亚临界机组等效焓降法算例示例
等效焓降法

等效焙降法原则性热力系统讣算1(热平衡法(常规计算法)这种计算法的核心(对本机组而言),实际上是对由8个加热器热平衡方程式和一个凝汽器物质平衡式所组成的9个线性方程组进行求解,可求出9个未知数(8 个抽汽系数和1个凝汽系数),然后,根据公式求得所需要的新汽耗量或机组功率、热经济指标等。
计算结果:1)热经济指标计算:Q 机组热耗:kj/h , 126477638160Q0 热耗率:q,, 8825. 88 kJ (kW, h) OPe3600 热效率:,,,0. 4079 eqO,,0.4182汽轮机绝对内效率:iQ2)锅炉热负荷:二 2683339584 kj/h bQ0,,, 0. 995 管道效率:pQb3)全厂热经济性指标:,,0. 92, 0. 995, 0. 4079, 0. 3742 全厂热效率:cp3600Q,, 9620. 52kJ (kW, h)全厂热耗率:cp, cp0. 123sb,,328g(kW, h)发电标准煤耗率:,cp2(等效熔降法等效热降法是在60年代后期,首先由库滋淳佐夫提出,并在70年代逐步完善、成熟,形成了完整的热工理论体系,是热力系统分析,计算的一种新方法。
这种方法在热力系统局部定量分析中,具有简捷、方便和准确的明显特点,在生产实践中效果显著,引人注目。
近年来,这一方法得到了广泛的应用,深受工程界的好评。
为西安交通大学博士生导师林万超教授这项科研成果,取得了显著的经济效益。
等效热降法是基于热力学的热功转换理论,考虑到设备质量、热力系统结构和参数的特点,经过严密地理论推演,导出儿个热力分析参量抽汽等效焙降H和j ,抽汽效率等用以研究热丄转换及能量利用程度的一种方法。
各种实际系统,j 在系统和参数确定后,这些参量也就随之确定,并可通过一定公式计算,成为一次性参数给出。
对热力设备和系统进行分析时,就是用这些参数直接分析和讣算。
等效热降法既可用于整体热力系统的讣算,也可用于热力系统的局部分析定量。
等效焓降法

机组抽汽过热度利用效果分析(对原系统进行适当修改并作比较分析):
取消#6加热器的外置蒸汽冷却器:
#6加热器抽汽是再热后中压缸的第一级抽汽,经计算,该级抽汽的过热度最大,因此设置蒸汽冷却器是必要的。
原系统中采用的是外置式蒸汽冷却器,现将其取消,简化系统如下:
由于取消了蒸汽冷却器,#6加热器抽汽无节流,使其出口水焓有所增加,假设增加值为: 65/kJ kg ε∆=,并且由于蒸汽将释放更多的热量,减小了#6加热器的抽汽,由蒸汽冷却
器带走的热量将返回加热器,引起给水焓升68727.32/t t kJ kg τ∆=-=。
这样,取消外置
式蒸汽冷却器引起的新蒸汽等焓降的增量为:
000
66676()11.9494/H kJ kg τηεηη∆=∆+∆-= 与此同时,循环吸热量增加:
627.32/Q kJ kg τ∆=∆=
由此,装置效率的相对变化为:
0.03015%i i H Q H H ηδη∆-∆==--∆
显然,取消#6加热器外置蒸汽冷却器将造成装置效率降低,系统经济性变差。
将#6加热器的外置串联蒸汽冷却器改为外置并联蒸汽冷却器
心得体会:。
汽轮机二、三、四段供热抽汽经济性分析

汽轮机二、三、四段供热抽汽经济性分析摘要:本文对某公司 330MW 亚临界再热机组,通过抽汽等效焓降计算二、三、四段供热抽汽对汽机做功影响,分析得出三抽供热对汽轮机做功影响最少,二抽供热对汽轮机做功影响最大,三四抽供热经济性最好,二抽进行辅助调整来满足热用户的的结论,为供热机组供热调整提供依据。
关键词:等效焓降;抽汽;供热;经济性分析引言;随着我国国民经济的持续快速增长,石油、化工、炼油、制糖、纺织、环保等大型企业的发展,电厂和自备电站对于供热、供电的抽汽供热机组提出了更高的要求。
大容量供热汽轮发电机组,具有较高的供热蒸汽参数和较低的单位能耗,可以满足用户近、远期用热需求,实现集中供热,又可以节能降耗,减少污染,用等效焓降法,计算二、三、四段供热抽汽对汽机做功影响,调整供热运行方式,实现机组供热经济性最大化。
具体分析:一、先计算出同样供热量下,使用不同抽汽,抽汽量分别多少。
由于二、三、四段抽汽具有不同的压力,温度,对于相同的供热量,需要不同的抽汽量,所以要先计算相同供热量下,抽汽量的比例。
例如现在供热量需要:1KG/h,250℃,0.9Mpa的压力,2945.44KJ/KG二段抽汽额定参数:324.9℃,3.921Mpa,3029.28KJ/KG三段抽汽额定参数:437.8℃,1.836Mpa,3331.95KJ/KG四段抽汽额定参数:348℃,0.9717Mpa,3153.31KJ/KG凝补水作为减温水,热量是:(20℃)83.6KJ/KG根据质量、能量守恒定律,当需要1KG/h,250℃,0.9Mpa抽汽时,二段抽汽量分别是:3029.28x+(1-x)83.6=2945.44 →x=0.9715KG/h,减温水=0.0285KG/h三段抽汽量分别是:0.881KG/h,减温水=0.119KG/h。
