立体几何专题讲义

合集下载

《高中数学立体几何》课件

《高中数学立体几何》课件
立体几何在数学、工程、建筑等领域 有着广泛的应用,是理解和描述现实 世界空间关系的重要工具。
立体几何的重要性
01
02
03
培养空间思维能力
学习立体几何有助于培养 学生的空间想象力和逻辑 思维能力,提高解决实际 问题的能力。
数学学科基础
立体几何是数学学科体系 中的重要组成部分,对于 理解数学概念、掌握数学 方法具有重要意义。
《高中数学立体几何》ppt课 件
目 录
• 立体几何简介 • 立体几何基础知识 • 立体图形的性质与分类 • 立体几何的应用 • 解题技巧与思路 • 立体几何的未来发展
01
立体几何简介
什么是立体几何
立体几何是研究三维空间中图形和物 体性质的一门学科。它涉及到点、线 、面、体等基本元素,以及它们之间 的位置关系和度量关系。
角度的计算
角度是描述两条射线或线段之间夹角 的大小的量。在立体几何中,角度可 以通过使用三角函数或几何定理来计 算。
距离的计算
距离是描述两点之间或一点到一条线 段之间的最短路径的大小的量。在立 体几何中,距离可以通过使用勾股定 理或几何定理来计算。
03
立体图形的性质与分类
立体图形的性质
空间性
立体图形存在于三维空间 中,具有空间特性。
近现代发展
随着数学和科学技术的不断进步, 立体几何逐渐与代数学、分析学等 学科交叉融合,形成了更加丰富和 深入的研究领域。
02
立体几何基础知识
点、线、面的基本性质
点的基本性质
面的基本性质
Байду номын сангаас
点是几何学中最基本的元素,没有大 小和形状。在空间中,点的唯一特征 是它的位置。
面是由无数条线组成的,它只有面积 而没有厚度。面的形状和位置由其上 的点和其上的线的分布决定。

Ppt课件立体几何

Ppt课件立体几何

空间几何的计算问题
总结词
需要掌握常见的计算方法和技巧
详细描述
解决空间几何计算问题需要学生掌握常见的计算方法和技巧,如代数运算、三角 函数、平面几何等。学生需要了解这些方法的适用范围和运用技巧,以便在计算 过程中能够灵活运用,提高计算效率和准确性。
06
立体几何的发展趋势
立体几何与其他学科的交叉研究
归纳解题技巧
根据不同的题型,归纳出相应的 解题技巧,以便更快地找到解题
方法。
强化练习
通过大量的练习,可以更好地掌 握解题方法,提高解题效率。
05
立体几何的难点解析
空间几何的作图问题
总结词
空间想象能力要求高
详细描述
立体几何的作图问题需要学生具备较高的空间想象能力, 能够准确地将二维平面图形转化为三维空间图形。这需要 学生不断练习,提高自己的空间感知和想象能力。
曲面立体中,有些面是曲面,有 些面是平面。
曲面立体中,曲面之间可能相交 或平行,也可能呈弧形相切。
立体图形的对称性
立体图形具有对称性,即存在 一个或多个对称轴或对称中心 。
对称轴将立体图形分为两个或 多个相等的部分。
对称中心将立体图形旋转180 度后与原图重合。
03立体几何的应用Fra bibliotek立体几何的应用
空间几何体的性质
空间几何体具有对称性、 重心、表面积和体积等性 质。
点、线、面的关系
点与直线的关系
一个点在直线上,或者在 直线外。
点与平面的关系
一个点在平面上,或者在 平面外。
直线与平面的关系
直线在平面上,或者与平 面平行,或者与平面相交 。
空间几何的度量关系
01
02
03

高中数学立体几何学科老师辅导讲义

高中数学立体几何学科老师辅导讲义

北辰教育学科老师辅导讲义Vπr 2h(即πr 2l)31πr 2h 31πh(r 21+r 1r 2+r 22) 34πR 3表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径。

