应力集中的分析

合集下载

偏心加载及应力集中分析实验

偏心加载及应力集中分析实验

实验名称:偏心加载及应力集中分析实验工程实际中偏心加载的情况很常见。

如果忽略偏心的作用可能对结构设计和使用带来很大的误差和危险。

本实验提供一种偏心加载的拉伸试件。

通过实验观察偏心载荷作用下被测截面的应力分布规律,分析其内力,计算偏心距。

实际零构件由于结构细节设计的需要,如钻螺栓孔、开键槽等,使零构件外形具有几何不连贯性。

它改变了零构件的应力和应变的分布,造成“所谓”的应力集中的现象。

本实验对应力集中的问题进行演示和分析。

一.实验目的1.认识偏心加载对杆件承载的影响及应力分布的特点;2.测定偏拉试件被测截面的应力分布,分析其内力分量;3.测定偏心距;4.测定材料的弹性模量;5.通过观察应力集中的现象,了解应力集中的特点和分布规律,了解缺口形式及尺寸对应力集中系数影响。

二.实验设备和试件1.WDW-100(WDW-100E)电子万能试验机2.YE2539高速静态应变仪3.偏拉试件(45号钢)图1 偏心拉伸试件三.实验方法本实验采用电测应变方法。

在偏拉试件中部被测截面布置了6枚电阻应变片(120Ω,灵敏系数2.08),如图1所示,正面3枚,两侧各粘贴一枚,反面中间一枚。

通过销钉连接方式将偏拉试件安装在电子万能试验机上。

加载测量各点应变。

实验方案参考如下:1、根据给出的被测材料的许可应力,计算实验允许的最大载荷Pmax。

在初载荷、末载荷(小于Pmax)之间,采用分级加载(至少5个点)的方法加载并记录不同载荷下的各点应变数据。

要求实验至少重复两次,如果数据稳定、重复性好即可。

2、选作:选取测点选用组桥方式直接测出与各内力有关的应变。

(不分级加载,只记初载荷和末载荷下的应变)实验注意事项:1.实验前要确定加载范围和加载方案,并经带课老师认可后再加载实验;2.只能在安装试件前将载荷显示清零;3.加卸载速度<2mm/min。

如采用手动采样方式,可使用较慢的速度连续加载不停机采集应变或提前降低速度到分级载荷采集应变、采样后再恢复一般加载速度。

ABAQUS平面问题应力集中分析

ABAQUS平面问题应力集中分析

实验一平面问题应力集中分析一.实验目的和要求掌握平面问题的有限元分析方法和对称性问题建模的方法。

通过简单的力学分析,可以知道该问题属于平面应力问题,基于结构和在和的对称性,可以只取模型的1/4进行分析。

用8节点四边形单元分析x=0截面上 x的分布规律的最大是,计算圆孔边的应力集中系数,并与理论解对比。

二.实验步骤1.启动ABAQUS/CAE2.创建部件(1) Module:Part,Name:Plate,Modeling Space:2D Planar,Approximate size:200(2) 绘制圆弧(3) 绘制直线(4) 保存模型3.创建材料和截面属性(1) 创建材料Create Material——Name:Steel,Mechanical-Elasticity-Elastcic.Y oung’sModulus-210000,Poisson’s Ratio0.3(2) 创建截面属性Create Section—Material:Steel,Plane stess:1(3) 给部件赋予截面属性Assign Section4.定义装配件Module:Assembly. Instance Part-选中部件Plate,参数默认。

5.设置分析步骤Module:Step Create Step:Name—Apply Load,参数默认,6.定义便捷条件和载荷(1)施加载荷Create Loade—Types for Selected Step—Pressure(2)定义平板左边上的对称边界条件Create Boundary Codition—Name:fix-x Step:Initial,Types for Selected Step:Dispalcement/Rotation,选择左边界,中健确认,对话框汇中设置U1=0(3)定义平板底边上的对称呢便捷条件。