使用供热匹配器后,引射系数达1时,二抽、四抽流量分别为:0.475KG/h,0.475KG/h,减温水量0.048KG/h设引射系数为z,二、四抽流量分别为x,y 则二、利用抽汽等效焓降计算1KG二段抽汽、三段抽汽、四段抽汽等效焓降。
300mw亚临界机组工业供热改造经济性分析

学术研究2019年12期︱477︱300MW 亚临界机组工业供热改造经济性分析黄旭初贵州乌江水电开发有限责任公司大龙分公司,贵州 铜仁 554001摘要:亚临界机组在工业中的应用较广,但能耗较大,需对其进行工业供热改造,本文对300MW 亚临界机组进行改造,采取了三种供热方式来对亚临界机组供热进行优化改造,并对这三种改造方式进行了经济性分析。
关键词:300MW 亚临界机组;工业供热;经济性根据不完全统计数据,我国还在使用状态的亚临界机组数量还比较多,仅仅是300MW 亚临界机组的就大约有880台,此外,我国目前的亚临界机组的能耗较大,要达到国家标准还有一段距离,节能减排的压力比较大。
亚临界机组需要利用技术提升或改造来实现集中供热,这样可以使能源使用率提高,从而能达到较少供电煤耗;但是近些年来我国的发电负荷在不断变低,纯凝机组如果有负荷波动,那么将会对抽汽压力、流量产生直接影响,比如会产生机组供热能力不足或者是蒸汽的品质达不到要求等问题。
纯凝机组有一个调停频率,如果过高,电厂的热源工业的蒸汽供应量会大幅度下降,供汽的压力也会突然降低,甚至会对蒸汽用户的日常生产活动产生影响,容易造成用户的经济性损失。
可见,亚临界机组在工业供热方面还有待改进,需要对其进行改造和优化,增强其可靠性和经济性。
1 多汽源协同工业供汽改造研究 1.1 提升再热抽汽供热量的改造 再热冷段有一个进行抽汽供热的阶段,在它之后会有蒸汽量进入再热器,但蒸汽量会大大减少,这容易使两级再热器超过标准温度。
提升再热冷段的抽汽量取决于锅炉再热器,但使再热冷段抽汽的改造在现在所具有的条件下开展,节省资金,锅炉的受热面就要尽量减少改造,这样进行改造的难度较大。
再热热段抽汽是在再热器后进行抽汽,对进入再热器里面的蒸汽量不会有影响,再热热段的抽汽量的多少也不会受到再热器的超温限制。
一旦再热热段的抽汽量非常大的时候就会使高压缸的排汽压比超过正常值过多,高压缸次末级的叶片在这种工况下容易发生断裂现象。
660MW亚临界凝汽式汽轮机热力系统的设计

题目:660MW亚临界凝汽式汽轮机热力系统的设计学院: 材料与冶金学院专业: 热能与动力工程学号:学生姓名:指导教师:日期:摘要汽轮机作为现代重要的动力机械设备,在国家动力能源方面起着举足轻重的地位。
本次设计一方面是为了巩固所学的理论知识,强化对汽轮机整体的认知;另一方面,也是希望借此设计培养独立思考及动手解决问题的能力,为今后的工作学习打下基础。
本文设计的是一台660WM亚临界凝汽式汽轮机,首先根据基本参数的要求,完成透平机械的热力设计,即选定汽轮机的基本参数和结构形式,确定通流部分的重要尺寸,求出整机的内功率和内效率,然后由设计得出的参数,进行汽耗量和功率的校核,最后完成其结构设计。
本设计采用的是三缸四排汽,高中压缸合缸,低压缸四流程的亚临界反动凝汽式设计,是当前国内大型机组的主流设计形式,同时采用一次中间再热,提高发电效率,八级抽汽加热给水提高给水温度,以提高机组的效率。
最终在设计工况下的热耗量是8140.64KJ/KWh,汽轮机机组的绝对电效率是44.23%,在设计上是安全可靠的。
关键词:汽轮机;能源;设计;亚临界AbstractTurbine as an important driving force of modern machinery and equipment, plays an important role in the national power energy.The design on the one hand is to consolidate the theoretical knowledge learned, to strengthen awareness of the turbine as a whole; the other hand, is hoping to design independent thinking and the ability to begin to solve the problem, lay