高三数学综合模拟试卷一

合集下载

广东省韶关市2023届高三上学期综合测试(一)数学试题含答案

广东省韶关市2023届高三上学期综合测试(一)数学试题含答案

韶关市2023届高三综合测试(一)数学注意事项:1.考生务必将自己的姓名、准考证号、学校和班级用黑色字迹的钢笔或签字笔写在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}2,1,0,1,2U =--,集合{}2,1A =-,{}2320B x x x =-+=∣,则()UA B =( ) A.{}0,2B.{}1,0-C.{}1,2D.{}1,02.若11z i =+,21(2)z z i =+,1z 是1z 的共轭复数,则2z =( )B.2D103.下列区间中,函数()3sin 6f x x π⎛⎫=+ ⎪⎝⎭的单调递减区间是( ) A.0,2π⎛⎫⎪⎝⎭B.,2ππ⎛⎫⎪⎝⎭C.3,2ππ⎛⎫ ⎪⎝⎭D.3,22ππ⎛⎫⎪⎝⎭4.函数433()1x xf x x --=+的部分图象大致为( )A. B. C. D.5.已知(3,4)a =,(1,0)b =,c a tb =+,若b c ⊥,则向量c 在向量a 上的投影向量为( ) A.1625a -B.1625a C.45a -D.45a 6.某污水处理厂采用技术手段清除水中的污染物,同时生产出有用的肥料和清洁用水.已知在处理过程中,每小时可以清理池中残留污染物10%,若要使池中污染物不超过原来的12,至少需要的时间为(结果保留整数,参考数据:lg 20.30≈,lg30.48≈)( ) A .6小时B .7小时C .8小时D .9小时7.已知点O 为坐标原点,点F 是双曲线2222:1x y C a b-=(0a >,0b >)的右焦点,以OF为直径的圆与双曲线C 的一条渐近线交于点P ,线段PF 交双曲线C 于点Q .若Q 为PF 的中点,则双曲线的离心率为( )C.2D.38.已知函数()2lne xf x x e ex-=-+,若2202120222023202320232023e e e e f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1011()a b =-+,其中0b >,则1||2||a a b+的最小值为( )A.34C.54D.2二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.某电视传媒机构为了解某地区电视观众对某类体育节目的收视情况,随机抽取了200名观众进行调查,其中女性占40%.根据调查结果分别绘制出男、女观众两周时间收看该类体育节目时长的频率分布直方图,则A.0.08m =B .女观众收看节目时长的中位数为6.5小时 C.女观众收看节目的平均时长小于男观众的平均时长D .收看节目不少于9小时观众中的女观众人数是男观众人数的1310.已知正方体1111ABCD A B C D -,设E 是棱BC 的中点,则 A .1BD ∥平面1C DE B.1BC AC ⊥C .平面11A BC 与平面ABCD D .三棱锥1D ACD -与三棱锥1B ACD -体积相等11.设A 是抛物线2:4C x y =上一点,F 是C 的焦点,A 在C 的准线l 上的射影为M ,M 关于点A 的对称点为N ,曲线C 在A 处的切线与准线l 交于点P ,直线NF 交直线l 于点Q ,则A .F 到l 距离等于4 B.FM FN ⊥C .FPQ △是等腰三角形D .||MQ 的最小值为412.以下四个不等关系,正确的是 A.ln1.5ln 41⋅<B.ln1.10.1>C.19202019<D.22ln 24ln 4e >- 三、填空题:本题共4小题,每小题5分,共20分.13.6212x x ⎛⎫- ⎪⎝⎭的展开式的中间一项的系数为________(具体数字作答).14.已知(0,)απ∈,且1cos 22sin 2αα-=-,则cos()πα-=________.15.我们知道距离是衡量两点之间的远近程度的一个概念.数学中根据不同定义有好多种距离.平面上,欧几里得距离是()11,A x y 与()22,B x y 两点间的直线距离,即AB d =切比雪夫距离是()11,A x y 与()22,B x y 两点中横坐标差的绝对值和纵坐标差的绝对值中的最大值,即{}1212max ,AB d x x y y '=--.已知P 是直线:2150l x y +-=上的动点,当P 与o (o 为坐标原点)两点之间的欧几里得距离最小时,其切比雪夫距离为________.16.已知三棱锥P ABC -中,PBC △为等边三角形,AC AB ⊥,PA BC ⊥,PA =BC =________;若M 、N 分别为该三棱锥的内切球和外接球上的动点,则线段MN 的长度的最大值为________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题10分)在ABC △中,D 为AC 的中点,且sin 2sin BDC BAC ∠=∠.(1)证明:2BA BD =;(2)若22AC BC ==,求ABC △的面积. 18.(本小题12分) 已知数列{}n a 的首项145a =,且满足143n n n a a a +=+,设11n n b a =-. (1)求证:数列{}n b 为等比数列; (2)若1231111140na a a a ++++>,求满足条件的最小正整数n . 19.(本小题12分)北京冬奥会的举办使得人们对冰雪运动的关注度和参与度持续提高.某地很多中小学开展了模拟冬奥会赛事的活动,为了深入了解学生在“自由式滑雪”和“单板滑雪”两项活动的参与情况,在该地随机选取了10所学校进行研究,得到如下数据:(1)从这10所学校中随机抽取2所,在抽取的2所学校参与“单板滑雪”的人数超过30人的条件下,求这2所学校参与“自由式滑雪”的人数超过30人的概率;(2)“自由式滑雪”参与人数超过40人的学校可以作为“基地学校”,现在从这10所学校中随机抽取3所,记X 为选出“基地学校”的个数,求X 的分布列和数学期望; (3)现在有一个“单板滑雪”集训营,对“滑行、转弯、停止”这3个动作技巧进行集训,且在集训中进行了多轮测试.规定:在一轮测试中,这3个动作至少有2个动作达到“优秀”,则该轮测试记为“优秀”.已知在一轮集训测试的3个动作中,甲同学每个动作达到“优秀”的概率均为23,每个动作互不影响且每轮测试互不影响.如果甲同学在集训测试中获得“优秀”次数的平均值不低于8次,那么至少要进行多少轮测试? 20.(本小题12分)已知矩形ABCD 中,4AB =,2BC =,E 是CD 的中点,如图所示,沿BE 将BCE △翻折至BFE △,使得平面BFE ⊥平面ABCD .(1)证明:BF AE ⊥;(2)若(01)DP DB λλ=<<是否存在λ,使得PF 与平面DEF 若存在,求出λ的值;若不存在,请说明理由.21.(本小题12分)已知椭圆22:142x y C +=的左、右顶点分别为A ,B ,点D (不在x 轴上)为直线6x =上一点,直线AD 交曲线C 于另一点P . (1)证明:PB BC ⊥;(2)设直线BD 交曲线C 于另一点Q ,若圆O (O 是坐标原点)与直线PQ 相切,求该圆半径的最大值. 22.(本小题12分)已知函数2()1f x x =-,()ln(1)g x m x =-,m R ∈.(1)若直线:20l x y -=与()y g x =在(0,(0))g 处的切线垂直,求m 的值;(2)若函数()()()h x g x f x =-存在两个极值点1x ,2x ,且12x x <,求证:()()1122x h x x h x >.2023届高三综合测试(一) 数学参考答案及评分标准1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、单项选择题(每小题5分)1.【解析】由题意,23201,2B x x x =-+==,所以2,1,2AB =-,所以(){} 1,0UA B =-,故选B.2.【解析】21(2)(1)(2)3z z i i i i =+=-+=-,所以,2z ==,故选C.3.【解析】函数()3sin 6f x x π⎛⎫=+ ⎪⎝⎭,由题意,322()262k x k k Z πππππ+<+<+∈,解得422()33k x k k Z ππππ+<<+∈,取0k =,可得函数()f x 的一个单调递减区间为4,33ππ⎛⎫⎪⎝⎭,故选B. 4.【解析】()f x 是奇函数且(1)0f <,所以选D.5.【解析】因为b c ⊥,所以3t =-,()0,4c =,所以向量c 在向量a 上的投影向量为1625a c a a a a ⋅⋅=,所以选B. 6.【解析】设原来池中污染物的质量为m ,依题意,经过n 小时污染物的质量0.9nm ⋅,所以,10.92nm m ⋅≤,lg 2lg 27.51lg912lg3n ≥=≈--,故选C. 7.【解析】∵以OF 为直径的圆与双曲线C 的一条渐近线交于点P ,∴OP PF ⊥,∵直线OP 的方程为b y x a =,(),0F c ,∴直线PF 的方程为()ay x c b=--,由()b y x a a y xc b ⎧=⎪⎪⎨⎪=--⎪⎩,解得2P a x c =,P ab y c =,∵12PQ PF =,∴Q 是PF 的中点,故222Q a c x c +=,2Q ab y c =,代入双曲线方程,得222222221a c ab c c a b ⎛⎫+⎛⎫ ⎪ ⎪⎝⎭⎝⎭-=,整理,得()2222222144aca a c c+-=,222c a =,e =故选A. 法2:∵以OF 为直径的圆与双曲线C 的一条渐近线交于点P ,∴OP PF ⊥,∴PF b =,从而1122PQ PF b ==,设双曲线左焦点为1F ,连结1QF ,则由定义知11222QF a QF a b =+=+,在Rt FPO △中,cos PF bPFO OF c∠==, 在1FQF △中,由余弦定理得:2221112cos QF QF QF QF QF QFO =+-⋅⋅∠,即2221112(2)22222b a b b c b c c ⎛⎫⎛⎫+=+-⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭,化简得a b =,所以e =8.【解析】因为()()()2ln 2()ln 2()e x e e xf x f e x x e e x e ex e e x ---+-=-++--+=-- 由上面结论可得22021202220222023202320232023e e e e f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++=-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以2a b +=,其中0b >,则2a b =-. 当0a >时,1||121212()1525111222222224a b a b b a a b a b a b a b a b -+⎛⎫⎛⎫+=+=+-=+⋅-=++-≥ ⎪ ⎪⎝⎭⎝⎭ 当且仅当,23a =,43b =时等号成立; 当0a <时,1||112152()11222222ab a a b a b a b a b --⎛⎫⎛⎫+==+⋅++=-+++ ⎪ ⎪--⎝⎭⎝⎭1531224⎛≥-++= ⎝,当且仅当2a =-,4b =时等号成立;因为3544<,所以12a a b+的最小值为34.