四.题型解析:题型1:柱体的体积和表面积例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长.点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。

我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。

例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=3。

(1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。

图1 图2题型2:柱体的表面积、体积综合问题例3.一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是( ) A .23B .32C .6D .6图图图图题型8:球的体积、表面积例15.已知过球面上,,A B C 三点的截面和球心的距离为球半径的一半,且2AB BC CA ===,求球的表面积。

点评: 正确应用球的表面积公式,建立平面圆与球的半径之间的关系。

例16.如图所示,球面上有四个点P 、A 、B 、C ,如果PA ,PB ,PC 两两互相垂直,且PA=PB=PC=a ,求这个球的表面积。

点评:本题也可用补形法求解。

将P —ABC 补成一个正方体,由对称性可知,正方体内接于球,则球的直径就是正方体的对角线,易得球半径R=23a ,下略。

,底面半径为r,则P-PA ABCD。

立体几何专题讲义

立体几何专题讲义

立体几何专题讲义立体几何专题讲义一、考点分析基本图形1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

斜棱柱底面是正多边形的棱柱正棱柱★直棱柱其他棱柱2.棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

正棱锥3.球——球的性质:球心与截面圆心的连线垂直于截面;r=R2-d2(其中,球心到截面的距离为d、球的半径为R、截面的半径为r)球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切。

平行垂直基础知识网络★★★平行与垂直关系可互相转化1.平行关系a⊥α,b⊥α⇒a//ba⊥α,a//b⇒b⊥αa⊥α,a⊥β⇒α//βα//β,a⊥α⇒a⊥βα//β,γ⊥α⇒γ⊥β2.垂直关系线线平行判定线线垂直性质线线垂直判定面面垂直定义面面垂直线面平行面面平行线面垂直异面直线所成的角,线面角,二面角的求法★★★1.求异面直线所成的角θ∈(0,90°):解题步骤:找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。

常用中位线平移法证:证明所找(作)的角就是异面直线所成的角(或其补角)。

常需要证明线线平行;计算:通过解三角形,求出异面直线所成的角;2.求直线与平面所成的角θ∈[0,90°]:关键找“两足”:垂足与斜足二、典型例题考点一:三视图1.一个空间几何体的三视图如图1所示,则该几何体的体积为______。

2.若某空间几何体的三视图如图2所示,则该几何体的体积是______。

3.一个几何体的三视图如图3所示,则这个几何体的体积为______。

4.若某几何体的三视图(单位:cm)如图4所示,则此几何体的体积是______。

5.如图5是一个几何体的三视图,若它的体积是33,则a=______。

高考立体几何专题复习公开课获奖课件

高考立体几何专题复习公开课获奖课件
(7)假如一种平面与另一种平面垂线平行, 则这两个平面互相垂直
第20页
面面垂直鉴定
假如一种平面通过另一种平面一条 垂线,则这两个平面互相垂直
推论:假如一种平面与另一种平面垂线 平行,则这两个平面互相垂直
第21页
面面垂直性质
假如两个平面垂直,则在一种平面内垂直 于它们交线直线垂直于另一种平面
推论:假如两个相交平面都与另一种平面 垂直,则这两个平面交线 l 垂直于另一种 平面
(3)推论:
假如一种平面内两条相交直线与另一种平面两条 相交直线分别平行,那么这两个平面平行。
第10页
(4)运用线面垂直:
假如两个平面分别垂直于同一条直线,那么这两 个平面平行。
(5)运用面面平行:
假如两个平面都平行于第三个平面,那么这两个 平面平行。
(6)运用距离:
假如一种平面上所有点到另一种平面距离相等, 那么这两个平面平行。
α
a
直线与平 面所成角
βA Pm
αB
二面角
00<θ≤900
00≤ θ≤900
00≤θ ≤1800
空间角计算环节:一作、二证、三算
第34页
空间中角解法小结
1、异面直线所成角措施 (1)平移法(2)补形法
2、直线与平面所成角措施
关键:抓垂足、斜足,找斜线在平面内射影。
3、二面角
找二面角棱,进而找棱两条垂线
第6页
(4)运用垂直
假如一条直线和一种平面分别与另一种平面垂 直,且直线不在这个平面内,则这条直线和这 个平面平行。
(5)运用平行 假如一条直线与两个平行平面中一种平 行且不在另一种平面内,则这条直线与 另一种平面平行。
(6)运用距离

