1.2 排列与组合
高中数学排列组合

1、排列定义
一般地,从n个不同元素中取出m(m≤n) 个元素按照一定顺序排成一列,叫做从n个不同 元素中取出m个元素的一个排列.
排列的定义中包含两个基本内容: 一是“取出元素”;二是“按照一定顺序排列”.“一定 顺序”就是与位置有关,这也是判断一个问题是不是排列问 题的重要标志.
根据排列的定义,两个排列相同,当且仅当这两个排 列的元素完全相同,而且元素的排列顺序也完全相同.
思考 上述问题1,2 的共同特点是什么?你能将它 们推广到一般情形吗?
一般地,从n个不同的元素中取出m(m n)个元素, 按 照 一 定 顺 序 排 成 一 列,叫 做 从n个 不 同 元 素 中 取
出m个元素的一个排列 (arrangement).
思考 你能归纳一下排列的特征吗?
根据排列的定义,两个排列相同,当且仅当两个排 列的元素完全相同,且元素的排列顺序也相同.例 如在问题2中,123与134的元素不完全相同,它们 是 不 同 的 排 列;123与132虽 然 元 素 完 全 相 同, 但 元 素的排列顺序不同,它们也是不同的排列.
(5)20位同学互通一次电话 (6)20位同学互通一封信
(7)以圆上的10个点为端点作弦 (8)以圆上的10个点中的某一点为起点,作 过另一个点的射线
(9)有10个车站,共需要多少种车票? (10)有10个车站,共需要多少种不同的票价?
例2.某年全国足球甲级 A组 联赛有14
个队参加, 每队要与其余各队在主、客场 分别比赛一次, 共进行多少场比赛?
nn
1n
2 n n m
m 1n
2 1
m
2
1
n! nm!
A
n n
A nm nm
.
1.2排列与组合.doc

Cm nm1
.
例 8.从 A {1, 2,, n} 中能够出取多少个长为 m 的递增序列 a1, a2,, am ,使得
ai1 ai k 1(其中 k 0 , i 1, 2,, m 1 ).
求解本例之前,我们先来看两个特例:
(1)设 n 5, m 2, k 1 ,就是从集合{1, 2,3, 4,5}中取 2 个元素的组合,使得每一个 组合中的两数之差至少是 k 1 2,有如下 6 个递增序列:
出场顺序有多少种?
解:分两步进行第一步排
2
个相声和
3
个独唱共有
A
5 5
种,第二步将
4
舞蹈插入第一步排好的
6
个元素中间包含首尾两个空位共有种
A
4 6
不同的方法,由分步计数原理,节目的不同顺序
共有
A
5 5
A
4 6
种.
评注:元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两 端.
2.1 无重复的组合
被淘汰的是胜方的队员,可见此时所有可能的不同比赛过程的种数是
C k 1 k 5
,即
Sk
C k 1 k 5
,
k
1, 2,, 7.
所以,所有可能出现的不同的比赛过程的种数是
2(C60 C71 C82 C162 )=2C173 3432.
以上解答是通过利用组合模型并结合基本计数原理来完成的. 下面我们再来从另外一个角度考虑这一问题,并从中引出一种其它的计数模型来.
18
队员才获胜的所有可能出现的比赛过程的种数 Sk .下面我们就来讨论 Sk 的求法.
解法 1:既然胜方动用了 k (1 k 7 )名队员才淘汰负方的全部 7 名队员,而双方队 员上场的顺序又都是事先排定的,所以负方的 7 号队员一定是被胜方的 k 号队员淘汰的.而 在此之前,负方已被淘汰了 6 名队员,胜方被淘汰了 k 1名队员.由于每一回合只淘汰且必 淘汰一名队员,因此在此之前就已比赛了 6 k 1 k 5 个回合,且其中有 k 1个回合中
高中数学 1.2.2 组合1课件 新人教A版必修1

Anm
Cnm Am m
C
m n
Anm Amm
形成结论
公式
C n m
A n m A m m
n (n1 )(n2 ) (nm1 ) m !
( m,n∈N*,m≤n) 叫做组合数公式,
这个公式如何用阶乘形式表示?
Cnm
n! m!(n m)!
典例讲评
例1 一位教练的足球队共有17名初级学 员,他们中以前没有一人参加过比赛,按 照足球比赛规则,比赛时一个足球队的上 场队员是11人,问: (1)这位教练从这17名学员中可以形成多
m
时n ,计算
2
C比nn计m算 较方C 便nm .