故选:A.二、多项选择题(全部选对的得5分,选对但不全的得2分,有选错的得0分).误;对于B ,由频率分布直方图可知,女观众收看时间的352 6.54+⨯=,故B 正确; 对于C,男性观众收看节目的平均时长为40.160.150.480.210120.158.3⨯+⨯+⨯+⨯+⨯=小时,女性观众收看节目的平均时长为40.260.40.380.110 6.6⨯+⨯+⨯+⨯=小时,故C 正确; 对于D ,由频率直方图可知,男性观众收看到达9小时人数为20060%(0.20.15)42⨯⨯+=人,女性观众收看达到9小时人数为20040%0.18⨯⨯=人,故D 错误.故选:BC. 10.【解析】对于A ,设1CD 交1C D 于F ,可得1EF BD ∥,从而得到1BD ∥平面1C DE ;所以A 正确;对于B ,可以求得1BC ,AC 所成角为3π,所以B 不正确. 对于C ,转化为求平面11A BC 与平面1111A B C D C 不正确; 对于D ,设正方体棱长为1,1116D ACD B ACD V V --==,D 正确.所以选AD. 11.【解析】对于A ,焦点到准线距离2p =,A 不正确.对于B ,因为C :24x y =的准线为l :1y =-,焦点为()0,1F ,设()00,A x y ,则()0,1M x -,()00,21N x y +,所以()()200000,2,240FM FN x x y y x ⋅=-⋅=-+=,所以90MFN ∠=︒,(或由抛物线定义知AM AN AF ==,所以90MFN ∠=︒,)故选项B 正确;对于C ,因为A 处的切线斜率,02AP x k =,而20000012242NF x y x k x x ⋅===,所以AP NF k k =, 从而AP NF ∥,又A 是线段MN 中点,所以,P 是线段MQ 的中点,又90MFN ∠=︒, 所以,PQ PF =,所以C 正确. 对于D ,因为02NFx k =,所以直线FN 的方程为012x y x -=,令1y =-,得04,1Q x ⎛⎫-- ⎪⎝⎭,所以0000444MQ x x x x -=-=+≥=,当且仅当02x =时,最小值为4,故选项D 正确;综上可知选BCD.12.【解析】对于A ,因为,2222ln1.5ln 4ln 6ln ln1.5ln 41244e+⎛⎫⋅<=<= ⎪⎝⎭,所以,A 正确;对于B ,由切线不等式()ln 11x x x <-≠,得ln1.1 1.110.1<-=,B 不正确 对于C ,由19202019<得19ln 2020ln19<,1920ln19ln 20<,设()ln x f x x=,0x >且1x ≠,()()2ln 10ln x f x x -'==,得x e =,当01x <<和1x e <<时,()0f x '<,函数()f x 单调递减,当x e >时,()0f x '>,函数()f x 单调递增,所以1920ln19ln 20<,C 正确. 对于D ,因为24ln 2ln 4=,22242222ln ln ln 422e e e e e e ==⎛⎫ ⎪⎝⎭,且()()24f f =,且2242e e <<<, 所以()222e f f ⎛⎫> ⎪⎝⎭,即224ln 4ln 2e <-,D 正确.故选ACD.二、填空题(第13、14、15题每小题5分,第16题第一空2分,第二空3分).13.【解析】依题意,展开式的中间一项是第4项,334621(2)T C x x ⎛⎫=- ⎪⎝⎭,其系数为33362(1)160C ⋅⋅-=-.14.【解析】∵21cos 22sin tan sin 22sin cos αααααα-==,∴tan 2α=-, ∵()0,απ∈,sin 5α=,cos 5α=-,∴cos()cos 5παα-=-=. 15.【解析】因为点P 是直线l :2150x y +-=上的动点,要使OP 最小,则OP l ⊥,此时2l k =-,所以12POk =,由方程组215012x y y x +-=⎧⎪⎨=⎪⎩,解得,6x =,3y = 所以,P ,Q 两点之间的比雪夫距离为6.16.【解析】由已知可证明PA ,AB ,AC 两两垂直且长度均为成正方体,如图所示三棱锥的外接球就是正方体的外接球,设外接球的半径为R ,则11322R AG ===. 设三棱锥外接球球心为1O ,内切球球心为2O ,内切球与平面PBC 的切点为K ,易知:1O ,2O ,K 三点均在AG 上,且AK ⊥平面PBC ,设内切球的半径为r ,由等体积法:()1133ACP ABP ABC BCP ABCS S S Sr S AP +++=⋅,得1r =,将几何体沿截面PAEG切开,得到如下截面图:两圆分别为外接球与内切球的大圆,注意到12AK GK =,6AG =,∴4GK =,∴M ,N 两点间距离的最大值为241)2GK r +=+=.四、解答题(第17题10分,第18-22题每题12分). 17.(本小题满分10分)(1)证明:在ABD △中,由正弦定理得:sin sin BA BDBDA BAD∠∠=即,sin sin BA BDABD BAD∠∠=2分因为()sin sin sin BDA BDC BDC ∠π∠∠=-=,所以,sin sin BA BDCBD BAD∠∠=又由已知sin 2sin BDC BAD ∠∠=所以,2BABD= 2BA BD = 4分设BD x =,则2BA x =,在BCD △中,由余弦定理得:2222cos BD BC CD BC CD BCD ∠=+-⋅即222cos x BCD ∠=-在ABC △中,由余弦定理得:2222cos AB BC AC BC AC BCA ∠=+-⋅即2454cos x BCD ∠=- 7分 解得:3cos 4BCA ∠=,sin BCA ∠∴=所以11sin 1222ABCSBC AC BCA =⋅⋅∠=⨯⨯=. 10分 18.(本小题满分12分)解:(1)11311141111n n n nnn na b a a b a a +++--==-- 2分()()313414n n a a -==- 111114b a =-=数列{}n b 为首项为114b =,公比为34等比数列 5分 (2)由(1)可得12311111111n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭13144314n⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭=-314n⎛⎫=- ⎪⎝⎭8分即1231111314nn n a a a a ⎛⎫++++-=- ⎪⎝⎭∴1231111314nn n a a a a ⎛⎫++++=+- ⎪⎝⎭10分 而314nn ⎛⎫+- ⎪⎝⎭随着n 的增大而增大要使1231111140n a a a a ++++>,即311404nn ⎛⎫+-> ⎪⎝⎭,则140n ≥ ∴n 的最小值为140. 12分 19.(本小题满分12分)解:记“这10所学校中随机选取2所学校参与“单板滑雪”的人数超过30人”为事件A ,“这10所学校中随机选取2所学校参与“自由式滑雪”的人数超过30人”为事件B则()26210C P A C =,()24210C P AB C =所以,()()()25P AB P B A P A ==∣. 4分 (2)X 的所有可能取值为0,1,2,3,参与“自由式滑雪”人数在40人以上的学校共4所,所以()034631020101206C C P X C ⋅====,()124631060111202C C P X C ⋅====, ()2146310363212010C C P X C ⋅====,()304631041312030C C P X C ⋅====, 所以X 的分布列如下表:所以()23210305E X =+⨯+⨯= 8分(3)记“小小明同学在一轮测试中要想获得“优秀””为事件C , 则()2332122033327P C C b ===+=, 由题意,小明同学在集训测试中获得“优秀”的次数服从二项分布20,27B n ⎛⎫ ⎪⎝⎭, 由题意列式20827n ≥,得545n ≥,因为*n N ∈,所以n 的最小值为11,故至少要进行11轮测试 12分 20.(本小题满分12分) (1)证明:依题意ABCD 矩形,4AB =,2BC =,E 是CD 中点分别在等腰直角三角形ADE 和BCE 求得AE BE ==,又4AB =,所以, 222AE BE AB +=AE BE ⊥ 2分因为,平面BEF ⊥平面ABCD 平面BEF 平面ABCD BE = 所以,AE ⊥平面BEF ,又BF ⊂平面BEF ,所以AE BF ⊥ 5分(2)以C 为原点,CD 所在直线为x 轴,CB 所在直线为y 轴,建立如图所示空间直角坐标系.则()0,0,0C ,()4,0,0D ,()0,2,0B ,()2,0,0E , 设N 是BE 的中点,FE FB =有FN BE ⊥, 又平面BEF ⊥平面ABCD .平面BEF平面ABCD BE =FN ∴⊥平面ABCD ,()1,1,2F 8分假设存在满足题意的λ,则由(01)DP DB λλ=<<. 可得,(43,12PF DB DF λλλ=-+=--. 设平面DEF 的一个法向量为(),,x y z =n ,则00DE DF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即2030x xy -=⎧⎪⎨-+=⎪⎩,令y =0x =,1z =-,即()1=-n 10分∴PF 与平面DEF 所成的角的正弦值sin cos ,||||PF PF PF θ⋅===nn n=解得34λ=(1λ=舍去) .综上,存在34λ=,使得PF 与平面ADE12分21.(本小题满分12分) 解(1)设()00,P x y ∴002AP y k x =+,直线AD 的方程为()0022y y x x =++, 令6x =,得0086,2y D x ⎛⎫⎪+⎝⎭,∴0000822622BDy x y k x +==-+, 2分 又∵002BPy k x =-,且2200142x y += ∴20002000221224BD BPy y y k k x x x ⋅=⋅==-+--, ∴PB BD ⊥, 4分(2)当直线PQ 不垂直x 轴时,设直线PQ 方程为y kx m =+,()11,P x y ,()22,Q x y 由方程组2224x y y kx m ⎧+=⎨=+⎩得()222124240k xkmx m +++-=()()222Δ(4)412240mk k m =-+⋅->,2242k m +>21212224241212km m x x x x k k --+=⋅=++ 6分由(1)可知,1BD BP k k ⋅=-1212122y yx x ⋅=--- ()121212240x x x x y y ⋅-++⋅+= 又()()()2212121212y y kx m kx m k x x km x x m ⋅=++=⋅+++,代入上式得:()()()2212121240k x x km x x m +⋅+-+++= 8分即:()()()2222222124401212m k km km m k k -+-⋅-++=++得到223840mmk k ++=23m k =-或2m k =-(舍去),10分 所以直线PQ 方程为23y k x ⎛⎫=- ⎪⎝⎭恒过2,03S ⎛⎫⎪⎝⎭,当PQ 垂直x 轴时,同样成立。