同(2),设置U2=07. 划分网格(1) 设置总体种子Global Seed-Size 5(2) 修改圆弧边种子Seed Edge:by Number 8(3)设置网格控制参数Assign Mesh Controls:Element Shape-Quad,Techniques-Structured.(4)设置单元类型Assign Element Type:Geometric Order-Quadratic.(5)划分网格Mesh Part Instance8.提交分析作业(1)创建分析作业(2)提交分析三实验内容分析1.划分网格如图一图一网格划分 12 σx的分布规律如图2 所示图二x方向应力的分布规律 1e=(σx测量-σx理论)/σx理论* 100%=1.5%误差分析:(1)网格划分不够密,存在失真度(2)使用四边行单元3 应力集中处分布规律如图三所示图三应力集中处的分布规律 1 4 左右对称面上的 x曲线如图四。

应力集中与失效分析

应力集中与失效分析

应力集中与失效分析刘一华(合肥工业大学土木建筑工程学院工程力学系,安徽合肥230009)1引言由于某种用途,在构件上需要开孔、沟槽、缺口、台阶等,在这些部位附近,因截面的急剧变化,将产生局部的高应力,其应力峰值远大于由基本公式算得的应力值。

这种现象称为应力集中,引起应力集中的孔、沟槽、缺口、台阶等几何体称为应力集中因素[1]。

因孔、沟槽、缺口、台阶等附近存在应力集中,从而,削弱了构件的强度,降低了构件的承载能力。

应力集中处往往是构件破坏的起始点,应力集中是引起构件破坏的主要因素[2-9]。

应力集中现象普遍存在于各种构件中,大部分构件的破坏事故是由应力集中引起的。

因此,为了确保构件的安全使用,提高产品的质量和经济效益,必须科学地处理构件的应力集中问题。

2 产生应力集中的原因[1]构件中产生应力集中的原因主要有:(1)截面的急剧变化。

如:构件中的油孔、键槽、缺口、台阶等。

(2)受集中力作用。

如:齿轮轮齿之间的接触点,火车车轮与钢轨的接触点等。

(3)材料本身的不连续性。

如材料中的夹杂、气孔等。

(4)构件中由于装配、焊接、冷加工、磨削等而产生的裂纹。

(5)构件在制造或装配过程中,由于强拉伸、冷加工、热处理、焊接等而引起的残余应力。

这些残余应力叠加上工作应力后,有可能出现较大的应力集中。

(6)构件在加工或运输中的意外碰伤和刮痕。

3 应力集中的物理解释[1]对于受拉构件,当其中无裂纹时,Array构件中的应力流线是均匀分布的,如图1a所示;当其中有一圆孔时,构件中的应力流线在圆孔附近高度密集,产生应力集中,但这种应力集中是局部的,在离开圆孔稍远处,应力流线又趋于均匀,如图1b所示。

4 应力集中的弹性力学理论根据弹性力学理论,可以求得圆孔、裂纹尖端以及集中力附近的应力分布情况,分别如下:4.1 圆孔边缘附近的应力[10]圆孔附近A点(图2)的应力为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛---=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+=θθστθθσσθθσσ4sin 322sin 24cos 322cos 3224cos 322cos 2442222442222442222r a r a r a r a r a r a r a r a r a xy y x (1)a 为圆孔的半径。