课堂小结
2.利用组合数性质
Cn m1 Cn m,可C 以n m对1组合数进行合成
与分解,对于组合数的求和问题,要结 合数列的思想方法求解.
作业: P25练习:6. P27习题1.2A组:9,10,11,12.
C
2 10
45
A120 90
典例讲评
例3 在100件产品中有98件合格品, 2 件次品,从这100件产品中任意抽取3件. (1)有多少种不同的抽法? (2)抽出的3件中恰有1件是次品的抽法 有多少种? (3)抽出的3件至少有1件是次品的抽法 有多少种?
(1)C1300 161700(2)C2 1 C9 28 9506
C 2 2 0
(2 ) C n 32
2 C n 22
C n 1 2 . C
3 n
典例讲评
例5 证明:
C n 1 2 C n 2 3 C n 3 C n 0 C n 1 C n 2
n C n n C n n1Leabharlann C n 21课堂小结
高中数学 第一章 计数原理 1.2 排列与组合 1.2.2 组合(第2课时)教案 新人教A版选修2-

1.2.2 组合第二课时教学目标知识与技能了解组合数的性质,会利用组合数的性质简化组合数的运算;能把一些计数问题抽象为组合问题解决,会利用组合数公式及其性质求解计数问题.过程与方法通过具体实例,经历把具体事例抽象为组合问题,利用组合数公式求解的过程.情感、态度与价值观能运用组合要领分析简单的实际问题,提高分析问题的能力.重点难点教学重点:组合数的性质、利用组合数公式和性质求解相关计数问题.教学难点:利用组合数公式和性质求解相关计数问题.教学过程引入新课提出问题1:判断以下问题哪个是排列问题,哪个是组合问题,并回顾排列和组合的区别和联系.(1)从A、B、C、D四个景点选出2个进行游览;(2)从甲、乙、丙、丁四个学生中选出2个人担任班长和团支部书记.活动设计:教师提问.活动成果:(1)是组合问题,(2)是排列问题.1.组合的概念:一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n 个不同元素中取出m个元素的一个组合.2.组合与排列的区别和联系:(1)区别:①排列有顺序,组合无顺序.②相同的组合只需选出的元素相同,相同的排列那么需选出的元素相同,并且选出元素的顺序相同.(2)联系:①都是从n个不同的元素中选出m(m≤n)个元素;②排列可以看成先组合再全排列.设计意图:复习组合的概念,检查学生的掌握情况.提出问题2:利用上节课所学组合数公式,完成以下两个练习: 练习1:求证:C m n =n m C m -1n -1.(本式也可变形为:mC m n =nC m -1n -1)练习2:计算:①C 310和C 710;②C 37-C 26与C 36;③C 411+C 511. 活动设计:学生板演.活动成果:练习2答案:①120,120 ②20,20 ③792.1.组合数的概念:从n 个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号C mn 表示.2.组合数的公式:C m n=A mn A m m =n(n -1)(n -2)…(n -m +1)m !或C mn =n !m !(n -m)!(n ,m∈N ,且m≤n).设计意图:复习组合数公式,为得到组合数的性质打下基础.探索新知提出问题1:由问题2练习中所求的几个组合数,你有没有发现一些规律,能不能总结并证明一下?活动设计:小组交流后请不同的同学总结补充. 活动成果:1.性质:(1)C mn =C n -mn ;(2)C mn +1=C mn +C m -1n .2.证明:(1)∵C n -mn =n !(n -m)![n -(n -m)]!=n !m !(n -m)!,又C mn =n !m !(n -m)!,∴C m n =C n -mn .(2)C m n +C m -1n =n !m !(n -m)!+n !(m -1)![n -(m -1)]!=n !(n -m +1)+n !m m !(n -m +1)!=(n -m +1+m)n !m !(n -m +1)!=(n +1)!m !(n -m +1)!=C mn +1,∴C mn +1=C mn +C m -1n .设计意图:引导学生自己推导出组合数的两个性质.运用新知类型一:组合数的性质 1(1)计算:C 37+C 47+C 58+C 69; (2)求证:C nm +2=C nm +2C n -1m +C n -2m .(1)解:原式=C 48+C 58+C 69=C 59+C 69=C 610=C 410=210;(2)证明:右边=(C nm +C n -1m )+(C n -1m +C n -2m )=C nm +1+C n -1m +1=C nm +2=左边. [巩固练习]求证:C 1n +2C 2n +3C 3n +…+nC nn =n2n -1.