高三数学一卷模拟试卷答案

高三数学一卷模拟试卷答案

一、选择题(本大题共12小题,每小题5分,共60分)1. 若函数f(x) = ax^2 + bx + c在x=1时取得最小值,则a,b,c应满足的关系是()A. a > 0,b = 0,c任意B. a < 0,b = 0,c任意C. a > 0,b任意,c > 0D. a < 0,b任意,c > 0答案:B解析:因为f(x) = ax^2 + bx + c是一个二次函数,其顶点坐标为(-b/2a, f(-b/2a))。

当a < 0时,函数开口向下,顶点为最大值;当a > 0时,函数开口向上,顶点为最小值。

题目要求函数在x=1时取得最小值,所以a < 0,且因为顶点坐标x=-b/2a=1,所以b=-2a。

因此,b和c可以任意取值。

2. 下列各数中,有理数是()A. √2B. πC. 3.14D. -1/3答案:D解析:有理数是可以表示为两个整数比的数。

√2和π是无理数,3.14是π的近似值,而-1/3可以表示为两个整数的比,因此是有理数。

3. 已知等差数列{an}的首项a1=3,公差d=2,则第10项a10等于()A. 23B. 25C. 27D. 29答案:C解析:等差数列的通项公式为an = a1 + (n-1)d。

将a1=3,d=2,n=10代入公式,得到a10 = 3 + (10-1)2 = 3 + 18 = 21。

4. 已知函数y = x^2 - 4x + 4,其图像的对称轴是()A. x = -1B. x = 0C. x = 1D. x = 2答案:C解析:二次函数y = ax^2 + bx + c的对称轴是x = -b/2a。

将a=1,b=-4代入公式,得到对称轴x = -(-4)/21 = 1。

5. 若向量a = (2, 3),向量b = (4, 6),则向量a与向量b的夹角θ的余弦值cosθ等于()A. 1/2B. 1/4C. 1/3D. 1/5答案:A解析:向量a与向量b的夹角θ的余弦值可以通过点积公式计算:cosθ = (a·b) / (|a|·|b|)。

高三数学模拟试题及答案

高三数学模拟试题及答案

高三数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知函数f(x) = 2x^2 - 4x + 3,求f(2)的值。

A. 1B. 3C. 5D. 7答案:C2. 求下列数列的通项公式:数列:1, 1/2, 1/3, 1/4, ...A. a_n = nB. a_n = 1/nC. a_n = n^2D. a_n = 1/(n+1)答案:B3. 已知圆x^2 + y^2 = 9,点P(1, 2),求点P到圆心的距离。