立体几何 讲义

立体几何   讲义

立体几何总复习一、几何平面的基本性质1α=∅ A α=b A =l αβ= a α=∅(α)或a A α=公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平 推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个 推理模式:A l A ααββ∈⎫⇒=⎬∈⎭且A l ∈且l公理3 推理模式:,, A B C 不共线⇒存在唯一的平面α,使得,,A B C α∈ 推论1 经过一条直线和直线外的一点有且只有一个平面.推理模式:A a ∉⇒存在唯一的平面α,使得A α∈,l α⊂ 推论2 推理模式:P b a = ⇒存在唯一的平面α,使得,a b α⊂推论3 推理模式://a b ⇒存在唯一的平面α,使得,a b α⊂动手练习:1 下面是一些命题的叙述语,其中命题和叙述方法都正确的是( ) A .∵αα∈∈B A ,,∴α∈AB . B .∵βα∈∈a a ,,∴a =βα . C .∵α⊂∈a a A ,,∴A α∈. D .∵α⊂∉a a A ,,∴α∉A . 2.下列推断中,错误的是( )A .ααα⊂⇒∈∈∈∈lB l B A l A ,,,C .βα∈∈C B A C B A ,,,,,,且A,B,C 不共线βα,⇒B .B B A A =⇒∈∈∈∈βαβαβα ,,, D .αα∉⇒∈⊄A l A l ,3.两个平面把空间最多分成___ 部分,三个平面把空间最多分成__部分. 4.判断下列命题的真假,真的打“√”,假的打“×” (1)空间三点可以确定一个平面 ( )(2)两个平面若有不同的三个公共点,则两个平面重合( ) (3)两条直线可以确定一个平面( )(4)若四点不共面,那么每三个点一定不共线( ) (5)两条相交直线可以确定一个平面( ) (6)三条平行直线可以确定三个平面( ) (7)一条直线和一个点可以确定一个平面( ) (8)两两相交的三条直线确定一个平面( ) 5.看图填空(1)AC ∩BD = (4)平面A 1C 1CA ∩平面D 1B 1BD = (2)平面AB 1∩平面A 1C 1= (5)平面A 1C 1∩平面AB 1∩平面B 1C = (3)平面A 1C 1CA ∩平面AC = (6)A 1B 1∩B 1B ∩B 1C 1= 6 6.选择题(1)下列图形中不一定是平面图形的是 ( )A 三角形B 菱形C 梯形D 四边相等的四边形(2)空间四条直线每两条都相交,最多可以确定平面的个数是( )A 1个B 4个C 6个D 8个(3)空间四点中,无三点共线是四点共面的 ( )A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要1二、立体几何线面关系(一)、判定两线平行的方法1、平行于同一直线的两条直线互相平行2、垂直于同一平面的两条直线互相平行3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行5、在同一平面内的两条直线,可依据平面几何的定理证明(二)、判定线面平行的方法6、据定义:如果一条直线和一个平面没有公共点7、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行8、两面平行,则其中一个平面内的直线必平行于另一个平面9、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面10、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面(三)、判定面面平行的方法1、定义:没有公共点2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行3 垂直于同一直线的两个平面平行4、平行于同一平面的两个平面平行(四)、面面平行的性质1、两平行平面没有公共点2、两平面平行,则一个平面上的任一直线平行于另一平面3、两平行平面被第三个平面所截,则两交线平行4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面(五)、判定线面垂直的方法1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面5、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面(六)、判定两线垂直的方法1、 