26.1《反比例函数》教学设计

合集下载

人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计

人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计
2.教师点评:对学生的总结进行点评,强调重点知识。
教师讲解:“大家总结得很好。反比例函数是我们学习函数的重要部分,希望大家能够掌握其定义、性质和几何意义,并在实际问题中灵活运用。”
五、作业布置
为了巩固学生对反比例函数知识的掌握,提高学生的应用能力和思维能力,特布置以下作业:
1.基础知识巩固:
(1)根据反比例函数的定义,求出以下函数的表达式,并说明k的几何意义:y=3/x、y=-2/x、y=5/|x|。
作业要求:
1.学生在完成作业时,要认真思考,规范解答,注意细节。
2.对于实践应用题,要求学生结合反比例函数的性质和几何意义,分析问题,列出方程,并求解。
3.拓展提高题要求学生独立思考,尝试不同的解题方法,锻炼数学思维能力。
4.思考题要求学生在理解反比例函数的基础上,深入思考,形成自己的见解。
2.教学策略:
(1)情境创设:以生活实例或有趣的故事引入反比例函数的学习,激发学生的学习兴趣;
(2)任务驱动:设置具有挑战性的任务,引导学生主动探究反比例函数的性质和应用;
(3)分层教学:针对不同学生的学习需求,设计难易适度的练习题,使每个学生都能在原有基础上得到提高;
(4)反馈与评价:及时关注学生的学习进度,给予有效的反馈和激励,提高学生的学习积极性。
教师提问:“同学们,我们之前学习了正比例函数和一次函数,谁能来说说它们的特点和性质?”
2.创设情境:通过生活中的实例,如物体在反比例力作用下的运动轨迹,引出反比例函数的概念。
教师讲解:“在生活中,我们经常会遇到一些与反比例关系相关的问题。比如,当物体受到一个与速度成反比的阻力时,它的运动轨迹是怎样的呢?这就涉及到我们今天要学习的反比例函数。”
人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计

反比例函数教学设计(通用)五篇

反比例函数教学设计(通用)五篇

反比例函数教学设计(通用)五篇第一篇:反比例函数教学设计(通用)反比例函数教学设计(通用6篇)作为一位杰出的教职工,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

那么写教学设计需要注意哪些问题呢?下面是小编帮大家整理的反比例函数教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。