A. 2B. 3C. 4D. 5答案:C4. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的夹角θ。

A. 30°B. 45°C. 60°D. 90°答案:B5. 已知函数y = x^3 - 3x^2 + 4x,求导数y'。

A. 3x^2 - 6x + 4B. 3x^2 - 6x + 5C. 3x^2 - 6x + 3D. 3x^2 - 6x + 2答案:A6. 已知等差数列的第5项为15,第8项为25,求公差d。

A. 2B. 3C. 4D. 5答案:B7. 已知三角形ABC的三边长分别为a = 3,b = 4,c = 5,求三角形ABC的面积。

A. 6B. 9C. 12D. 15答案:A8. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。

A. √2B. √3C. 2D. 1答案:A9. 已知复数z = 1 + i,求z的共轭复数。

A. 1 - iB. 1 + iC. -1 + iD. -1 - i答案:A10. 已知函数y = x^2 - 6x + 9,求函数的最小值。

A. 0B. 3C. 6D. 9答案:A二、填空题(本题共5小题,每小题4分,共20分。

)11. 已知函数f(x) = x^3 - 3x + 1,求f''(x)的值。

山东省烟台市2024高三冲刺(高考数学)统编版(五四制)模拟(综合卷)完整试卷

山东省烟台市2024高三冲刺(高考数学)统编版(五四制)模拟(综合卷)完整试卷

山东省烟台市2024高三冲刺(高考数学)统编版(五四制)模拟(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数是上的偶函数,且的图象关于点对称,当时,,则的值为()A.-2B.-1C.0D.1第(2)题等比数列的公比,其中为i虚数单位,若,则().A.B.C.D.第(3)题双曲线C:的焦距为4,焦点到C的一条渐近线的距离为1,则C的渐近线方程为()A.B.C.D.第(4)题若函数的部分图象如图所示,则下列选项可能正确的是()A.B.C.D.第(5)题为非零向量,满足,且,则()A.B.C.D.第(6)题费马原理是几何光学中的重要原理,可以推导出圆锥曲线的一些光学性质,如:点为椭圆(为焦点)上一点,则点处的切线平分外角.已知椭圆为坐标原点,是点处的切线,过左焦点作的垂线,垂足为,则为()A.B.2C.3D.第(7)题在各棱长均为1的正三棱柱中,、分别为、的中点,过、、三点的截面将三棱柱分成上下两部分,记体积较小部分的体积为,另一部分的体积为,则的值为()A.B.C.D.第(8)题从甲队60人、乙队40人中,按照分层抽样的方法从两队共抽取10人,进行一轮答题.相关统计情况如下:甲队答对题目的平均数为1,方差为1;乙队答对题目的平均数为1.5,方差为0.4,则这10人答对题目的方差为()A.0.8B.0.675C.0.74D.0.82二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题正方体绕直线旋转之后与其自身重合,则的值可以是()A.B.C.D.第(2)题画法几何的创始人——法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆,我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆.分别为椭圆的左、右焦点,直线的方程为,为椭圆的蒙日圆上一动点,分别与椭圆相切于两点,为坐标原点,下列说法正确的是()A.椭圆的蒙日圆方程为B.记点到直线的距离为,则的最小值为C.一矩形四条边与椭圆相切,则此矩形面积最大值为D.的面积的最小值为,最大值为第(3)题下列结论正确的是()A.一组数据7,8,8,9,11,13,15,17,20,22的第80百分位数为17B.若随机变量,满足,则C.若随机变量,且,则D.根据分类变量与的成对样本数据,计算得到.依据的独立性检验,可判断与有关三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知实数,满足,则的最小值是______.第(2)题若存在过点的直线与函数,的图象都相切,则_______.第(3)题已知集合A={0,1,2,3},B={x| x2-x-2<0},则A∩B=______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知双曲线的焦距为,点在C上.(1)求C的方程;(2)直线与C的右支交于两点,点与点关于轴对称,点在轴上的投影为.①求的取值范围;②求证:直线过点.第(2)题已知等差数列的公差为,前项和为,且满足_____.(从①②成等比数列;③,这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题)(1)求;(2)若,求数列的前项和.第(3)题如图,在三棱锥中,,点是的中点,点是的重心,点是上的点,且.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.第(4)题已知函数,曲线在处的切线与直线垂直.(1)求的值.(2)证明:当时,.第(5)题设(1)当,求函数的零点个数.(2)函数,若对任意,恒有,求实数的取值范围。

高三年级数学模拟测试卷一

高三年级数学模拟测试卷一

高三数学模拟考试试卷一第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|05A x x =≤≤,{}*|12B x N x =∈-≤,则A B =( )A .{}|13x x ≤≤B .{}|03x x ≤≤C .{}1,2,3D . {}0,1,2,32.设1sin()3πθ-=,则cos 2θ=( )A .B .79C .D .79-3.若z 是复数,121iz i-=+,则z z ⋅=( )A B C .52D .14.下列说法错误的是( ) A .回归直线过样本点的中心(,)x yB .两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1C .在回归直线方程0.20.8y x =+中,当解释变量x 每增加1个单位时,预报变量y 平均增加0.2个单位D .对分类变量X 与Y ,随机变量2K 的观测值k 越大,则判断“X 与Y 有关系”的把握程度越小 5.若定义在R 上的函数()f x 当且仅当存在有限个非零自变量x ,使得()()f x f x -=,则称()f x 为类偶函数,则下列函数中为类偶函数的是( ) A .()cos f x x =B .()sin f x x =C .2()2f x x x =-D .3()2f x x x =-6.已知三个向量a ,b ,c 共面,且均为单位向量,0a b ⋅=,则||a b c +-的取值范围是( )A .21,21⎡⎤-+⎣⎦B .1,2⎡⎤⎣⎦C .21,1⎡⎤-⎣⎦D .2,3⎡⎤⎣⎦7.某几何体的三视图如图所示(在如图的网格线中,每个 小正方形的边长为1),则该几何体的表面积为( ) A .48 B .54C .60D .648.已知函数()f x 的图象关于1x =-对称,且()f x 在(1,)-+∞上单调,若数列{}n a 是公差不为0的等差数列,且5051()()f a f a =,则{}n a 的前100项的和为( ) A .200- B .100- C .50-D .0二.多选题(每小题全部选对5分,部分选对3分,有选错的不得分)9. 直线a 的方向向量为a →,平面α,β的法向量分别为n →,m →,则下列命题为真命题的是( ) A.若a →⊥n →,则直线a//平面α B.若a →//n →,则直线a ⊥平面α C.若cos⟨a →,n →⟩=12,则直线a 与平面α所成角的大小为π6D.若cos⟨m →,n →⟩=12,则平面α,β的相交所成的锐角为π310. 在正方体ABCD −A 1B 1C 1D 1中,E ,F 分别是A 1D 1和C 1D 1的中点,则下列结论正确的是( ) A.A 1C 1//平面CEF B.B 1D ⊥平面CEFC.CE →=12DA →+DD 1→−DC →D.点D 与点B 1到平面CEF 的距离相等11. 已知抛物线E:x 2=2py (p >0)的焦点恰为圆C:x 2+(y −1)2=r 2(r >0)的圆心,抛物线E 的准线与圆C 相切,则下列结论正确的是( ) A.抛物线E 的标准方程为x 2=4y B.圆C 的标准方程为x 2+(y −1)2=4 C.圆C 与抛物线E 有三个交点D.圆C 与抛物线E 在第一象限的交点坐标为(2,1)12. 若函数f (x )={2x −a,x <1,4(x −a )(x −2a ),x ≥1恰有两个零点,则实数a 的取值可能为( )A.0B.12 C.2 D.3第Ⅱ卷(共90分)三、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知命题p :n N ∀∈,22n n <,则p ⌝为 . 14.若二项式⎝⎛⎭⎫2x +a x 7的展开式中1x3的系数是84,则实数a =( ) 15.已知1F 、2F 分别为双曲线22221x y a b-=(0a >,0b >)的左、右焦点,点P 为双曲线右支上一点,M 为12PF F ∆的内心,满足1212MPF MPF MF F S S S λ∆∆∆=+,若该双曲线的离心率为3,则λ= (注:1MPF S ∆、2MPF S ∆、12MF F S ∆分别为1MPF ∆、2MPF ∆、12MF F ∆的面积).16.已知等比数列{}n b 满足1132n n n a a -++=⋅,*n N ∈.设数列{}n a 的前n 项和为n S ,若不等式2n n S ka >-对一切*n N ∈恒成立,则实数k 的取值范围为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.在ABC ∆中,内角A ,B ,C 的对边分别是a ,b ,c ,且sin sin sin C a bA B a c+=--. (Ⅰ)求角B 的大小;(Ⅱ)点D 满足2BD BC =,且线段3AD =,求2a c +的最大值.18.在四棱锥S ABCD -中,底面ABCD 为平行四边形,60DBA ∠=︒,30SAD ∠=︒,23AD SD ==,4BA BS ==.(Ⅰ)证明:BD ⊥平面SAD ; (Ⅱ)求点C 到平面SAB 的距离.19.某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,以此类推,统计结果如表:停靠时间 2.5 3 3.5 4 4.5 5 5.5 6 轮船数量12121720151383(Ⅰ)设该月100艘轮船在该泊位的平均停靠时间为a 小时,求a 的值;(Ⅱ)假定某天只有甲、乙两艘轮船需要在该泊位停靠a 小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率.20.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望E(X)及方差D(X).21.已知椭圆C :2212x y +=的左顶点为A ,右焦点为F ,O 为原点,M ,N 是y 轴上的两个动点,且MF NF ⊥,直线AM 和AN 分别与椭圆C 交于E ,D 两点. (Ⅰ)求MFN ∆的面积的最小值; (Ⅱ)证明:E ,O ,D 三点共线.22.已知函数21()ln 2f x x x a x =-+,a R ∈. (Ⅰ)若函数()f x 为定义域上的单调函数,求实数a 的取值范围;(Ⅱ)当209a <<时,函数()f x 的两个极值点为1x ,2x ,且12x x <.证明:12()51ln 3123f x x >--.高三数学模拟考试试卷一答案1-5:CBCDD 6-8:ABC 9.BCD 10.AC 11.ABD 12。