定义:成︒90角2、 直线和平面垂直,则该线与平面内任一直线垂直3、 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直4、 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直5、 一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 (七)、判定面面垂直的方法1、 定义:两面成直二面角,则两面垂直2、 一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 (八)、面面垂直的性质 1、 二面角的平面角为︒902、 在一个平面内垂直于交线的直线必垂直于另一个平面3、 相交平面同垂直于第三个平面,则交线垂直于第三个平面(九)、各种角的范围 1、异面直线所成的角的取值范围是:︒≤<︒900θ (]︒︒90,0 2、直线与平面所成的角的取值范围是:︒≤≤︒900θ []︒︒90,0 3、斜线与平面所成的角的取值范围是:︒≤<︒900θ (]︒︒90,04、二面角的大小用它的平面角来度量;取值范围是:︒≤<︒1800θ (]︒︒180,0动手练习1.判断题(对的打“√”,错的打“×”)(1)垂直于两条异面直线的直线有且只有一条 ( )(2)两线段AB 、CD 不在同一平面内,如果AC =BD ,AD =BC ,则AB ⊥CD ( ) (3)在正方体中,相邻两侧面的一对异面的对角线所成的角为60º ( ) (4)四边形的一边不可能既和它的邻边垂直,又和它的对边垂直 ( ) 2.右图是正方体平面展开图,在这个正方体中①BM 与ED 平行;②CN 与BE 是异面直线; ③CN 与BM 成60º角;④DM 与BN 垂直.以上四个命题中,正确命题的序号是( )(A )①②③ (B )②④ (C )③④ (D 3 ,,,E F G H 分别是空间四边形四条边,,,AB BC CD DA 的中点,EA FB CMN D(1)求证四边形EFGH(2)若AC ⊥BD 时,求证:EFGH 为矩形; (3)若BD =2,AC =6,求22HF EG +;(4)若AC 、BD 成30º角,AC =6,BD =4,求四边形EFGH 的面积;(5)若AB =BC =CD =DA =AC =BD =2,求AC 与BD 间的距离.4 ABCD 中,2AD BC ==,,E F 分别是,AB CD 的中点,EF = 求异面直线,AD BC5. 在正方体ABCD -A 1B 1C 1D 1中,求(1)A 1B 与B 1D 1所成角; (2)AC 与BD 1所成角.6.在长方体D C B A ABCD '''-中,已知AB=a ,BC=b ,A A '=c(a >b),求异面直线B D '与AC7.如图,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别是AB 、PC (1)求证://MN 平面PAD ;(2)若4MN BC ==,PA = 求异面直线PA 与MN8.如图,正方形ABCD 与ABEF 不在同一平面内,M 、N 分别在AC 、BF 上,且AM FN =求证://MN 平面CBE三、空间图形一、面积:1、ch s =直棱柱侧 ()为直截面周长斜棱柱侧``c l c s = rh cl s π2==圆柱侧 2、中截面面积:2`0ss s += 3、`21ch s =正棱锥侧 rl cl s π==21圆锥侧 4、()``21h c c s +=正棱台侧()()l r r l c c s ``21+=+=π圆台 5、预备定理ph s π2=锥球内接圆台,圆柱,圆①24r s π=球 ②rh s π2=球带 ③)(222h r rh s +==ππ球冠 6、面积比是相似比的平方,体积比是相似比的立方7、圆锥轴截面的顶角α和侧面展开图的圆心角θ的关系为:2sin 22αππθ⋅=⋅=l r 8、圆台上、下底面半径为r`、r ,母线为l,圆台侧面展开后所得的扇环圆心角为θ,则:lc c l r r l r r `2`360`-=⋅-=︒⋅-=πθ 9、圆锥中,过两母线的截面面积为s当轴截面顶角(]︒︒∈90,0α时,αsin 