应力集中手册

应力集中手册

应力集中手册应力集中手册:为您解读和应对应力集中现象一、引言应力集中是材料工程中的重要概念,它指的是在结构中产生局部应力的现象。

应力集中会导致材料的破坏,影响结构的安全性和可靠性。

为了帮助工程师和研究人员更好地理解和解决应力集中问题,我们编写了这本应力集中手册。

二、什么是应力集中应力集中是指在结构中存在局部应力异常集中的现象。

通常,这种集中是由结构形状、应力加载方式、材料性质等因素造成的。

当应力集中超过材料的强度极限时,就会引发结构的破坏。

应力集中的常见表现形式包括孔洞、凹槽、棱角、接头等局部几何形状。

三、应力集中的危害应力集中会引起结构的局部断裂、裂纹扩展以及永久变形等问题。

这不仅降低了结构的强度和刚度,还可能导致结构的失效。

在工程实践中,应力集中是常见的结构失效原因之一。

四、应力集中的分析与计算为了准确评估和解决应力集中问题,我们需要进行应力分析和计算。

常用的方法包括有限元方法、应力集中系数法和应力分布法。

这些方法可以帮助我们定量地评估结构中的应力集中程度,并设计合适的改善措施。

五、应对应力集中问题的措施针对不同类型的应力集中问题,我们可以采取一系列的改善措施。

例如,可以通过增加结构的强度、改变结构的几何形状、优化材料的选择等方式来减轻应力集中的影响。

此外,合理的工艺控制和结构设计也可以有助于降低应力集中。

六、应力集中的实例分析本手册还包含了一些典型的应力集中实例分析,如孔洞、凹槽和接头等。

通过这些实例,读者可以更好地理解应力集中的原因、危害以及解决方法。

七、结语应力集中是一个复杂的问题,在工程实践中具有重要的意义。

这本应力集中手册旨在为工程师、设计师和研究人员提供一份全面的指南,帮助他们更好地理解和应对应力集中现象,提高结构的安全性和可靠性。

希望这本手册能为广大读者带来帮助,并在工程实践中发挥积极的作用。

孔边应力集中的有限元分析

孔边应力集中的有限元分析

孔边应力集中的有限元分析
什么是孔边应力集中?孔边应力集中是指在多孔材料中,由于接触及材料性能不均匀,在接口连接处,特别是在毛细孔处,会出现本来不存在的高应力,有时它的值会超过孔内应力的数倍,也就是说会出现应力的集中。