高三数学综合试卷模拟题

高三数学综合试卷模拟题

一、选择题(每题5分,共50分)1. 已知函数f(x) = x^2 - 2x + 1,则f(3)的值为:A. 2B. 4C. 6D. 82. 下列各式中,能表示平面α上的点M(x, y, z)到原点O的距离的是:A. x^2 + y^2 + z^2B. x^2 - y^2 - z^2C. x^2 + y^2 - z^2D. x^2 - y^2 + z^23. 已知等差数列{an}的前n项和为Sn,且a1 + a2 + a3 = 12,a1 + a2 + a3 + a4 = 20,则数列{an}的公差d为:A. 2B. 3C. 4D. 54. 下列命题中,正确的是:A. 对于任意实数x,都有x^2 ≥ 0B. 函数y = |x|在R上单调递增C. 平面α与平面β相交,则直线l在平面α和平面β上D. 任意两个不共线的向量都存在唯一的实数λ使得λa + b = 05. 已知函数f(x) = x^3 - 3x + 2,则f(x)的对称中心为:A. (0, 2)B. (1, 0)C. (0, 0)D. (1, 2)6. 下列各式中,能表示平面α与平面β的夹角θ的余弦值的是:A. cosθ = |cosα - cosβ| / √(1 + cos^2α + cos^2β)B. cosθ = (cosα + cosβ) / √(1 + cos^2α + cos^2β)C. cosθ = (cosα - cosβ) / √(1 + cos^2α + cos^2β)D. cosθ = (cosα + cosβ) / √(1 - cos^2α - cos^2β)7. 已知等比数列{bn}的公比为q,且b1 + b2 + b3 = 27,b1 + b2 + b3 + b4 = 81,则q的值为:A. 2B. 3C. 4D. 58. 下列函数中,为奇函数的是:A. y = x^2B. y = x^3C. y = x^4D. y = x^59. 已知函数f(x) = (x - 1)(x - 2)(x - 3),则f(x)的零点个数为:A. 2B. 3C. 4D. 510. 下列各式中,能表示空间直线l与平面α所成角θ的正弦值的是:A. sinθ = |cosα - c osβ| / √(1 + cos^2α + cos^2β)B. sinθ = (cosα + cosβ) / √(1 + cos^2α + cos^2β)C. sinθ = (cosα - cosβ) / √(1 + cos^2α + cos^2β)D. sinθ = (cosα + cosβ) / √(1 - cos^2α - cos^2β)二、填空题(每题5分,共50分)1. 函数f(x) = (x - 1)^2 - 4在x=2时的值为______。