the foundation for future work and study.This design is a 660WM subcritical condensing steam turbine, the first under the requirements of the basic parameters, complete thermal turbomachinery design, namely the basic parameters and structure of the selected turbine, determine critical dimensions flow passage is obtained and internal efficiency within the power of the machine, and then drawn by the design parameters, steam and power consumption checking, finalizing his design.This design uses a three-cylinder four exhaust, subcritical reaction condensing steam turbine cylinder closing cylinder design, low pressure cylinder, four processes are designed to form the current mainstream domestic large units, while using single reheat, improve power generation efficiency , eight steam extraction feedwater heating water temperature increase to improve the efficiency of the unit.Final heat consumption at design condition is 8140.64KJ / KWh, absolute power efficiency steam turbine plant is 44.23%, the design is safe and reliable.Key words:Turbine; Energy; Design; Subcritical目录1 绪论 (1)1.1 汽轮机简介 (1)1.2 电站高参数大容量汽轮机技术研究和国内外发展现状 (1)1.3 设计意义 (2)1.4 论文研究内容 (2)2 热力系统设计 (4)2.1 设计基本参数选择 (4)2.2 汽轮机热力过程线的拟定 (4)2.3 汽轮机进汽量计算 (6)2.4 抽汽回热系统热平衡初步计算 (7)3 调节级设计 (14)3.1 调节级形式及焓降确定 (14)3.2 调节级主要参数的确定 (14)3.3 调节级详细计算 (15)3.3.1 喷嘴部分的计算 (15)3.3.2 动叶部分计算 (18)3.3.3 级内损失的计算 (20)3.3.4 级效率与内功率的计算 (21)4 非调节级计算 (22)4.1 高压缸非调节级计算 (22)4.2 中压缸非调节级计算 (24)4.3 低压缸非调节级计算 (26)4.4 抽汽压力调整 (28)4.5 重新列汽水参数表 (29)5 汽轮机各部分汽水流量和各项热经济指标计算 (31)5.1 重新计算汽轮机各段抽汽量 (31)5.2 汽轮机汽耗量计算及流量校核 (32)6 结束语 (34)参考文献 (35)致谢 (36)1 绪论1.1 汽轮机简介汽轮机是一种以水蒸汽为工质,通过将蒸汽热能转变为机械能的外燃高速旋转式原动机。
600MW亚临界火电机组热力系统(火用)分析

600MW亚临界火电机组热力系统(火用)分析摘要:随着我国国民经济迅速发展,我国逐渐成为能源生产和消费大国。
某典型600MW 亚临界空冷机组为例,详细分析了主再热汽温变化对机组运行特性的影响,从热力学角度揭示了提高蒸汽初参数的经济性;在此基础上,又对机组在不同工况下初参数变化对能耗的影响进行了计算分析。
结果表明:对于机组,在100% THA 工况下,当将其主再热蒸汽温度由538℃提高至580℃时,机组的发电效率可提高0.61%,供电煤耗可降低4.73g /kWh,节能效果显著。
关键词:亚临界;机组;主再热汽温由于现代火力发电厂的蒸汽循环以朗肯循环为基础,提高主蒸汽压力,主蒸汽流量增加,蒸汽在汽轮机内焓降增加,负荷升高,这点有利于机组的经济性,但随着主蒸汽压力的提高,末级排汽湿度增加,这不利于机组的安全运行。