反比例函数教学设计1教学目标(一)教学知识点1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.(二)能力训练要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.(三)情感与价值观要求结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.教学重点经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.教学难点领会反比例函数的意义,理解反比例函数的概念.教学方法教师引导学生进行归纳.教具准备投影片两张第一张:(记作5.1A)第二张:(记作5.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1200km,某人开车要从A地到B 地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.Ⅱ.新课讲解[师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?1.复习函数的定义[师]大家还记得函数的定义吗?[生]记得.在某变化过程中有两个变量x,y.若给定其中一个变量x 的值,y都有唯一确定的值与它对应,则称y是x的函数.[师]大家能举出实例吗?[生]可以.例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.[师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.[师]请看下面的问题.电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时.(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:R/Ω20406080100I/A当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?请大家交流后回答.[生](1)能用含有R的代数式表示I.由IR=220,得I=.(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.(3)变量I是R的函数.由IR=220得I=.当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.[师]这位同学回答的非常精彩,下面大家再思考一个问题.舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.[生]根据I=,当R变大时,I变小,灯光较暗;当R变小时,I变大,灯光较亮.所以通过改变电阻R的大小来控制电流I的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.投影片:(5.1A)京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?[师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.[生]由路程等于速度乘以时间可知1262=vt,则有t=.当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.[师]从上面的两个例题得出关系式I= 和t=.它们是函数吗?它们是正比例函数吗?是一次函数吗?[生]因为给定一个R的值,相应地就确定了一个I的值,所以I是R的函数;同理可知t是v的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.[师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?[生]可以.由I= 与t= 可知关系式为y=(k为常数且k≠0).[师]很好.一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k≠0)的形式,那么称y是x的反比例函数.从y= 中可知x作为分母,所以x 不能为零.3.做一做投影片(5.1B)1.一个矩形的面积为20cm2,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?3.y是x的反比例函数,下表给出了x与y的一些值:x-2-1y2-1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.[生]由面积等于长乘以宽可得xy=20.则有y=.变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.[生]根据人均占有耕地面积等于总耕地面积除以总人数得m=.给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m= 符合反比例函数的形式,所以是反比例函数.[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式.在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k的值.因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察.由x=-1,y=2确定k的值.然后再根据求出的表达式分别计算x或y的值.[生]设反比例函数的表达式为y=.(1)当x=-1时,y=2;∴k=-2.∴表达式为y=-.(2)当x=-2时,y=1.当x=-时,y=4;当x= 时,y=-4;当x=1时,y=-2.当x=3时,y=-;当y= 时,x=-3;当y=-1时,x=2.因此表格中从左到右应填-3,1,4,-4,-2,2,-.Ⅲ.课堂练习随堂练习(P131)Ⅳ.课时小结本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y=(k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.Ⅴ.课后作业习题5.1Ⅵ.活动与探究已知y-1与成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?分析:由y与x成反比例可知y=,得y-1与成反比例的关系式为y-1= =k(x+2),由x=1、y=4确定k的值.从而求出表达式.解:由题意可知y-1= =k(x+2).当x=1时,y=4.所以3k=4-1,k=1.即表达式为y-1=x+2,y=x+3.由上可知y是x的一次函数.板书设计反比例函数教学设计2一、教学目标1.利用反比例函数的知识分析、解决实际问题2.渗透数形结合思想,提高学生用函数观点解决问题的能力二、重点、难点1.重点:利用反比例函数的知识分析、解决实际问题2.难点:分析实际问题中的数量关系,正确写出函数解析式三、例题的意图分析教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。

数学人教版九年级下册反比例函数(第1课时)教学设计

数学人教版九年级下册反比例函数(第1课时)教学设计

反比例函数教学设计教学过程(一)观察分析,引入新知生活中的数学问题:(1)开学初老师到文具店给同学们去买奖品,已知中性笔每支2元钱,笔记本每本3元钱,购买x支笔和10个笔记本用于了y元,你会用含x的式子表示y吗?(2)已知一个正方体的边长为x,表面积为y,你能用含x的式子表示出y吗?(3)我计划用60元钱去买格尺,单价x元的格式,正好买了y把,你能用含x的式子表示y吗?(4)我买回了30支笔,平均分给p个同学,每个同学恰好分了q支笔,你能用含p的式子表示q吗?(5)学校距离文具店有6千米,开车从学校到文具店所用的时间为x(小时),行驶的速度为y(千米/时),你能用含x的式子表示y吗?师生活动:教师给出问题,学生独立完成,教师组织学生展示结果,并提出以下问题,让学生思考回答:(1)在每个问题中,谁是常量,谁是变量?并且每个问题当中有几个量?(2)这五个问题中,哪个问题中的两个变量间具有我们已经学习过的函数关系?是什么函数?(3)什么是一次函数?什么是二次函数?设计意图:通过对问题的讨论分析,让学生学会用函数的观点分析生活中变量之间的关系,通过对一次函数和二次函数定义的复习,不仅有助于学生对旧知的复习和巩固,同时为后面让学生类比一次函数和二次函数的定义归纳概括反比例函数的定义打下基础。

教师追问:问题(3)、(4)、(5)中的两个变量之间具有函数关系吗?试说明理由。

它们的解析式有什么共同特点?师生活动:教师给出问题,学生小组讨论,教师参与讨论,组织学生交流、解答问题。

设计意图:通过对问题的讨论分析,进一步加深学生对函数概念的理解,再引导学生从函数的角度分析两个变量之间的关系,并能够用反比例关系式表示出来,初步建立反比例函数模型。

(二)归纳概括,建立模型问题:能否根据上面函数的共同特点,类比一次函数和二次函数的概念,归纳得到反比例函数的概念?一般地,形如kyx= (k为常数,且0k≠) 的函数叫做反比例函数,其中x是自变量,y是x的函数。