证明:左边=C 1n +2C 2n +3C 3n +…+nC nn =C 11C 1n +C 12C 2n +C 13C 3n +…+C 1n C nn ,其中C 1i C in 可表示先在n 个元素里选i 个,再从i 个元素里选一个的组合数.设某班有n 个同学,选出假设干人(至少1人)组成兴趣小组,并指定一人为组长.把这种选法按取到的人数i 分类(i =1,2,…,n),那么选法总数即为原式左边.现换一种选法,先选组长,有n 种选法,再决定剩下的n -1人是否参加,每人都有两种可能,所以组员的选法有2n -1种,所以选法总数为n2n -1种.显然,两种选法是一致的,故左边=右边,等式成立.[变练演编]求证:C 1n +22C 2n +32C 3n +…+n 2C nn =n(n +1)2n -2.证明:由于i 2C in =C 1i C 1i C in 可表示先在n 个元素里选i 个,再从i 个元素里选两个(可重复)的组合数,所以原式左端可看成在上题中指定一人为组长的基础上,再指定一人为副组长(可兼职)的组合数.对原式右端我们可分为组长和副组长是否是同一个人两种情况.假设组长和副组长是同一个人,那么有n2n -1种选法;假设组长和副组长不是同一个人,那么有n(n-1)2n -2种选法.∴共有n2n -1+n(n -1)2n -2=n(n +1)2n -2种选法.显然,两种选法是一致的,故左边=右边,等式成立.类型二:有约束条件的组合问题2在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件. (1)有多少种不同的抽法?(2)抽出的3件中恰好有1件是次品的抽法有多少种? (3)抽出的3件中至少有1件是次品的抽法有多少种?解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,所以共有 C 3100=100×99×981×2×3=161 700种.(2)从2件次品中抽出1件次品的抽法有C 12种,从98件合格品中抽出2件合格品的抽法有C 298种,因此抽出的3件中恰好有1件次品的抽法有C 12×C 298=9 506种.(3)解法1 从100件产品抽出的3件中至少有1件是次品,包括有1件次品和有2件次品两种情况.在第(2)小题中已求得其中1件是次品的抽法有C 12×C 298种,因此根据分类加法计数原理,抽出的3件中至少有一件是次品的抽法有C 12×C 298+C 22×C 198=9 604种.解法2抽出的3件产品中至少有1件是次品的抽法的种数,也就是从100件中抽出3件的抽法种数减去3件中都是合格品的抽法的种数,即C 3100-C 398=161 700-152 096=9 604种.点评:“至少〞“至多〞的问题,通常用分类法或间接法求解. [巩固练习]1.4名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女,分别有C 34,C 24×C 16,C 14×C 26种方法,所以,一共有C 34+C 24×C 16+C 14×C 26=100种方法. 解法二:(间接法)C 310-C 36=100.2.按以下条件,从12人中选出5人,有多少种不同选法? (1)甲、乙、丙三人必须当选; (2)甲、乙、丙三人不能当选; (3)甲必须当选,乙、丙不能当选; (4)甲、乙、丙三人只有一人当选; (5)甲、乙、丙三人至多2人当选;(6)甲、乙、丙三人至少1人当选;解:(1)C 33C 29=36;(2)C 03C 59=126;(3)C 11C 49=126;(4)C 13C 49=378; (5)方法一:(直接法)C 03C 59+C 13C 49+C 23C 39=756, 方法二:(间接法)C 512-C 33C 29=756;(6)方法一:(直接法)C 13C 49+C 23C 39+C 33C 29=666, 方法二:(间接法)C 512-C 03C 59=666. [变练演编]有翻译人员11名,其中5名精通英语、4名精通法语,还有2名英、法语皆通.现欲从中选出8名,其中4名译英语,另外4名译法语,一共可列多少X 不同的?解:分三类:第一类:2名英、法语皆通的均不选,有C 45C 44=5种;第二类:2名英、法语皆通的选一名,有C 12C 35C 44+C 12C 45C 34=60种; 第三类:2名英、法语皆通的均选,有A 22C 35C 34+C 25C 44+C 45C 24=120种. 根据分类加法计数原理,共有5+60+120=185种不同的. [达标检测]1.计算:(1)C 399+C 299;(2)2C 38-C 39+C 28.2.从6位同学中选出4位参加一个座谈会,要求X 、王两人中至多有一个人参加,那么有不同的选法种数为________.3.从7人中选出3人参加活动,那么甲、乙两人不都入选的不同选法共有______种. 答案:课堂小结1.知识收获:组合数的性质,用组合数公式解决简单的计数问题. 2.