因此,综合考虑,同时提高主蒸汽温度和再热蒸汽温度更利于机组的安全经济运行提高蒸汽初温,平均吸热温度提高,则朗肯循环效率提高;同时减少了低压缸排汽的湿气损失,高压端的漏气损失,从而提高了汽轮机的绝对内效率,即提高主蒸汽温度,总可以提高热经济性。
一、机组介绍某600MW 亚临界空冷机组,其锅炉为亚临界参数、一次中间再热的Ⅱ型汽包炉,锅炉设计排烟温度为130℃。
其汽轮机组为2×600MW 国产空冷机组,安装有2台600MW 单轴、三缸四排汽、空冷、中间再热、凝汽式汽轮机,主蒸汽压力为16.67MPa,温度为538℃,再热蒸汽压力为3.41MPa,温度为538℃,回热系统为“三高三低一除氧”布置。
二、热力系统建模1、系统主要设备模型。
机组的热力学性能可通过EBSILON 软件模拟分析,EBSILON 软件是专业的电站系统模拟软件,其基于基本物理学原理,主要应用于电站的设计、热力性能评价以及优化。
该软件能够较为精确模拟计算电站系统的热力学参数以及系统不同工况下的热力学参数与性能。
采用该软件对机组热力系统进行建模,为保证模拟结果的准确性,选用的系统设备的模型,同时,还将EBSILON 模型的计算结果与经典热平衡计算结果及汽轮机说明书中数据进行对比,以验证模型的准确性。
等效焓降法

等效焓降法原则性热力系统计算1( 热平衡法(常规计算法)这种计算法的核心(对本机组而言),实际上是对由8个加热器热平衡方程式和一个凝汽器物质平衡式所组成的9个线性方程组进行求解,可求出9个未知数(8个抽汽系数和1个凝汽系数),然后,根据公式求得所需要的新汽耗量或机组功率、热经济指标等。
计算结果:1) 热经济指标计算:Q机组热耗: kJ/h ,126477638160Q0热耗率:q,,8825.88 kJ(kW,h)0Pe3600热效率:,,,0.4079 eq0,,0.4182汽轮机绝对内效率: iQ2) 锅炉热负荷:= 2683339584 kJ/h bQ0,,,0.995管道效率: pQb3) 全厂热经济性指标:,,0.92,0.995,0.4079,0.3742全厂热效率: cp3600q,,9620.52kJ(kW,h)全厂热耗率: cp,cp0.123sb,,328g(kW,h)发电标准煤耗率: ,cp2( 等效焓降法等效热降法是在60年代后期,首先由库滋湟佐夫提出,并在70年代逐步完善、成熟,形成了完整的热工理论体系,是热力系统分析,计算的一种新方法。
这种方法在热力系统局部定量分析中,具有简捷、方便和准确的明显特点,在生产实践中效果显著,引人注目。
近年来,这一方法得到了广泛的应用,深受工程界的好评。
为西安交通大学博士生导师林万超教授这项科研成果,取得了显著的经济效益。
等效热降法是基于热力学的热功转换理论,考虑到设备质量、热力系统结构和参数的特点,经过严密地理论推演,导出几个热力分析参量抽汽等效焓降H和j ,抽汽效率等用以研究热工转换及能量利用程度的一种方法。
各种实际系统,j 在系统和参数确定后,这些参量也就随之确定,并可通过一定公式计算,成为一次性参数给出。
对热力设备和系统进行分析时,就是用这些参数直接分析和计算。
等效热降法既可用于整体热力系统的计算,也可用于热力系统的局部分析定量。
330wm亚临界供热机组全厂原则性热力计算—课程设计(论文)

发电厂热力系统课程设计题目:330WM亚临界供热机组全厂原则性热力计算系别:机械工程系专业:热能与动力工程班级:学号:姓名:指导老师:日期: 2015年9月目录1.课程设计目的、任务 (3)2.课程设计方法、步骤 (3)3.已知参数 (4)4.计算过程 (6)5.计算结果汇总 (12)6.课程设计小结 (12)7.参考文献 (13).1.课程设计目的、任务1.1课程设计计算的目的发电厂原则性热力系统计算是全厂范围的,可简称为全厂热力系统计算。
发电厂原则性热力计算的主要目的是确定电厂某一运行方式时的各项汽水流量及参数,该工况的发电量、供热量及其全厂热经济性指标,以分析其安全性和经济性。
本次的课程设计是学生在学习完发电厂热力系统及设备后的一次综合训练,有利于提高学生的综合能力,研究能力。
2.课程设计计算的任务总要求:对哈汽330MW供热机组在工况trl下进行原则性热力系统计算求出1)汽轮机组的绝对内效率,热耗率;2)求出全厂热效率,发电标准煤耗率。
2.课程设计方法、步骤2.1课程设计方法热力系统的计算方法有基于热力学第一定律的常规计算方法(简捷计算方法)、等效热降法、循环函数法、等效抽汽法,基于热力学第二定律的熵方法。
按给定参数可分为定功率法、定流量法。
按热平衡情况分为正热平衡计算法、反热平衡计算法。
本次课程设计采用定功率法。