反比例函数教案(优秀8篇)

反比例函数教案(优秀8篇)

反比例函数教案(优秀8篇)《反比例函数》教学设计篇一一、知识与技能1、能灵活列反比例函数表达式解决一些实际问题。

2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。

二、过程与方法1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

三、情感态度与价值观1、积极参与交流,并积极发表意见。

2、体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

教学重点:掌握从实际问题中建构反比例函数模型。

教学难点:从实际问题中寻找变量之间的关系。

关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

教具准备1、教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等)。

2、学生准备:(1)复习已学过的反比例函数的图象和性质(2)预习本节课的内容,尝试收集有关本节课的情境资料。

教学过程一、创设问题情境,引入新课复习:反比例函数图象有哪些性质?反比例函数 y?kx 是由两支曲线组成,当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大。

二、讲授新课[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。

(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。

设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系。

反比例函数教案(优秀6篇)

反比例函数教案(优秀6篇)

反比例函数教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!反比例函数教案(优秀6篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。

《第26章反比例函数》全章教案

《第26章反比例函数》全章教案

【学习过程】一、课前导学:预习课本第1页至第3页,完成下列问题:1.我们形如 的函数叫做一次函数,当 时,又叫做正比例函数.2.探究:反比例函数的意义问题1:(1)京沪线铁路全长1 463km ,某次列车的平均速度vkm/h•随此次列车的全程运行问题th 的变化而变化,其关系可用函数式表示为: 。

(2)某住宅小区要种植一个面积为1 000m 2矩形草坪,草坪的长ym 随宽xm•的变化而变化,可用函数式表示为 。

(3)已知北京市的总面积为1.68×104km 2,人均占有的土地面积Skm 2/人,随全市总人口n 人的变化而变化,其关系可用函数式表示为 。

九年级 ()班 课题 26.1 反比例函数 课型 新授教 学目标 知识 技能1.从现实情境和已有的知识、经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解.[来源:]2.经历抽象反比例函数概念的过程,领会反比例函数的意义,表述反比例函数的概念.过程 方法 1.经历对两个变量之间相依关系的讨论,培养辩证唯物主义观点. 2.经历抽象反比例函数概念的过程,发展抽象思维能力,提高数学化意识.情感态度 认识到数学知识是有联系的,逐步感受数学内容的系统性;通过分组讨论,培养合作交流意识和探索精神。

教学重点 理解和领会反比例函数的概念. 教学难点 通领悟反比例函数的概念. 教法学案导学 学法 探究、合作 教学媒体 多 媒 体教 学 过 程 设 计问题2:上述问题中的函数关系式都有什么共同的特征?答: .4. 反比例函数的意义:一般的,形如 的函数,叫做反比例函数,其中x 是自变量, y 是函数学.自变量的取值范围是 的一切实数.5.下列哪个等式中的y 是x 的反比例函数?6.已知y 是x 的反比例函数,当x=2时,y=6.写出y 与x 的函数关系式; 求当x=4时,y 的值.7.若y 与x 成正比例,z 与y 成反比例,则x 与z 之间成______________关系. 8.已知y 与(2x+1)成反比例,且x=1时,y=2,那么当x=0时,y 的值是 二、 合作、交流、展示:1.比例函数的意义:反比例函数的解析式 ,y=xk 反比例函数的变形形式:(1)xy=k (2)1-=kx y 2.例题1.下列等式中,哪些是反比例函数? (1)3x y =(2)x y 2-= (3)xy =21 (4)25+=x y(5)x y 23-= (6)31+=xy (7)y =x -4 例题2.当m 取什么值时,函数23)2(m x m y --=是反比例函数?例题3(拓展提升).已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5.(1)求y 与x 的函数关系式; (2)当x =-2时,求函数y 的值三、巩固与应用:()()()().518;57;76;3652x y x y xy x y ==-=+-=()()()().24;23;4.02;51====xy x y x y x y1已知函数y=(m+2)x|m|-3是反比例函数,则m的值是..2.已知y=y1-y2,y1与x成反比例,y2与x-2成正比例,并且当x=3时,y=5;当x=1时,y=-1.求y与x之间的函数关系式.3.下列各变量之间的关系属于反比例函数关系的有( )。