方法收获:化归的思想方法. 3.思维收获:化归的思想方法.补充练习[基础练习]1.求证:(1)C mn +1=C m -1n +C mn -1+C m -1n -1;(2)C m +1n +C m -1n +2C mn =C m +1n +2.2.某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有______.3.100件产品中有合格品90件,次品10件,现从中抽取4件检查.(1)都不是次品的取法有多少种?(2)至少有1件次品的取法有多少种?(3)不都是次品的取法有多少种?4.从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,那么一共有多少种不同的取法?38=56;3.解:(1)C490=2 555 190;(2)C4100-C490=C110C390+C210C290+C310C190+C410=1 366 035;(3)C4100-C410=C190C310+C290C210+C390C110+C490=3 921 015.4.解:分为三类:1奇4偶有C16C45;3奇2偶有C36C25;5奇有C56,所以一共有C16C45+C36C25+C56=236种不同的取法.[拓展练习]现有8名青年,其中有5名能胜任英语翻译工作;有4名能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,那么有多少种不同的选法?解:我们可以分为三类:①让两项工作都能担任的青年从事英语翻译工作,有C24C23;②让两项工作都能担任的青年从事德语翻译工作,有C34C13;③让两项工作都能担任的青年不从事任何工作,有C34C23.所以一共有C24C23+C34C13+C34C23=42种方法.设计说明本节课是组合的第二课时,本节课的主要目标有两个,一个是学生在教师的问题驱动下自主探究组合数的性质,并在老师的带领下,体会组合数公式的应用;另一个是体会把具体计数问题化归为组合问题的过程.本节课的设计特点是:教师的问题是主线,学生的探究活动是主体,师生合作,共同完成知识和方法的总结.备课资料相同元素分组分配问题解决方法:档板法.(1)参加联赛的10个名额要分配到高三年级的8个班级中,那么每个班级至少一个名额的分配方法有______种;(2)10个相同的小球全部放入编号为1、2、3的盒子中,那么使每个盒子中球的个数不小于盒子的编号数的方法有______种.解析:利用档板法.(1)相当于在排成一排的10个“1〞所形成的9个空隙中,选出7个插入7块档板的方法,每一种插板方法对应一种名额分配方法,有C79种方法;(2)可以首先在2、3号盒子中先分别放入1、2个球,然后在剩余的7个球排成一排形成的6个空隙中选出2个空隙各插入一块板,有C26种方法.注:档板法的使用比较灵活,且对数学思想方法要求较高,现利用档板法证明一个不定方程的自然数解的组数的结论:方程x1+x2+…+x m=n(m,n∈N,m,n≥2)的自然数解有C m-1n+m-1组.简证:转化为正整数解的组数,利用档板模型有:作代换y i=x i+1(i=1,2,…,m),那么方程x1+x2+…+x m=n的自然数解的组数,即y1+y2+…+y m=n+m的正整数解的组数,相当于把n+m个球分成m份,每份至少1个的方法数,即在n+m-1个球的间隙中放置m-1个档板的方法种数,即C m-1n+m-1.。
1.2集合的排列与组合

从剩下n-1个元 素中任取一个
从剩下n-r+1个元素中 任取一个
从n个元个元素 中任取一个
1.2.2 集合的组合
n个元素集合的r组合(r-combination) 从n个元素集合S中任取r个元素,无序地放在 一起,亦即组成S的一个子集 S n个元素集合S的r组合的个数记作 C 或C(n,r) 若r>n,则 C =0;若r>0,则 C =0。 任意非负整数n,有 C =1, =n,C =1。 C
{1,2},{3,4},{5,6}
1.2.4 举例
解二 先将2n个人做全排列,再将每一个全排列从 前向后每2人依次分为组1,组2, …,组n 有组别之分的分组
? (2n)!
无组别之分的分组
?
(2n )! n!
1.2.4 举例
上述有组别之分的一种分组,一一对应2n个元素的 2n个不同排列。例如,看1,2,3,4,5,6这6人的情形:
r n
r n r n
r r
1.2.2 集合的组合
定理1.2.3 C + C +C +…+ C =2n (n为非负整数) 证明 设S={a1, a2,…, an } 分类: 分类: 0组合 Cn 1组合 C … n组合 C
n n 1 n 0
0 n
1 n
2 n
n n
S的组合
ห้องสมุดไป่ตู้
分步: 分步: 确定a1是否在组合中 2 确定a2是否在组合中 2 … 确定an是否在组合中 2
a1, a2或a2, a1
8! a3 a4
a10 … 2×8!