(完整版)高三数学模拟试题及答案

(完整版)高三数学模拟试题及答案

高三数学模拟试卷(满分150 分)一、选择题(每题 5 分,共 40 分)1.已知全集 U={1,2,3,4,5} ,会集 M ={1,2,3} , N = {3,4,5} ,则 M ∩ ( e U N)=()A. {1,2}B.{ 4,5}C.{ 3}D.{ 1,2,3,4,5} 2. 复数 z=i 2(1+i) 的虚部为()A. 1B. iC.- 1D. -i3.正项数列 { a } 成等比, a +a =3, a +a =12,则 a +a 的值是()n1 23445A. - 24B. 21C.24D. 484.一组合体三视图如右,正视图中正方形 边长为 2,俯视图为正三角形及内切圆, 则该组合体体积为()A.2 34B.3C.2 3 4 54 3 4 3+D.2735.双曲线以一正方形两极点为焦点,另两极点在双曲线上,则其离心率为( )A. 2 2B.2 +1C.2D. 1uuur uuur6. 在四边形 ABCD 中,“ AB =2 DC ”是“四边形ABCD 为梯形”的()A. 充足不用要条件B. 必要不充足条件C.充要条件D. 既不充足也不用要条件7.设 P 在 [0,5] 上随机地取值,求方程x 2+px+1=0 有实根的概率为( )A. 0.2B. 0.4C.0.5D.0.6y8. 已知函数 f(x)=Asin( ωx +φ)(x ∈ R, A>0, ω>0, |φ|<)5f(x)的解析式是(2的图象(部分)以下列图,则)A .f(x)=5sin( x+)B. f(x)=5sin(6 x-)O256 66xC. f(x)=5sin(x+)D. f(x)=5sin(3x- )366- 5二、填空题:(每题 5 分,共30 分)9. 直线 y=kx+1 与 A ( 1,0), B ( 1,1)对应线段有公共点,则 k 的取值范围是 _______. 10.记 (2x1)n 的张开式中第 m 项的系数为 b m ,若 b 32b 4 ,则 n =__________.x311 . 设 函 数 f ( x) xx 1x 1、 x 2、 x 3、 x 41 2的 四 个 零 点 分 别 为 , 则f ( x 1 +x 2 +x 3 +x 4 );12、设向量 a(1,2), b (2,3) ,若向量a b 与向量 c (4, 7)共线,则x 111. lim______ .x 1x 23x 414. 对任意实数 x 、 y ,定义运算 x* y=ax+by+cxy ,其中a、 b、c 常数,等号右的运算是平时意的加、乘运算 .已知 2*1=3 , 2*3=4 ,且有一个非零数m,使得任意数x,都有 x* m=2x, m=.三、解答:r r15.(本 10分)已知向量 a =(sin(+x), 3 cosx),b =(sin x,cosx),f(x)=⑴求 f( x)的最小正周期和增区;2⑵若是三角形 ABC 中,足 f(A)=3,求角 A 的.216.(本 10 分)如:直三棱柱(棱⊥底面)ABC — A 1B1C1中,∠ ACB =90°, AA 1=AC=1 , BC= 2,CD ⊥ AB, 垂足 D.C1⑴求: BC∥平面 AB 1C1;A1⑵求点 B 1到面 A 1CD 的距离 .PCA D r r a ·b .B 1B17.(本 10 分)旅游公司 4 个旅游供应 5 条旅游路,每个旅游任其中一条.( 1)求 4 个旅游互不一样样的路共有多少种方法;(2)求恰有 2 条路被中的概率 ;(3)求甲路旅游数的数学希望.18.(本 10 分)数列 { a n} 足 a1+2a2 +22a3+⋯+2n-1a n=4 n.⑴求通a n;⑵求数列 { a n} 的前 n 和S n.19.(本 12 分)已知函数f(x)=alnx+bx,且 f(1)= - 1, f′(1)=0 ,⑴求 f(x);⑵求 f(x)的最大;⑶若 x>0,y>0, 明: ln x+lny≤xy x y 3.220.(本 14 分) F 1, F 2 分 C :x2y 21(a b 0) 的左、右两个焦点,若 Ca 2b 2上的点 A(1,3124.)到 F , F 两点的距离之和等于2⑴写出 C 的方程和焦点坐 ;⑵ 点 P ( 1,1)的直 与 交于两点 D 、 E ,若 DP=PE ,求直 DE 的方程 ;4⑶ 点 Q ( 1,0)的直 与 交于两点 M 、N ,若△ OMN 面 获取最大,求直 MN 的方程 .21. (本 14 分) 任意正 数 a 1、 a 2、 ⋯ 、an ;求1/a 1+2/(a 1 +a 2)+⋯ +n/(a 1+a 2+⋯ +a n )<2 (1/a 1+1/a 2+⋯ +1/a n )9 高三数学模 答案一、 :. ACCD BAD A二、填空 :本 主要考 基 知 和基本运算.每小 4 分,共 16 分 .9.[-1,0] 10.5 11.19 12. 2 13.1 14. 35三、解答 :15.本 考 向量、二倍角和合成的三角函数的公式及三角函数性 ,要修业生能运用所学知 解决 .解:⑴ f(x)= sin xcosx+3 + 3 cos2x = sin(2x+ )+ 3⋯⋯⋯2 23 2 T=π, 2 k π - ≤ 2x+≤ 2 k π +, k ∈ Z,232最小正周期 π, 增区[ k π -5, k π + ], k ∈ Z.⋯⋯⋯⋯⋯⋯⋯⋯1212⑵由 sin(2A+ )=0 , <2A+ <7 ,⋯⋯⋯⋯⋯33 或533∴ 2A+ =π或 2π,∴ A=⋯⋯⋯⋯⋯⋯⋯⋯33616.、本 主要考 空 、 面的地址关系,考 空 距离角的 算,考 空 想象能力和推理、 能力, 同 也可考 学生灵便利用 形, 建立空 直角坐 系, 借助向量工具解决 的能力. ⑴ 明:直三棱柱ABC — A 1B 1C 1 中, BC ∥ B 1C 1,又 BC 平面 A B 1C 1,B 1C 1 平面 A B 1C 1,∴ B 1C 1∥平面 A B 1C 1;⋯⋯⋯⋯⋯⋯⑵(解法一)∵ CD ⊥ AB 且平面 ABB 1A 1⊥平面 AB C,C 11 1 1∴ CD ⊥平面 ABBA ,∴ CD ⊥AD 且 CD ⊥A D ,∴∠ A DA 是二面角 A 1— CD —A 的平面角,1A 1B 1在 Rt △ ABC,AC=1,BC= 2 ,PC∴ AB= 3 , 又 CD ⊥ AB ,∴ AC 2=AD × ABADB∴ AD=3, AA1131=1,∴∠ DA 1B 1=∠ A DA=60 °,∠ A 1 B 1A=30°,∴ A B 1 ⊥A D又 CD ⊥ A 1D ,∴ AB 1⊥平面 A 1CD , A 1D ∩ AB 1=P, ∴ B 1P 所求点 B 1 到面 A 1CD 的距离 . B P=A 1 B 1cos ∠ A 1 B 1A= 33cos30 =° .12即点 B 1 到面 A 1 CD 的距离 3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21 × 3 1 z ( 2)(解法二) 由 V B 1- A 1CD =V C - A 1B 1D =C 132×6 = 2,而 cos ∠ A 1 CD= 2 × 6 = 3 ,AB13 6 2 3 31△A 1CD1 ×2 ×6 ×6 =2,B 1 到平面CS=3 332A ByA 1CD 距离 h, 1×22, 得 h= 3所求 .Dx h=33 6 2⑶(解法三)分 以CA 、CB 、CC 1 所在直 x 、y 、z 建立空 直角坐 系(如 )A ( 1,0, 0), A 1( 1, 0, 1),C (0, 0, 0), C 1( 0, 0, 1),B (0,2 , 0), B 1( 0, 2 , 1),uuurr∴ D ( 2 , 2, 0) CB =( 0, 2 , 1), 平面 A 1CD 的法向量 n =( x , y , z ),3 31r uuur3n CD2x2y 0rruuur,取 n=( 1, -2 , - 1)n CA 1 x z 0r uuur点 B 1 到面 A 1CD 的距离d= n CB 13r⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯n217.本 主要考 排列,典型的失散型随机 量的概率 算和失散型随机 量分布列及希望等基 知 和基本运算能力.解:( 1) 4 个旅游 互不一样样的 路共有:A 54=120 种方法; ⋯(2)恰有两条 路被 中的概率 :P 2 C 52 (2 42) 28=54⋯125(3) 甲 路旅游 数ξ, ξ~ B(4, 1)14⋯⋯⋯⋯⋯⋯ 5∴希望 E ξ=np=4×=5 5答 : ( 1) 路共有120 种,(2)恰有两条 路被 中的概率 0.224, ( 3)所求希望 0.8 个数 .⋯⋯⋯⋯⋯⋯⋯⋯⋯18.本 主要考 数列的基 知 ,考 分 的数学思想,考 考生 合 用所学知 造性解决 的能力.解:( 1) a 1+2 a 2+22a 3+⋯ +2n - 1a n =4n ,∴ a 1+2 a 2+22a 3+⋯ +2n a n+1=4n+1,相减得 2n a n+1=3× 4n , ∴ a n+1=3× 2n ,4(n1) 又 n=1 a 1=4,∴ 上 a n =2n 1所求;⋯⋯⋯⋯⋯⋯⋯⋯⋯3(n 2)⑵ n ≥2 , S n=4+3(2 n- 2), 又 n=1 S 1=4 也建立, ∴ S n =3× 2 n - 2⋯⋯⋯⋯⋯⋯ 12 分19.本 主要考 函数、 数的基本知 、函数性 的 理以及不等式的 合 ,同 考 考生用函数放 的方法 明不等式的能力.解:⑴由 b= f(1)= - 1, f ′(1)= a+b=0, ∴ a=1, ∴f(x)=ln x- x 所求; ⋯⋯⋯⋯⋯⑵∵ x>0,f ′(x)=1- 1=1x ,xxx 0<x<1x=1 x>1 f (′x) +0 - f(x)↗极大↘∴ f (x)在 x=1 获取极大 - 1,即所求最大 - 1; ⋯⋯⋯⋯⋯⑶由⑵得 lnx ≤x- 1 恒建立, ∴ln x+ln y=ln xy+ ln x ln y ≤ xy 1 + x 1 y 1 = xy x y 3建立⋯⋯⋯22 22220.本 考 解析几何的基本思想和方法,求曲 方程及曲 性 理的方法要求考生能正确分析 , 找 好的解 方向, 同 兼 考 算理和 推理的能力, 要求 代数式合理演 ,正确解析最 .解:⑴ C 的焦点在 x 上,由 上的点A 到 F 1、F 2 两点的距离之和是 4,得 2a= 4,即 a=2 .;3134 1.得 b 2=1,于是 c 2=3 ;又点 A(1,) 在 上,因此222b 2因此 C 的方程x 2y 2 1,焦点 F 1 ( 3,0), F 2 ( 3,0). ,⋯⋯⋯4⑵∵ P 在 内,∴直DE 与 订交,∴ D( x 1,y 1),E(x 2,y 2),代入 C 的方程得x 12+4y 12- 4=0, x 22+4y 22- 4=0,相减得 2(x 1- x 2 )+4× 2× 1 (y 1- y 2)=0 , ∴斜率 k=-11 4∴ DE 方程 y- 1= - 1(x-), 即 4x+4y=5; ⋯⋯⋯4(Ⅲ )直 MN 不与 y 垂直,∴MN 方程 my=x- 1,代入 C 的方程得( m 2+4) y 2+2my- 3=0,M( x 1,y 1 ),N( x 2 ,y 2), y 1+y 2=-2m 3 ,且△ >0 建立 .m 2 4, y 1y 2=-m 2 4又 S △ OMN = 1|y 1- y 2|= 1 ×4m212(m 24) = 2 m23, t=m 2 3 ≥ 3 ,2 2m 2 4m 24S△OMN =2,(t+1t1tt ) ′=1 - t-2>0t≥ 3 恒建立,∴t=3t+1获取最小, S△OMN最大,t此 m=0, ∴ MN 方程 x=1⋯⋯⋯⋯⋯。