212l s s ==轴截面截面最大 当轴截面顶角[)︒︒∈180,90α时,轴截面截面最大s l l s ≠=︒=222190sin 21 10、球面距离θ⋅=R l (θ用弧度表示,Rl =θ) 二、体积 1、l s sh V `==棱柱(s`为直截面面积) sh h r V =⋅=2π圆柱2、sh V 31=棱锥sh h r V 31312=⋅=π圆锥3、`)`(31s s s s h V +⋅+=棱台 =++=)``(3122r rr r h V π圆台`)`(31s s s s h +⋅+ 4、334R V π=球5、)3(31)3(61222h R h h r h V -=+=ππ球缺6、)(31体适用于有内切球的多面内切球半径表体r S V ⋅=1 n 面体共有8条棱,5个顶点,求n 2.一个正n 面体共有8个顶点,每个顶点处共有三条棱,求n 3.一个简单多面体的各面都是三角形,证明它的顶点数V 和面数F 有下面的关系:F =2V -4 4.有没有棱数是75.①过球面上任意两点,作球的大圆的个数是 .②球半径为25cm ,球心到截面距离为24cm ,则截面面积为 .③已知球的两个平行截面的面积分别是5π和8π,它们位于球心同一侧,且相距1,则球半径是 .④球O 直径为4,,A B 为球面上的两点且AB =,A B 两点的球面距离为 . ⑤北纬60圈上,M N 两地,它们在纬度圈上的弧长是2Rπ(R 为地球半径),则这两地间的球面距离为 .7.北纬45圈上有,A B 两地,A 在东径120,B 在西径150,设地球半径为R ,,A B 两地球面距离为 ;8.一个球夹在120二面角内,两切点在球面上最短距离为cm π,则球半径为 ;9.设地球的半径为R ,在北纬45°圈上有A 、B 两点,它们的经度相差90°,那么这两点间的纬线的长为_________,两点间的球面距离是_________. 球的大圆面积增大为原来的4倍,则体积增大为原来的 倍;11.三个球的半径之比为1:2:3,那么最大的球的体积是其余两个球的体积和的 倍; 12.若球的大圆面积扩大为原来的4倍,则球的体积比原来增加 倍; 13.把半径分别为3,4,5的三个铁球,熔成一个大球,则大球半径是 ; 14.正方体全面积是24,它的外接球的体积是 ,内切球的体积是 . 球O 1、O 2分别与正方体的各面、各条棱相切,正方体的各顶点都在球O 3的表面上,求三个球的表面积之比.16.表面积为324π的球,其内接正四棱柱的高是1417. 正四面体ABCD 的棱长为a ,球O 是内切球,球O 1是与正四面体的三个面和球O 都相切的一个小球,求球O 1的体积.D'C'B'A'D CBAH OA'D'C'B'DCBA判断下列结论是否正确,为什么?(1)有一个面是多边形,其余各面是三角形的几何体是棱锥; (2)正四面体是四棱锥;(3)侧棱与底面所成的角相等的棱锥是正棱锥;(4)侧棱长相等,各侧面与底面所成的角相等的棱锥是正棱锥.2 ABCD A B C D ''''-中,,3A AB A AD BAD π''∠=∠∠=,,AB AD a AA b '===,求对角面BB D D ''3.已知:正四棱柱ABCD A B C D ''''-的底面边长为2 (1)求二面角B AC B '--的大小;(2)求点B 到平面AB C '4.棱长为a 的正方体OABC O A B C ''''-中,,E F 分别为棱,AB BC 上的动点,且(0)AE BF x x a ==≤≤,(1)求证:A F C E ''⊥;(2)当BEF ∆的面积取得最大值时,求二面角B EF B '--的大小.5. 如图,M 、N 分别是棱长为1的正方体''''D C B A ABCD -的棱'BB 、''C B 的中点.求异面直线MN 与CBOCBA A GEP D CBA'CD 所成的角.6.在三棱锥P ABC -中,ABC ∆为正三角形,90PCA ∠=,D 为PA 中点,二面角P AC B --为120,2,PC AB ==(1)求证:AC BD ⊥;(2)求BD 与底面ABC 所成的角,(3)求三棱锥P ABC -的体积.7. 斜三棱柱的底面的边长是4cm 的正三角形,侧棱长为3cm,侧棱1AA 与底面相邻两边都成060角. (1)求证:侧面11CC B B 是矩形; (2)求这个棱柱的侧面积; (3)求棱柱的体积.。