26.1.1反比例函数教案

26.1.1反比例函数教案篇一:九年级下册数学26.1反比例函数教学设计26.1反比例函数板书设计:反比例函数定义:等价形式:篇二:26.1.1反比例函数教案第26章反比例函数26.1.1反比例函数【学习目标】1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。

2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用学情分析:虽然学生在八(上)已学过一次函数及特例“正比例函数”的内容,对函数有了初步的认识。

从学生接触函数所蕴含的“变化与对应”思想至今已经半年有余,学生对与函数相关的概念不可避免会有所遗忘或生疏。

因此,学习本节课的关键是处理好新旧知识的联系,尽可能地减少学生接受新知识的困难。

【学习重点】理解反比例函数的意义,确定反比例函数的解析式【学习难点】反比例函数的解析式的确定【学法指导】自主、合作、探究篇三:26.1反比例函数教案26.1反比例函数学习目标、重点、难点【学习目标】1、理解反比例函数的定义;2、用待定系数法确定反比例函数的表达式;3、反比例函数的图象画法,反比例函数的性质;【重点难点】1、用待定系数法确定反比例函数的表达式;2、反比例函数的图象画法,反比例函数的性质;知识概览图反比例函数的定义反比例函数的图象与性质新课导引【生活链接】学校课外生物小组的同学准备自己动手,用围24m2的矩形饲养场(如右图所示),设它的一边长为x(m),求x(m)之间的函数关系式.【问题探究】这个函数有什么特点?自变量的取值有什么限制?教材精华知识点1反比例函数的定义重点;理解一般地,形如y?k(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,自变量xx栏建一个面积为另一边长y(m)与的取值范围是不等于0的一切实数,y的取值范围也是不等于0的一切实数,k叫做比例系数,另外,反比例函数的关系式也可写成y=kx-1的形式.y是x的反比例函数?y?k(k≠0)?xy=k(k≠0)?变量y与x成反比例,比例系数为k.x第1页k(k≠0)的左边是函数y,右边是分母为自变量x的分式,也就是说,x 123分母不能是多项式,只能是x的一次单项式,如y?,y?等都是反比例函数,但y?就不是关1xx?1x2拓展(1)在反比例函数y?于x的反比例函数.(2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成y=kx-1或xy=k的形式.(3)反比例函数中,两个变量成反比例关系.知识点2用待定系数法确定反比例函数的表达式难点:运用由于反比例函数y?k中只有一个待定系数,因此只要有一对对应的x,y值,或已知其图象上x一点坐标,即可求出k,从而确定反比例函数的表达式.其一般步骤:(1)设反比例函数关系式y?k(k≠0).x(2)把已知条件(自变量和函数的对应值)代入关系式,得出关于k的方程.(3)解方程,求出待定系数k的值.(4)将待定系数k的值代回所设的关系式,即得所求的反比例函数关系式.知识点3反比例函数图象的画法难点;运用反比例函数图象的画法是描点法,其步骤如下:(1)列表:自变量的限值应以0为中心点,沿0的两边取三对(或三对以上)相反数,分别计算y的值.(2)描点:先描出一侧,另一侧可根据中心对称的性质去找.(3)连线:按从左到右的顺序用平滑的曲线连接各点,双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交.说明:在图象上注明函数的关系式.拓展(1)反比例函数的图象是双曲线,它有两个分支,它的两个分支是断开的.(2)当k>0时,两个分支位于第一、三象限;当k﹤0时,两个分支位于第二、四象限.第2页(3)反比例函数y?k(k≠0)的图象的两个分支关于原点对称.x(4)反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交,这是因为x≠0,y≠0. k的图象是由两支曲线组x(1)如图17-2所示,反比例函数的图象是双曲线,反比例函数y?成的.当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内。