1.2.4 举例
例1.2.2 某停车场有6个入口处,每个入 口处每次只能通过一辆汽车。有9辆汽 车要开进停车场,试问有多少种入场方 案?
1.2排列与组合123

3.几种阶乘变形.
n! A = (n-m)!
m n
n!+n n!=(n+1)!
1 1 n = n! (n+1)! (n+1)!
排列应用题1
【概念复习】: 1 .排列的定义,理解排列定义需要注意的 几点问题; 从n个不同元素中,任取m(m<n)个元素(这 里的被取元素各不相同)按照 一定的顺序 排 成一列,叫做从n个不同元素中取出m个元素 的一个排列. 2.排列数的定义,排列数的计算公式
41 41
41 4 1 2
2 3 1 3 1
2
由此可写出所有的三位数:
123,124,132,134,142,143; 213,214,231,234,241,243,
312,314,321,324,341,342; 412,413,421,423,431,432。
叙述为: 从4个不同的元素a,b,c,d 中任取3个,然后按 照一定的顺序排成一列,共有多少种不同的排列方法? abc,abd,acb,acd,adb,adc; bac,bad,bca,bcd,bda,bdc; cab,cad,cba,cbd,cda,cdb; dab,dac,dba,dbc,dca,dcb.
从3个不同的元素a,b,c中任取2个,然后按照一定 的顺序排成一列,一共有多少种不同的排列方法? ab, ac, ba, bc, ca, cb
问题2:从1,2,3,4这4个数中,每次取出3个排成 一个三位数,共可得到多少个不同的三位数?
1 2
3
2 4
3
3
1
3
4
3
1 2
2
4
1
4 2
3
3 42 42 3
高中数学 课件:1.2排列与组合1.2.2组合课件

题型一 题型二 题型三 题型四
题型一 组合的概念及其简单应用
【例1】 判断下列问题是排列问题,还是组合问题. (1)从1,2,3,…,9这9个数字中任取3个,组成一个三位数,这样的三 位数共有多少个? (2)从1,2,3,…,9这9个数字中任取3个,然后把这3个数字相加得到 一个和,这样的和共有多少个? (3)从a,b,c,d这4名学生中选2名学生,去完成同一件工作有多少种 不同的选法? (4)规定每两人相互通话一次,5人共通了多少次电话? (5)5个人相互各写一封信,共写了多少封信? 分析观察取出的元素与顺序有关还是无关,确定是排列问题,还 是组合问题.,是排列问题的有.(填序号)
解析:①无顺序,是组合问题;②2名学生完成两件不同的工作是排
列问题;③单循环比赛要求每两支球队之间只打一场比赛,没有顺
序,是组合问题;④争夺冠亚军是有顺序的,是排列问题.
答案:①③ ②④
123
(2)组合数公式:C������������
=
A������������ A������������
123
【做一做 3】 计算:(1)C2108=
;
(2)C939 + C929=
.
解析:(1)C2108
=
C220
=
A220 A22
=
20×2 19=190.
(2)C939
+
C929
=
C1300
=
A1300 A33
=
1003××929××198=161
700.