立体几何讲义

立体几何讲义

立体几何1、平面的表示方法:2、平面的基本性质。

(三个公理和三个推论)公理1:判断直线落在平面的依据;公理2:两个平面相交,有且只有一条交线;文字语言、图形语言和集合语言,公理3确定平面的方法。

(不在一条直线上的三点,两条相交直线,两条平行直线,一直线和直线外一点) 平面几何结论在空间仍然成立:(1)平行的传递性;(2)等角定理;(3)所研究对象在同一个平面上。

练习:(1)长方体1111ABCD A BC D -中,15,12,13AA AB AD ===,求: ①、求点C 和直线11A B 的距离;②、求直线CD 和平面11AA B B 的距离; ③、求直线1D D 和11B C 的距离。

(2)正方体1111ABCD A BC D -中,E 是11A D 的中点 ①、求直线1AC 和平面ABCD 大小; ②、直线EB 和平面ABCD 的大小(3)已知平面,,αβγ两两相交,它们的交线分别为,,,a b c 试问,,a b c 的位置关系(4)已知边长为a 的正方形ABCD 外一点,,,P PA ABCD PA a ⊥=求二面角B PA C --和P BC A --的大小。

3、几何体的直观图:(斜二侧画法的两条重要性质---平行直线的斜二侧图仍是平行直线,线段及其线段上的定比分点的斜二侧图保持原比例不变。

长度规定在,z y 轴方向上的线段的长度保持不变,而x 轴上的线段长度是真实长度的一半。

4、长方体上过已知三点的截面(如调研卷文科题:正方体1111ABCD A BC D -,,,P Q R 分别是111,,BC BB A D 的中点,则过,,P Q R 的截面形状(正六边形)用一个平面去截正方体,截面的形状。

5、直线与平面的位置关系:(1)等角定理(如果一个角的两边分别和另一个角的两边平行,那么它们所成的锐角(或直角)相等;(2)文科用平移来求异面直线所成的角,理科用空间向量求异面直线所成的角,注意角的范围0,2π⎛⎤⎥⎝⎦(2)用反证法证明两条直线是异面直线。