-反比例函数全章教案

第二十六章 反比例函数第1课时26.1.1反比例函数的意义教学目标知识于技能.使学生理解并掌握反比例函数的概念过程与方法.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式情感与态度价值观.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想教学重、难点重点:理解反比例函数的概念,能根据已知条件写出函数解析式难点:理解反比例函数的概念难点的突破方法:(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解(2)注意引导学生对反比例函数概念的理解,看形式xk y =,等号左边是函数y ,等号右边是一个分式,自变量x 在分母上,且x 的指数是1,分子是不为0的常数k ;看自变量x 的取值范围,由于x 在分母上,故取x ≠0的一切实数;看函数y 的取值范围,因为k ≠0,且x ≠0,所以函数值y 也不可能为0。

讲解时可对照正比例函数y =kx (k ≠0),比较二者解析式的相同点和不同点。

(3)xk y =(k ≠0)还可以写成1-=kx y (k ≠0)或xy =k (k ≠0)的形式 教学过程一、课堂引入1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?二、例题讲解例1.见教材P3分析:因为y 是x 的反比例函数,所以先设xk y =,再把x =2和y =6代入上式求出常数k ,即利用了待定系数法确定函数解析式。

(补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念)。

例1.(补充)下列等式中,哪些是反比例函数(1)3x y =(2)x y 2-= (3)xy =21 (4)25+=x y (5)x y 23-= (6)31+=xy (7)y =x -4 分析:根据反比例函数的定义,关键看上面各式能否改写成x k y =(k 为常数,k ≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x ,(6)改写后是xx y 31+=,分子不是常数,只有(2)、(3)、(5)能写成定义的形式例2.(补充)当m 取什么值时,函数23)2(m xm y --=是反比例函数? 分析:反比例函数xk y =(k ≠0)的另一种表达式是1-=kx y (k ≠0),后一种写法中x 的次数是-1,因此m 的取值必须满足两个条件,即m -2≠0且3-m 2=-1,特别注意不要遗漏k ≠0这一条件,也要防止出现3-m 2=1的错误。

反比例函数教案设计(6篇)

反比例函数教案设计(6篇)教学目标:1、通过感知生活中的事例,理解并把握反比例的含义,经初步推断两种相关联的量是否成反比例2、培育学生的规律思维力量3、感知生活中的数学学问重点难点1.通过详细问题熟悉反比例的量。

2、把握成反比例的量的变化规律及其特征教学难点:熟悉反比例,能依据反比例的意义推断两个相关联的量是不是成反比例。

教学过程:一、课前预习预习24---26页内容1、什么是成反比例的量?你是怎么理解的?2、情境一中的两个表中量变化关系一样吗?3、三个情境中的两个量哪些是成反比例的量?为什么?二、展现与沟通利用反义词来导入今日讨论的课题。

今日讨论两种量成反比例关系的变化规律情境(一)熟悉加法表中和是12的直线及乘法表中积是12的曲线。

引导学生发觉规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

情境(二)让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?独立观看,思索同桌沟通,用自己的语言表达写出关系式:速度×时间=路程(肯定)观看思索并用自己的语言描述变化关系乘积(路程)肯定情境(三)把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?用自己的语言描述变化关系写出关系式:每杯果汁量×杯数=果汗总量(肯定)5、以上两个情境中有什么共同点?反比例意义引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是肯定的。