2024—2025学年广东省广州市天河中学高三上学期综合模拟测试(一)数学试卷

2024—2025学年广东省广州市天河中学高三上学期综合模拟测试(一)数学试卷

2024—2025学年广东省广州市天河中学高三上学期综合模拟测试(一)数学试卷一、单选题(★) 1. 已知集合,,则()A.B.C.D.(★★) 2. 已知复数满足,则复数对应的点在第()象限A.一B.二C.三D.四(★★) 3. 已知的展开式中所有项的二项式系数之和为32,则的展开式中的系数为()A.B.C.10D.20(★★) 4. 若角的终边过点,则()A.B.C.D.(★★) 5. 已知:不等式的解集为,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(★★) 6. 双曲线x2-=1的渐近线与圆x2+( y-4) 2=r2( r>0)相切,则r=()A.B.C.D.(★★★) 7. 下列说法中,正确的命题是()A.已知随机变量X服从正态分布,则B.线性相关系数r越大,两个变量的线性相关性越强,反之,线性相关性越弱C.已知两个变量具有线性相关关系,其回归方程为,若,则D.若样本数据的方差为8,则数据的方差为2(★★★) 8. 已知函数,若方程有3个不同的实根,则实数m取值范围值是()A.B.C.D.二、多选题(★★★) 9. 已知一组数据,,…,是公差不为0的等差数列,若去掉数据,则()A.中位数不变B.平均数变小C.方差变大D.方差变小(★★★) 10. 在正方体中,点分别是和的中点,则()A.B.与所成角为C.平面D.与平面所成角为(★★★★) 11. 设,,且,则下列关系式可能成立的是()A.B.C.D.三、填空题(★) 12. 如图,矩形中,,E是的中点,则_________ .(★★★) 13. 若直线l既和曲线相切,又和曲线相切,则称l为曲线和的公切线.已知曲线和曲线,请写出曲线和的一条公切线方程: ______ .(★★★★) 14. 已知椭圆的左、右焦点分别为,,以线段为直径的圆与C在第一、第三象限分别交于点A,B,若,则C的离心率的最大值是 ______ .四、解答题(★★) 15. 记的内角的对边分别为,,,已知为锐角,且.(1)求角的大小;(2)若,,求的面积.(★★★) 16. 已知函数.(1)当时,求的极值;(2)当时,不等式恒成立,求a的取值范围.(★★★) 17. 如图,三棱柱的底面是等腰直角三角形,,侧面是菱形,,平面平面.(1)证明:;(2)求点到平面的距离.(★★★★★) 18. 已知在曲线,直线交曲线C于A,B两点.(点A在第一象限)(1)求曲线C的方程;(2)若过且与l垂直的直线与曲线C交于C,D两点;(点C在第一象限)(ⅰ)求四边形ACBD面积的最小值.(ⅱ)设AB,CD的中点分别为P,Q,求证:直线PQ过定点.(★★★★) 19. 在三维空间中,立方体的坐标可用三维坐标表示,其中,而在维空间中,以单位长度为边长的“立方体”的顶点坐标可表示为维坐标,其中.现有如下定义:在维空间中两点间的曼哈顿距离为两点与坐标差的绝对值之和,即为.回答下列问题:(1)求出维“立方体”的顶点数;(2)在维“立方体”中任取两个不同顶点,记随机变量为所取两点间的曼哈顿距离.①求的分布列与期望;②求的方差.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学综合模拟试卷 (一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。

第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题意要求的.1. 已知映射B A f →:,其中R B A ==,对应法则,:222+-=→x x y x f 若对实数B k ∈,在集合A 中不存在原象,则k 的取值范围是 ( )A.1≤k B.1<k C.1≥k D.1>k 2. ()()3511x x +⋅-的展开式中3x 的系数为 ( )A. 6-B. 6C. 9-D.93. 在等差数列{}n a 中,若4681012120a a a a a ++++=,则91113a a -的值为 ( )A. 14B. 15C. 16D. 174. 已知3sin()45x π-=,则sin 2x 的值为 ( ) A. 1925 B. 1625 C. 1425D. 7255. 设地球的半径为R ,若甲地位于北纬45︒东经120︒,乙地位于南纬75︒东经120︒,则甲、乙两地的球面距离为 ( )A.B. 6RπC. 56R πD. 23R π6. 若c b a 、、是常数,则“0402<->c a b a 且”是“对任意R ∈x ,有02>++c x b x a ”的 ( )A. 充分不必要条件.B. 必要不充分条件.C. 充要条件.D. 既不充分也不必要条件.7. 双曲线200822=-y x 的左、右顶点分别为1A 、2A ,P 为其右支上一点,且21214A PA PA A ∠=∠,则21A PA ∠等于 ( )A. 无法确定B. 36πC. 18πD.12π8. 已知直线01=-+by ax (b a ,不全为0)与圆5022=+y x 有公共点,且公共点的横、纵坐标均为整数,那么这样的直线有 ( )A. 66条B. 72条C. 74条D. 78条9. 从8名女生,4名男生中选出6名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法种数为 ( )A. 4284C C ⋅B. 3384C C ⋅C. 612CD. 4284A A ⋅10. (理科做) 2211(1)(1)i ii i -++=+- ( ) A. i B. i - C. 1 D. 1-(文科做)如图,函数)(x f y =的图象是中心在原点,焦点在x 轴上的椭圆的两段弧,则不等式x x f x f +-<)()(的解集为 ( )A.{}22,02|≤<<<-x x x 或B.{}22,22|≤<-<≤-x x x 或C.⎭⎬⎫≤<⎩⎨⎧-<≤-222,222|x x x 或 D.{}0,22|≠<<-x x x 且则在第 行第 列. A. 第 251 行第 3 列B. 第 250 行第 4 列C. 第 250 行第 3 列D. 第 251 行第 4 列12. 半径为4的球面上有A 、B 、C 、D 四点,且AB ,AC ,AD 两两互相垂直,则ABC ∆、ACD ∆、ADB ∆面积之和ABC ACD ADB S S S ∆∆∆++的最大值为( )A. 8B. 16C. 32D. 64第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分。

