棱锥P-的底面是边长为1的正方形,=1,=,所以2=2+2,所以⊥.又⊥,∩=D,所以⊥平面.(2)四棱锥P-的底面积为1,因为⊥平面,所以四棱锥P-的高为1,所以四棱锥P-的体积为.10.解析:(1)取的中点E,连结,,因为是等边三角形,所以⊥.当平面⊥平面时,因为平面∩平面=,所以⊥平面,可知⊥,由已知可得=,=1,在△中,==2.(2)当△以为轴转动时,总有⊥.证明:①当D在平面内时,因为=,=,所以C,D都在线段的垂直平分线上,即⊥.②当D不在平面内时,由(1)知⊥.又因=,所以⊥.又,为相交直线,所以⊥平面,由⊂平面,得⊥.综上所述,总有⊥.。

相关文档
最新文档