这两种量之间是反比例关系。

活动四:想一想二、反应与检测1、推断下面每题是否成反比例(1)出油率肯定,香油的质量与芝麻的质量。

(2)三角形的面积肯定,它的底与高。

(3)一个数和它的倒数。

(4)一捆100米电线,用去长度与剩下长度。

(5)圆柱体的体积肯定,底面积和高。

人教版九年级数学下册第二十六章反比例函数大单元教学设计

2.提出问题:当长和宽的比例变为1:2时,长和宽分别是多少?如果长和宽的比例是1:k,那么长和宽与k之间的关系是怎样的?
3.引出反比例函数:通过以上问题,引导学生发现,当两个量的乘积为定值时,这两个量之间的关系就是反比例关系。从而引出反比例函数的定义。
(二)讲授新知
1.反比例函数的定义:y = k/x(k为常数,k≠0)。
3.学会运用数形结合的思想,将反比例函数与实际问题相结合,培养创新意识和实践能力。
4.通过对反比例函数的学习,掌握研究函数的一般方法,为学习其他函数打下基础。
(三)情感态度与价值观
1.增强对数学学科的兴趣和热情,认识到数学在日常生活和科学研究中的重要性。
2.培养勇于探究、积极思考的良好学习习惯,形成主动学习的态度。
2.选做题:
(1)课本习题26.3第1、2题,鼓励学有余力的学生挑战更高难度的题目,提高学生的数学思维;
(2)结合生活实际,自编一道反比例函数的应用题,并与同学分享解题思路。
3.探究性作业:
(1)研究反比例函数图像的对称性,探索其在实际生活中的应用;
(2)以小组为单位,总结反比例函数的解题技巧,形成小组学习报告。
(2)运用情境教学法,创设生活情境,让学生在实际问题中感受反比例函数的应用,提高学生的实际问题解决能力;
(3)利用信息技术手段,如几何画板等,动态展示反比例函数图像的变化,帮助学生形象地理解反比例函数的性质;
(4)组织小组合作学习,培养学生的团队协作能力和沟通能力。
2.教学过程:
(1)导入:通过一个简单的实际例子,如“一块固定面积的田地,耕种宽度与长度成反比,如何选择宽度与长度才能使耕种效率最高”,引起学生对反比例函数的兴趣;
2.反比例函数的性质:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⑤xy = 3 ⑥ y 1
⑦ y 3
x 1
x
④ y 2x 3
⑧y 3 2x
2.已知 y 与 x2 成反比例,并且当 x=3 时,y=2.
通过设置达标测 评,进一步巩固所 学新知,同时检测 学习效果,做到 “堂堂清
(1)求 y 与 x 的函数关系式;
(2)求 x=1.5 时,y 的值;
注重课堂小结,激
(3)求 y=18 时,x 的值.
发学生参与的主
3.当 m 为何值时,函数 y=(m-3)x2-|m|是反比 动性,为每一个学
生的发展与表现
例函数?
创造机会
学生进行当堂检测,完成后,教师进行批阅、点评、
讲解.
1.课堂总结:
教师与学生一起回顾所学主要内容: (1)本课时主要学习了反比例函数的哪些知识?如 何获得反比例函数的概念?
有面积 S(单位: km2/人)随全市总人口 n(单位:
人)的变化而变化.
师生活动:教师提出问题,学生思考、交流、
回答问题,初步感知反比例函数模型中的变化
与对应思想.
(续表)
1.反比例函数的概念:
1.通过对问题的
(1)问题:列出上述问题的函数解析式,并观察 讨论分析,让学生
活动 各个函数解析式有什么共同特点?(从基本形式, 学会用函数的观
的三种形式解决
(2)求函数的解析式
问题.
例 3.若 y (m1)xm2 2 是 y 关于 x 的反比例函数,
求 m 的值。
教师重点关注:学生对反比例函数三种形式的理解 与把握;学生是否熟练掌握了一元二次方程的解 法.
活动 四: 课堂 检测 总结
【达标测评】
1、下列函数中哪些是反比例函数?
①y= 3x-1 ②y = 2x2 ③ y = 2 x
二: 分子、分母相同点入手。)
点分析生活中变
实践 探究
v=14t63,y=10x00, s
1.68 104 n
.
量之间的关系,初 步建立反比例函
交流 (2)问题:类比一次函数、二次函数的一般形式, 数的模型.
新知 你能根据特点给出反比例函数的定义及其一般形 2.使学生从上述
式吗?
不同的数学关系
学生讨论交流后,教师指导总结:一般地,形如 y 式中抽象出反比
5/5
纳、概括能力。养成良
2.对提出问题进行讨论、回答。
好的自主学习习惯。
1/5
3.教师做好补充和提示。
【课堂引入】
下列问题中,变量间具有函数关系吗?如果有,
它们的解析式有什么共同特点?
(1)京沪线铁路全程为 1463 km,某次列车的平
活动 一: 创设 情境 导入 新课
均速度 v(单位: km/h)随此次列车的全程运行
y 的取值范围是不等于 0 的一切实数.
3.反比例函数的解析式:
问题:回顾以上问题的答案,想一下反比例函数的
解析式还可以有哪些形式?
反比例函数的三种形式:①y=kx(k 为常数,k≠0);
②xy=k(k 为常数,k≠0);③y=kx-1(k 为常数,
k≠0).
【应用举例】
例 1 已知 y 是 x 的反比例函数,并且当 x=2 时,
26.1《反比例函数》教学设计
课题
26.1.1 函数
反比例
授课人
知识技能
1.了解反比例函数的概念; 2.能够根据已知条件,确定反比例函数的解析式.
能根据实际问题中的条件确定反比例函数的解析
数学思考
式,体会函数的模型思想.