【精】高中数学:立体几何优质讲义.docx

【精】高中数学:立体几何优质讲义.docx

高中数学:立体几何优质讲义姓名:指导:日期:立体几何证平行(一)甄蟻平有<■图丄E)--------------- K如果两条蛾切平行于第三条最,那么这两条蛾相互平行.2.如果一条蛛平行于另一个平面,那么这条蟻就平行于这这条地的平面与已知平而的交蟻. 图丄】3 .血果商个平面平行,那玄另一个平血虹诳两个平血的交妹互制平行.4如果两喪直蟻都制另一•个平而垂直.那么这两条直蟻平有.5一在同T面内,如果两条直或垂直于同一条直墟,那么这两条直慟'成.,程茜师中学亞建化L.如果平而外一条直絞平行于平面内的一条直銭,那衣宜城与平而干径 :!.如果两个平部平行,一个平薊内的任何一条直域平行于另一个平面. 3 .州果平血*了平而如一条如果干时垂直于另--条直邑, 4 一如果平面与平面外一条直理同时垂直于另一个平面,I. 如果一个平而内有两果闵全平f li 平有于另一个平而,丄如果两个平面揺平行于第三个平潮,那互这两个平面平有. 3.如果两个平面问畦垂直于同一条面雄,那么这两个平ffii 平行.证塔直大部分毎是通过隼直证垂直:下能ii 史旳时榛.平移到另i 一个位置证垂直. (一) 或蟻垂西如果一案直蛾垂直于一个平St 那佥谊条宜戒垂直于这个平ifi 内的任何一条直銭一 (二) 蜷海垂苴【一如果一条直蜷垂直于平而内两条招交的部,那么这条直坡就垂直于两条相交直域所在的平面. 丄如果睥个平而常有,在其中一个 平血內,垂森于公芯検的il 注垂立于yi-t-Tni!. t 三)而而垂直(■囲At )【.辻一个平而垂洼旳平而垂辻于巳辻平而. 土二部南为直请的两个平面垂直.〈理科)(四〉不能祝匿征垂直的情况L 把已知蟻成ffii 平秽到容駐证照垂直的位置 2.询和已知蟻或面平行的蟻凍海证垂直一那么场面平有. 图卩二.求相疔,求距离,成求体根〈一)求術》〈理我丄技线爾.絞血曲•和二而跆歩L建系,崖可能il.薮将计算的点落在抽我和軸而L坐株系可以任意拆向*凡是角度渉成的面都要至少已如(SU出)3个点,肅度演及的絞都要至少巳知《成求出)£个点.歩,标期段坐标,不能表廚的可以持定字毋系数,当盧坐岳中只舍有一个未知字毋时可以直接代入下一歩求解:当点坐标中含有£个以上未知字毋盹需要握据以下三点列式求字母取住.①前量垂成a ijj =>^15 +y L k'i + -^i = u囲向量其蟻,"Jj2n W =虹2.乂 =加.=切崖向0模,何|=巧了「了歩丄表航向量,终点跋起点歩4:朮法曲丽1也(歩I上(如丄"I'""(歩3丄不姉妨X."中一一个字辱为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20 侧视图
10
10
20 俯视图
第6题
第7题Biblioteka 7.若某几何体的三视图(单位: cm )如图所示,则此几何体的体积是
cm 3
8.设某几何体的三视图如图 8(尺寸的长度单位为 m),则该几何体的体积为_________m3。
2
2
2
2
3
2
1
3
2
2
俯视图 正(主)视图 侧(左)视图
第7题
第8题
9.一个空间几何体的主视图和左视图都是边长为 1 的正方形,俯视图是一个圆,那么这个几何体的侧面积为
2 求直线与平面所成的角 0,90 :关键找“两足”:垂足与斜足
解题步骤:一找:找(作)出斜线与其在平面内的射影的夹角(注意三垂线定理的应用); 二证:证明所找(作)的角就是直线与平面所成的角(或其补角)(常需证明线面垂直);三计算:常通过解直角 三角形,求出线面角。
3 求二面角的平面角 0,
解题步骤:一找:根据二面角的平面角的定义,找(作)出二面角的平面角; 二证: 证明所找(作)的平面角就是二面角的平面角(常用定义法,三垂线法,垂面法); 三计算:通过解三角形,求 出二面角的平面角。
二、典型例题 考点一:三视图
2
1.一空间几何体的三视图如图 1 所示,则该几何体的体积为_________________.
2
2
2
2 正(主)视

2 侧(左)视图
第1题
俯视图
2.若某空间几何体的三视图如图 2 所示,则该几何体的体积是________________.
第2题
第3题
3.一个几何体的三视图如图 3 所示,则这个几何体的体积为
5
4
正视图
33
侧视图
图 18
俯视图
考点二 体积、表面积、距离、角
注:体积表面积 异面直线所成角 线面角
1. 将一个边长为 a 的正方体,切成 27 个全等的小正方体,则表面积增加了___________. 2. 在正方体的八个顶点中,有四个恰好是正四面体的顶点,则正方体的表面积与此正四面体的表面积的比值为 ___________.
_________________.
图9
10.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如图 10 所示(单位 cm),则该三棱柱 的表面积为_____________.
图 10
11. 如图 11 所示,一个空间几 个直径为 1 正的视圆图,那么这个几何
何体的主视图和左视图都是边长为 1 的正方形,俯视图是一 体的全面积为俯__视__图_________.
4