以汽轮发电机组的电功率p e为定值,通过计算求得所需的蒸汽量。
2.2课程设计步骤1)整理原始资料,编制汽水参数表;根据汽轮机、锅炉等提供的有关数据整理出各计算点的汽水比焓值,各抽汽比焓h j及其疏水比焓h j',排汽比焓h c及主凝结水比焓h c'2)按“先外后内”,计算锅炉连续排污系统;3)进行回热系统计算;4)按照热力系统简捷计算方法整理汽水参数,计算各加热器的τj、q j、γ并列于表中,再对加热器由高压到低压逐个计算,求得各级抽汽量D j和排j汽量D c ,最后对结果进行校核。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单位数值变热量
kJ/kg 3394.50蒸汽放热量疏水放热量
kJ/kg 1194.10q γkJ/kg 3535.30#8低加2377.10138.00再热冷段蒸汽焓kJ/kg 3028.70#7低加2381.400106.30再热吸热量
kJ/kg 506.60#6低加2372.20070.80t/h 0.81#5低加2468.10t/h 0.04除氧器2580.30201.00t/h 1.00#3高加2574.90125.20kJ/kg
2359.70
#2高加2148.60191.70
0.81#1高加2070.80
0.038进汽焓kJ/kg 2520.50入口凝结水
焓
kJ/kg 143.40疏水焓kJ/kg 143.40进汽焓kJ/kg 2662.8030.00
入口凝结水焓kJ/kg 259.60疏水焓kJ/kg 281.40附加损失单位抽汽段
进汽焓kJ/kg 2759.90
小机用汽量q 入口凝结水焓
kJ/kg
365.90
高压门杆一漏气至热再
流量(A)kg/h 1
疏水焓
kJ/kg
387.70
高压门杆二漏气至除氧
器流量(B)kg/h 2
进汽焓
kJ/kg
2926.60
高压门杆三漏气至轴封加热器流量(K)kg/h
3
说明:本文为亚临界300MW机组等效焓降法计算算例,林万超书中正文算例都是
类型,与现存机组有较大的区别。
本文以书中附录图11为例,验证我对等效焓降法计算过程的正确性,以此可类推至超临界高容量机组,其中关于小机进汽量损失与给水泵损失的计算,对于不同机组须不同对待,尤其要注意这点。
由于《火电厂热系统节能理论》电子版清晰度不够,导致无法上传成功,若需查看热系统示意图,下载电子版,网上很多网站都有。
在书中第262页,图例11。
小汽轮机抽汽系数
#7低加
#6低加
#8低加主汽流量排汽焓再热份额
项 目
主蒸汽焓
锅炉给水焓再热热段蒸汽焓再热蒸汽流量小机抽汽流量
入口凝结水焓
kJ/kg 436.30中轴封漏汽总量kg/h 4
疏水焓
kJ/kg
458.50
高压后轴封一漏至除氧
器流量(B)kg/h 5
进汽焓kJ/kg
3134.20
高压后轴封二漏至SSR流量(C)kg/h
6
入口凝结水焓
kJ/kg 553.90除氧器出口焓kJ/kg 715.10给水泵焓升kJ/kg 24.90进汽焓
kJ/kg 3329.80入口给水焓kJ/kg 740.00疏水焓kJ/kg 754.90进汽焓
kJ/kg 3028.70入口给水焓kJ/kg 862.90疏水焓kJ/kg 880.10进汽焓
kJ/kg 3142.60入口给水焓kJ/kg 1047.50疏水焓
kJ/kg
1071.80
#3高加
#2高加
#1高加
#5低加
除氧器
例都是机组容量较小的
证我对等效焓降法计算过程的
损失与给水泵损失的计算,对
传成功,若需查看热系统示意。
给水吸热
量抽汽效率等效热降
τηH iτη
116.200.0676160.807.86
106.300.1234293.7613.11
70.400.1592377.7511.21
117.600.2160533.1825.40
161.200.2778716.9144.79
147.800.3327856.6749.17
184.600.47501020.5187.68
146.600.50381043.3673.86
313.09
新蒸汽毛等
效焓降1228.31
循环吸热量
Q02611.85
焓份额做功损失焓
3134.200.0379321.09
3394.500.00424 1.749
3394.500.013349.268
3394.500.000250.333
3394.500.021618.916 3028.700.00408 1.758 3028.700.00124 1.215
44.33
新蒸汽净
等效焓降1183.98
新蒸汽效
率0.4533
机械效率0.9950
发电机效
率0.9900
反推热耗
率8062.12。