学 目
问题解决
结合具体情境体会反比例函数的意义,能够根据已 知条件确定反比例函数的解析式.

从现实情境和已有知识经验出发,研究两个变量之
情感态度
间的相互关系,进一步理解常量和变量之间的辩证 关系,体验数学来源于生活,激发学生学习数学的
热情和兴趣.
教学 了解并掌握反比例函数的概念;能根据问题中的已知条件确定反比例函 重点 数的解析式.
教学 难点
授课 类型 教具
教学 步骤
了解并掌握反比例函数的概念;能根据问题中的已知条件确定反比例函 数的解析式.
时间 t(单位:h)的变化而变化;
创设问题情境,让学生
(2)某住宅小区要种植一块面积为 1000 m2 的矩 感受量与量之间的函
形草坪,草坪的长 y(单位: m)随宽 x(单位: m) 数关系,体会实际问题
的变化而变化;
中蕴含的函数关系,
(3)已知某市的总面积为 1.68×104km2,人均占 激发学生的探究兴趣.
解析式.
师生活动:学生书写解题过程,教师做好评价
和辅导.
【拓展提升】
例 2.已知一个函数 y 与自变量 x 满足下表:
通过拓展提升让
x -5 -4 -3 -2 -1 1
2
3 学生更加熟练地
3/5
y 1.8 2.25 3 4.5 9 -9 -4.5 -3 利用反比例函数
(1)判断这个函数是所学的哪种函数?
提纲挈领,重点突 出
(2)反比例函数解析式三种形式分别是什么?自变
4/5
量和函数的取值范围是什么? (3)如何根据已知条件求反比例函数的解析式? 2.【知识网络】
附:板书设计 一、 复习回顾 一次函数
正比例函数
y=kx+b(k、b 为 常数,且 k≠0)
二、反比例函数
b=0
y=kx(k 为常数,
师生活动
1 设计意图
教师提出问题:
复习 回顾
我们以前学习过哪些函数?你能说出它们的一 温故知新,为学习新知
般形式吗? 奠定基础.
(教师引导学生进行解答,学生回忆所学知识,
教师做好补充并板书.)
检查 预习
1 检查.学生预习情况,对本节课学习目标、知
培养学生自学能力、归
效果 识点提出问题
y=6.
(1)写出 y 关于 x 的函数解析式;
通过例题使学生
(2)当 x=4 时,求 y 的值.
学会根据已知条
教师引导学生分析问题:如何用待定系数法求函数 件求反比例函数
解析式?
的解析式,进一步
①根据题意设函数解析式;②根据条件选点或对应 熟悉函数值的求
值代入;③解方程;④把求出的系数代入所设函数 法.
2/5
活动 三: 开放 训练 体现 应用
=kx(k 为常数,k≠0)的函数,叫做反比例函数.
例函数的模型,让 学生感受反比例
2. 反比例函数自变量和函数值的取值范围:
函数的基本特征,
问题:(1)反比例函数中,自变量 x 和函数 y 的取 发展学生用数学
值范围分别是什么?
语言描述反比例
自变量 x 的取值范围是不等于 0 的一切实数,函数 函数的能力.
相关文档
最新文档