把答案填在答题卡相应位置。

13. (理科做)2222lim __________(1)n n n n C C n -→∞+=+(文科做)命题“若b a ,都是偶数,则b a +是偶数”的否命题是_________14. 函数y =的定义域是 .15. 定义一种运算“*”对于正整数满足以下运算性质:(1)220061*=;(2)(22)20063[(2)2006]n n +*=⋅*,则20082006*的值是 16. 如果直线1+=kx y 与圆0422=-+++my kx y x 相交于N M 、两点,且点N M 、关于直线0=+y x 对称,则不等式组⎪⎩⎪⎨⎧≥≤-≥+-0001y my kx y kx 所表示的平面区域的面积为________.三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分12分,第一、第二、第三小问满分各4分) 已知函数1()lg1x f x x -=+.(1)求()f x 的定义域; (2)求该函数的反函数1()f x -;(3)判断1()fx -的奇偶性.18. (本小题满分12分,第一、第二小问满分各6分)某港口水的深度 y (米)是时间t (024t ≤≤,经长期观察,y =f (t )的曲线可以近似地看成函数的图象. (Ⅰ)试根据以上数据,求出函数)(t f y =的近似表达式;(Ⅱ)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可),某船吃水深度(船底离水面的距离)为6.5米.如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需的时间).19. (文科做本小题满分12分,第一、第二小问满分各6分)已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为13,某植物研究所分两个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.(1)第一小组做了三次实验,求至少两次实验成功的概率;(2)第二小组进行试验,到成功了4次为止,求在第四次成功之前共有三次失败,且恰有两次连续失败的概率.(理科做本小题满分12分第一、第二小问满分各6分)某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.(Ⅰ)求ξ的分布及数学期望;(Ⅱ)记“函数f (x )=x 2-3ξx +1在区间[2,+∞)上单调递增”为事件A ,求事件A 的概率. (本小题满分12分,第一、第二小问满分各6分)如图,在斜三棱柱ABC -A 1B 1C 1中,侧面AA 1B 1B ⊥底面ABC ,侧棱AA 1与底面ABC 成60°的角,AA 1= 2. 底面ABC 是边长为2的正三角形,其重心为G 点。

E 是线段BC 1上一点,且BE=31BC 1 .(1)求证: GE ∥侧面AA 1B 1B ;(2)求平面B 1GE 与底面ABC 所成锐二面角的大小.21. (本小题满分14分,第一小问满分4分,第二、第三小问满分各5分)设函数d cx bx ax x f 42)(23++-=(a 、b 、c 、d ∈R )图象关于原点对称,且x =1时,)(x f 取极小值.32-(1)求a 、b 、c 、d 的值;(2)当]1,1[-∈x 时,图象上是否存在两点,使得过此两点处的切线互相垂直?试证明你的结论; (3)若]1,1[,21-∈x x 时,求证:34|)()(|21≤-x f x f .22. (本小题满分12分,第一、第二小问满分各6分)过抛物线22(y px p =>0)的对称轴上的定点(,0)(0)M m m >,作直线AB 与抛物线相交于,A B 两点.(1)试证明,A B 两点的纵坐标之积为定值;(2)若点N 是定直线:l x m =-上的任一点,试探索三条直线,,AN MN BN 的斜率之间的关系,并给出证明.高三数学综合模拟试卷 (一)参考答案1. B提示:设k x x =+-222,据题意知此方程应无实根()()02422<-⋅--=∆∴k , 1021<⇔<+-k k ,故选B2. B提示:()()()()()[]323511111x x x x x +-⋅-=+⋅-∴展开式中3x 的系数为()()632=-⋅- 故选B3. C提示:设等差数列{}n a 的公差为d , 由等差数列的性质知:88512024a a =∴=∴91199119891132()2()2122416333333a a a a a a d a a a -+--⨯-======,选C.4. D提示:由已知得3sin )5x x -=,两边平方得19(1sin 2)225x -=,求得7sin 225x =. 或令4x π-=α,则3sin 5=α,所以27sin 2sin(2)cos212sin 225x π=-==-=ααα 5. D提示:求两点间的球面距离,先要求出球心与这两点所成的圆心角的大小,∠A O B =1∴ A 、B 两点间的球面距离为31×2πR =23Rπ. 选D.6. A提示:易知0402<->c a b a 且⇒02>++c x b x a 对任意R ∈x 恒成立。

反之,02>++c x b x a 对任意R ∈x 恒成立不能推出0402<->c a b a 且 反例为当00a b c ==>且时也有02>++c x b x a 对任意R ∈x 恒成立 “0402<->c a b a 且”是“对任意R ∈x ,有02>++c x b x a 的充分不必要条件,选A.7. D提示:设),(y x P ,0>y ,过点P 作x 轴的垂线PH ,垂足为H ,则,tan 1a x y H PA +=∠ a x y H PA -=∠2tan ( 其中20082=a )设 x A PA =∠21 , 则x H PA 52=∠ ∴25π=+x x ∴12π=x , 即1221π=∠A PA , 故选 D.8. B提示:先考虑0,0≥≥y x 时,圆上横、纵坐标均为整数的点有)7,1(、)5,5(、)1,7(,依圆的对称性知,圆上共有1243=⨯个点的横纵坐标均为整数,经过其中任意两点的割线有66212=C 条,过每一点的切线共有12条,又考虑到直线01=-+by ax 不经过原点,而上述直线中经过原点的有6条,所以满足题意的直线共有7261266=-+条,故选B. 9. A提示:应从8名女生中选出4人,4名男生中选出2人,有4284C C ⋅种选法,故选A.10.(理科做) D提示:()()221111iii i -++=+-111112222i i i i i i -+---++=+=-- 故选D.(文科做)A提示:由图象知)(x f 为奇函数,故)()(x f x f -=-∴原不等式可化为2)(x x f <,此不等式的几何含义是)(x f 的图象在2)(xx g =图象下方的对应的x 的取值集合,将椭圆1422=+y x 与直线2x y =联立得 14422=+x x ,2,22±==∴x x .观察图象知,2202≤<<<-x x 或故选A.11. D提示: 每行用去4个偶数,而是第÷2=1003个偶数 又1003÷4=43250前250行共用去250×4=1000个偶数,剩下的3个偶数放入251行,考虑到奇数行所排数从左到右由小到大,且前空一格,∴在251行,第4列 故选D.12. C提示:由AB ,AC ,AD 两两互相垂直,将之补成长方体知AB 2+AC 2+AD 2=(2R )2=64.≤222222444AB AC AC AD AD AB +++++=222322AB AC AD ++=.等号当且仅当AB AC AD ==取得,所以ABC ACD ADB S S S ∆∆∆++的最大值为32 ,选C.13. (理科做) 32提示:2222(1)3232lim lim (1)(1)2n n n n n n n C C n n -→∞→∞-⋅+==++ (文科做) 若b a ,不都是偶数,则b a +不是偶数 14. (lg2,+∞)提示:由已知得0210>-x ,即0210>-x,所以2lg >x .15. 10033提示:设(2)2006n n a *= 则1(22)2006n n a ++*=且11a =13n n a a +∴= 13n n a -∴=, 即1(2)20063n n -*=,1003200820063∴*= 16. 41提示: N M 、两点,关于直线0=+y x 对称,1=∴k ,又圆心)2,2(m k --在直线0=+y x 上∴原不等式组变为⎪⎩⎪⎨⎧≥≤+≥+-0001y y x y x 作出不等式组表示的平面区域并计算得面积为41.17. 解:(1)10,1 1.1xx x ->-<<+由得故函数的定义域是(-1,1)(2)由1lg 1x y x -=+,得1101yx x -=+(y ∈R ),所以110110y y x -=+, 所求反函数为1()f x -=110110xx-+ (x ∈R ).(3) 1()f x --=110110x x ---+=101110x x -+=-1()f x -,所以1()f x -是奇函数. 18. 解:(Ⅰ)由已知数据,易知函数y =f (t )的周期T =12,振幅A =3, b =10 ∴106sin3+=ty π(0≤t ≤24)(Ⅱ)由题意,该船进出港时,水深应不小于5+6.5=11.5(米)∴511106 sin3.t≥+π ∴6 sin t π21≥解得,Z)(k 652662∈+≤≤+πππππk t k在同一天内,取k =0或1 ∴1≤t ≤5或13≤t ≤17∴该船最早能在凌晨1时进港,下午17时出港,在港口内最多停留16个小时。

相关文档
最新文档