孔边应力集中问题对许多领域有潜在的重要影响,其最明显的表现为孔边破坏,干涉,腐蚀破坏等破坏及形变。

有限元分析可以有效地准确评估单位孔边应力情况,并及时发现任何可能出现的不良情况。

有限元分析是利用计算机综合运算能力,运用有限元素方法建立数学模型,分析结构、材料或器件的状态和性能的一种技术。

有限元分析可以用来解决复杂的工程结构的力学性能的分析,尤其是在孔边应力集中问题上,有限元分析可以提供有效的方法来准确评估孔边应力。

首先,应当正确确定孔边结构及尺寸,并建立孔边应力集中分析所需的网格几何模型,分析过程将网格结构由混凝土体素切割成一系列有限元,然后计算出孔边应力。

计算结果取决于估算的应力边界条件,及在计算中所使用的材料及结构性能参数,例如混凝土的弹性模量,泊松比,孔的容积比等。

此外,当孔边应力集中发生时,有限元分析可以进一步验证材料应力是否达到应力破坏极限,以判断结构的安全及可靠性。

此外,如果使用了可满足特殊要求的新材料,在分析过程中,同时可以更换材料参数,虚拟试验其孔边应力集中性能。

最后,孔边应力集中分析中,有限元分析可以更精确,更准确地反映孔边结构,进而提供更准确及准确的孔边应力集中情况,从而更加有效地评估结构的安全及可靠性。

总之,有限元分析是解决孔边应力集中问题的一种有效方法。

它能够提供准确的孔边应力能够更加准确的评估结构的安全及可靠性,指导工程设计与实施。

应力集中的定义

应力集中的定义

应力集中的定义应力集中的定义应力集中是指在材料中存在着一些几何形状或载荷形式不均匀的部位,使得在这些部位处产生了较大的应力集中。

这种现象会导致材料的疲劳寿命降低、裂纹扩展加速、甚至引起断裂等严重后果。

因此,对于工程设计和材料选择来说,应力集中问题是非常重要的。

应力集中的原因应力集中主要是由于几何形状和载荷形式不均匀引起的。

例如,在悬臂梁上施加一个重物时,梁上距离重物最近处会出现较大的弯曲应力;在孔洞附近施加载荷时,孔洞周围也会出现较大的拉伸或压缩应力。

此外,材料内部存在缺陷、夹杂物或焊接缺陷等也会导致局部应力集中。

影响因素影响应力集中程度的因素很多,主要包括:载荷大小、载荷类型(拉伸、压缩、剪切等)、几何形状(尺寸、角度等)、材料性质(弹性模量、屈服强度等)、表面处理等。

这些因素的改变都会影响应力集中的程度和位置。

应力集中的危害应力集中会导致材料的疲劳寿命降低,裂纹扩展加速,甚至引起断裂等严重后果。

在工程设计和材料选择时,必须考虑应力集中问题。

如果忽略了这个问题,可能导致工程事故的发生。

应力集中的评估方法为了评估应力集中问题,可以采用有限元分析、试验测试、理论计算等方法。

其中有限元分析是最常用的方法之一,它可以通过数值模拟得到局部应力和变形情况,并进一步评估材料的疲劳寿命和断裂风险。

试验测试则是通过实验测量得到局部应力和变形情况,并验证有限元分析结果的准确性。

理论计算则是根据材料力学理论进行计算,但由于其假设条件比较苛刻,通常只适用于简单几何形状。

应对措施为了避免或减轻应力集中问题带来的危害,可以采取以下措施:一是优化设计,尽量避免出现几何形状不均匀的部位;二是加强材料的表面处理,提高材料的抗蚀性和抗疲劳性;三是采用减载、增加支撑等方法,降低局部应力集中程度;四是选择合适的材料,提高材料的强度和韧性。

这些措施可以有效地减轻应力集中问题带来的危害。

结语应力集中问题在工程设计和材料选择中非常重要。

了解应力集中问题的原因、影响因素、评估方法和应对措施,对于提高工程质量、延长设备寿命具有重要意义。

孔边应力集中的有限元分析

孔边应力集中的有限元分析

孔边应力集中的有限元分析
有限元分析是一类工程计算方法,可以有效地解决复杂的工程设计问题。

其中,孔边应力集中的有限元分析是有限元分析中重要的一类分析方法,它可以有效地计算孔边应力集中的几何特征以及孔边应力集中后结构的变形性能。

其在热处理、压力分析、湿润环境,以及多种复杂结构加工工艺中都得到了广泛应用。

孔边应力集中的有限元分析,是通过将复杂结构拆分成若干小单元,然后分别对每个小单元进行有限元模型的构建以及应力分析,从而计算孔边应力集中的后果。

一般来说,孔边应力集中的有限元分析需要考虑的因素包括材料性能、结构尺寸、结构均匀性、介质状态等,以及构造的布置。

首先,在孔边应力集中的有限元分析中,必须确定准确的材料参数,如弹性模量、抗剪强度、塑性变形模量、断裂应变等,以及材料实验试验曲线,以表征材料的性能。

接着,还要考虑到结构尺寸、结构均匀性以及布置等因素,为此,需要仔细分析结构的尺寸影响以及结构的均匀性。

此外,孔边应力集中的有限元分析还要考虑介质状态,一般来讲会考虑温度效应、熔点、热态拉伸等因素,以及在介质中有选择性加载作用时,应力集中状态下的应变分布,以及在等温条件下应力集中时结构的变形性能。

最后,在有限元分析中,应该充分考虑构造的特点,例如构造形状、尺寸、材料类型、应力分布规律及有效性等。

这些都会直接影响
到孔边应力集中的有限元分析的准确性及选择的有限元模型的精确性,因此应在计算之前进行充分的分析,以确保分析的准确性。

总之,孔边应力集中的有限元分析是一类有效的工程计算方法,其对于复杂的结构加工工艺造成的变形、应力分布以及加载效果有着重要的研究价值,需要充分考虑材料性质、结构尺寸以及构造布置等因素,以达到分析的准确性。