图 11
图 12
图 13
12. 如图 12,一个空间几何体的主视图和左视图都是边长为 1 的正三角形,俯视图是一个圆,那么几何体的侧
面积为_____________.
13.已知某几何体的俯视图是如图 13 所示的边长为 2 的正方形,主视图与左视图是边长为 2 的正三角形,则其表
面积是_____________.
球面积、体积公式:
S球
4
R2 ,V球
4 3
R3 (其中
R
为球的半径)
平行垂直基础知识网络★★★
1
平行关系
平面几何知识 线线平行
平行与垂直关系可互相转化
1. a ,b a // b 2. a ,a // b b 3. a , a // 4. // , a a 5. // ,
3
2
2
俯视图 正(主)视图 侧(左)视图
图 16
图 17
17.如图 17,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长 为 1,那么这个几何体的体积为______________.
18. 若一 个底 面为正 三角形 、侧 棱与 底面 垂直 的棱 柱的 三视 图如图 9-3-14 所示 ,则 这个棱 柱的体 积为 ______________.
3.球 球的性质: ①球心与截面圆心的连线垂直于截面;
★② r R2 d 2 (其中,球心到截面的距离为
球心

d、球的半径为 R、截面的半径为 r)
★球与多面体的组合体:球与正四面体,球与长
方体,球与正方体等的内接与外切.
O
D'
C'
A'
C'
A'
B'
O
O
R
d
A r O1
球面 半径
B
D
C
A
B
A
c
注:球的有关问题转化为圆的问题解决.
14.如果一个几何体的三视图如图 14 所示(单位长度: cm ), 则此几何体的表面积是_____________.
图 14
15.一个棱锥的三视图如图图 9-3-7,则该棱锥的全面积(单位: cm2 )_____________.
正视图
左视图 图 15
俯视图
16.图 16 是一个几何体的三视图,根据图中数据,可得该几何体的表面积是_____________. 2
立体几何专题讲义
一、考点分析
基本图形
1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面
所围成的几何体叫做棱柱。
斜棱柱

棱柱
棱垂直于底面
直棱柱
底面是正多形 其他棱柱
正棱柱

②四棱柱 底面为平行四边形 平行六面体 侧棱垂直于底面
直平行六面体 底面为矩形
.
4.若某几何体的三视图(单位:cm)如图 4 所示,则此几何体的体积是
.
a
3 正视图
2 左视图
1
1 俯视图
第4题
第5题
5.如图 5 是一个几何体的三视图,若它的体积是 3 3 ,则 a
.
6.已知某个几何体的三视图如图 6,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是
.
3
20
20 正视图
长方体 底面为正方形 正四棱柱 侧棱与底面边长相等 正方体
侧面
F' A'
E' B'
侧棱
D' C'
l
底面
高 侧棱
S
顶点 侧面
F A
E
D
C
B
2. 棱锥
底面
A
D
C
O
H
B
斜高
棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。
垂直关系
平面几何知识 线线垂直
判定
性质
判定
线面平行
判定推论 性质
面面平行
判定 性质
线面垂直
判定
面面垂直定义 面面垂直
异面直线所成的角,线面角,二面角的求法★★★
1.求异面直线所成的角 0,90:
解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移 另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。常用中位线平移法 二证:证明所找(作) 的角就是异面直线所成的角(或其补角)。常需要证明线线平行; 三计算:通过解三角形,求出异面直线所成的角;
相关文档
最新文档