应力集中分析

应力集中分析

应力集中分析假设应力在整个横截面上均匀分布而且整个杆件就是均匀得,则有公式,F 为该截面上得拉内力,A为材料该截面得横截面积。

而实际上,构件并不就是如此理想得,由于某种用途,在构件上经常需要有些孔洞、键槽、缺口、轴肩、螺纹或者就是其她杆件在几何外形上得突变。

所以在实际工程中,这些瞧似细小得变形可能导致构件在这些部位产生巨大得应力,其应力峰值远大于由基本公式算得得应力值,这种现象称为应力集中,从而可能产生重大得安全隐患。

应力集中削弱了构件得强度,降低了构件得承载能力。

应力集中处往往就是构件破坏得起始点,就是引起构件破坏得主要因素。

同时,应力集中得存在降低了整个构件得材料利用率,因为可能为了一部分结构得稳定而采用较高得等级得材料,与此同时构件其她部分得强度并不需要如此高得性能。

因此,为了确保构件得安全使用,提高产品得质量与经济效益,必须科学地处理构件得应力集中问题。

一、应力集中得表现及解释(主要分析拉压应力)1、理论应力集中系数:工程上用应力集中系数来表示应力增高得程度。

应力集中处得最大应力与基准应力之比,定义为理论应力集中系数,简称应力集中系数,即(4) 在(4)式中,最大应力可根据弹性力学理论、有限元法计算得到,也可由实验方法测得;而基准应力就是人为规定得应力比得基准,其取值方式不就是唯一得,大致分为以下三种:(1)假设构件得应力集中因素(如孔、缺口、沟槽等)不存在,以构件未减小时截面上得应力为基准应力。

(2)以构件应力集中处得最小截面上得平均应力作为基准应力。

(3)在远离应力集中得截面上,取相应点得应力作为基准应力。

理论应力集中系数反映了应力集中得程度,就是一个大于1得系数。

而且实验结果还表明:洁面尺寸改变愈剧烈,应力集中系数就愈大。

2、几种常见表现[1]一块铝板,两端受拉,其中部横截面上得拉应力(单位面积上得力)均匀分布,记为,见图 1(a) , 此时没有应力集中。

图l( b ) 就是在其中部开了个小圆孔,这时在过圆孔中心得横截面上得拉应力分布不再均布 , 当小圆孔相对于板很小时,在小孔得边缘处得拉应力就是无小孔时得3倍,称小孔边得拉应力集中系数为3(理论集中系数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.应力集中的现象及概念
材料在交变应力作用下发生的破坏称为疲劳破坏。

通常材料承受的交变应力远小于其静载下的强度极限时,破坏就可能发生。

另外材料会由于截面尺寸改变而引起应力的局部增大,这种现象称为应力集中。

对于组织均匀的脆性材料,应力集中将大大降低构件的强度,这在构件的设计时应特别注意。

承受轴向拉伸、压缩的构件,只有在寓加力区域稍远且横截面尺寸又无急剧变化的区域内,横截面上的应力才是均匀分布的。

然而工程中由于实际需要,某些零件常有切口、切槽、螺纹等,因而使杆件上的横截面尺寸发生突然改变,这时,横截面上的应力不再均匀分布,这已为理论和试验所证实。

如图 2-31[a] 所示的带圆孔的板条,使其承受轴向拉伸。

由试验结果可知 : 在圆孔附近的局部区域内,应力急剧增大,而在离开这一区域稍远处,应力迅速减小而趋于均匀( 图 2 — 31[b]) 。

这种由于截面尺寸突然改变而引起的应力局部增大的现象称为应力集
中。

在 I — I 截面上,孔边最大应力与同一截面上的平均应力之比,用表示
称为理论应力集中系数,它反映了应力集中的程度,是一个大于 1 的系数。

而且试验结果还表明 : 截面尺寸改变愈剧烈,应力集中系数就愈大。

因此,零件上应尽量避免带尖角的孔或槽,在阶梯杆截面的突变处要用圆弧过渡。

在静荷作用下,各种材料对应力集中的敏感程度是不相同的。

像低碳钢那样的塑性材料具有屈服阶段,当孔边附近的最大应力达到屈服极限时,该处材料首先屈服,应力暂时不再增大。

如外力继续增加,增加的应力就由截面上尚未屈服的材料所承担,使截面上其它点的应力相继增大到屈服极限,该截面上的应力逐渐趋于平均,如图2-32 所示。

因此,用塑性材料制作的零件,在静荷作用下可以不考虑应力集中的影响。

而对于组织均匀的脆性材料,因材料不存在屈服,当孔边最大应力的值达到材料的强度极限时,该处首先断裂。

因此用脆性材料制作的零件,应力集中将大大降低构件的强度,其危害是严重的。

这样,即使在静载荷作用下一般也应考虑应力集中对材料承载能力的影响。

然而,对于组织不均匀的脆性材料,如铸铁,其内部组织的不均匀性和缺陷,往往是产生应力集中的主要因素,而截面形状改变引起的应力集中就可能成为次要的了,它对构件承载能力不一定会造成明显的影响。

要想搞明白这个问题,我想先要搞明白什么是荷载力、什么是应力?简单地来说荷载力来源于动力源作用于工作终端,其力的大小为工作终端负苘加传动损耗,而应力则是由材料内部的分子发生错位(部分分子受拉力或热力作用其分子链被拉长、而有些分子则受压缩力或冷凝力的作用其分子被压缩,同时这两种变形的分子又相互作用在其过渡区域就会受两种作用力的影响,分子链也会受到破坏产生裂纹)而产生的作用カ。

人们在生产实践中发现材料在受力情况下都会发生变形,其变形量与受力的大小及受力的区城大小有关,卸载后的剩余应力与局剖的变形量成正比,对台阶轴而言诺不加任何措施、由于作用区域小其作用力仅在轴的圆周面上产生作用,轴芯部分并不受カ,这种现象本人称它为集肤效应。

因此此时的轴肩处的圆周面受到剪切变形,分子链相继受到破坏并向轴芯延伸最终导至轴颈断裂。

若在轴肩处采用圆弧过度等措施,相对来说增加了作用区域(两作用力之间的距离增加,材料所允许的扭转角度就变大,随着轴的扭转角度的增加使得轴芯部分有更多的分子链来参加传递动力,这样每个分子链的负荷也就变小很多,轴的寿命也得以延长,值得注意的是这并不意味着此轴可永久使用,因为材料在受力的情况下都会受损,只不过程度不同,程度大的寿命短、程度小的寿命长,这也就是人们常说的疲劳寿命。

现在再来解释过盈配合为什么在边缘处产生应力集中?
因为是过盈,所以内外圈在接触表面都要产生变形,而不接触的其它表面不会变形。

这样接触面区域是压应力,而在接触边缘处轴的材料必然出现拉应力以阻止轮毂边缘和接触区外的材料进一步变形。

但配合面的母线是直线,在外力作用下必然要产生相同的变形量,为了协
调,在接触边缘处的材料只有增大压缩变形量才能保持直线,因而这时边缘处的应力必然要比中间接触区域的应力高,也就是所谓的应力集中。

实际上最根本的原因还是轮毂是有限长度,端面与内孔互相垂直,因而接触母线不连续。

如果轴与轮毂是绝对等长的,那就不会出现应力奇异了。

因此,在实际加工中,有经验的师傅往往将内孔加工为喇叭口,以此来减轻边缘的变形量,道理就在于此。

相关文档
最新文档