答案:(1)190 (2)161 700
A.504 B.729 C.84 D.27 解析:只需从 9 名学生中选出 3 名即可,从而有C93 = AA9333=84 种选法. 答案:C
第一章12排列组合

1.2排列与组合一、基础知识一般地,从n 个不同元素中,任取m (n m ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.排列数的公式:!(1)(2)(1)()!mn n A n n n n m n m =---+=-组合数的公式:!)1()2)(1(m m n n n n A A C m m m n mn+---== 或 )!(!!m n m n C m n -=),,(n m N m n ≤∈*且组合数的性质:① m n nmnC C -= ② 1m n m n m 1n C C C -++= 规定:10=n C ,0!1=二、典型例题 (一)投信箱法(1)由数字0,1,2,3,4可组成多少个可重复数字的四位数? (2)5个人到4家旅馆住店有几种住法?(3)5个不同的小球,放在4个不同的盒子内,有多少种放法? (4)5个相同的小球,放在4个不同的盒子内,有多少种放法?(5)有5群鸽子其中有2群各自分别栖息在甲已两片树林中的栖息方法有多少种? (二)站队问题⑴ 7位同学站成一排,共有多少种不同的排法?⑵ 7位同学站成两排(前3后4),共有多少种不同的排法?⑶ 7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法? ⑷ 7位同学站成一排,甲、乙只能站在两端的排法共有多少种? ⑸ 7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种? (6)8人排成一排照相,A 、B 、C 三人互不相邻的排法共有多少种? (7)8人排成一排照相,A 、B 相邻的排法共有多少种?(8)8人排成一排照相,A 、B 、C 三人互不相邻,D 、E 也不相邻,共有多少种排法? (三)查字典法1、由0,1,2,3,4,5六个数字可以组成多少个没有重复数字比324105大的数?(297)2、用0、1、2、3、4五个数字,可以组成比2000大、且百位数字不是3的四位数有多少个? 3、由数字0,1,2,3,4,5可以组成多少个没有重复数字能被3整除的五位数?(216) (四)计算1. 求值:97100C = ;123456234567C C C C C C +++++= .2. 求值:310A = ;2321n n A A ++÷=. 3. (1)若x 1618x 218C C -=,则x= ; (2)若8x 12x C C =,则x= ;(五)恰当分组⑴ 从口袋内取出3个球,共有多少种取法?⑵ 从口袋内取出3个球,使其中含有1个黑球,有多少种取法? ⑶ 从口袋内取出3个球,使其中不含黑球,有多少种取法?(4)乒乓球的10名队员中有三名主力队员,派五名参赛,三名主力队员要求安排在一 、三、五位置,其余7名队员选取2名安排在第二、四位置,那么不同的出场安排法有多少? (5)有划船运动员10员,其中3人会划右舷,2人只会划左舷,其中5人既会划右舷又 会划左舷,现在要从这10人当中选出6人平均分配在一只船的两舷划桨,不考虑在同 一舷中3人的顺序,有多少种选法? (六)元素相同与不同的分组(1)四名优等生保送到三所学校,每所学校至少一名,则不同的选送方案是( ) (2)将10个名额分配给7个班,每个班至少有一个名额的分配方法( ) (3)将3个相同的小球,放在4个不同的盒子内,有多少种放法? (七)有关至多至少1.100件产品中有合格品90件,次品10件,现从中抽取4件检查.⑴ 都不是次品的取法有多少种? ⑵ 至少有1件次品的取法有多少种? ⑶ 不都是次品的取法有多少种? (八)平均分组法6本不同的书,按下列要求各有多少种不同的选法:⑴分给甲、乙、丙三人,每人两本;⑵分为三份,每份两本;⑶分为三份,一份一本,一份两本,一份三本;⑷分给甲、乙、丙三人,一人一本,一人两本,一人三本;⑸分给甲、乙、丙三人,每人至少一本.(九)插隔板法⑴某运输公司有7个车队,每个车队的车多于4辆,现在从这7个车队中抽出10辆车组成运输队,且每个车队至少1辆,则不同的抽法有()845=126⑵把10本相同的笔记本分给6名学生,每人至少1本,有多少种分法?C9⑶方程a+b+c+d=12有多少组正整数解?(分析:将12个完全相同的球排成一列,在它们之间形成的11个间隙中任意插入3块隔板,把球分成4堆,而每一种分派所得4堆球的3)各堆球的数目,即为a,b,c,d的一组正整数解,故原方程的正整数解的组数共有C11(十)八环行排列1.教师2人,学生6人,师生8人围圆桌而坐,有多少种不同的坐法?2.在排成4*4的方阵的16个点中,中心4个点在某一个圆内,其余12个点在圆外。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1.
2 排列与组合
1. 从 −2,−1,0,1,2,3 这六个数字中任选 3 个不重复的数字作为二次函数 y =ax 2+bx +c 的系数 a ,b ,c ,则可以组成顶点在第一象限且过原点的抛物线条数为 ( )
A. 6
B. 20
C. 100
D. 120
2. 将 1,2,3,4,5,6,7,8,9 这 9 个数字填在如图的 9 个空格中,要求每一行从左到右、每一列从上到下分别依次增大,当 3,4 固定在图中的位置时,填写空格的方法数为 ( )
A. 4
B. 6
C. 9
D. 12
3. 计划在 4 个不同的体育馆举办排球、篮球、足球 3 个项目的比赛,每个项目的比
赛只能安排在一个体育馆进行,则在同一个体育馆比赛的项目不超过 2 个的安排方
案共有 ( )
A. 60 种
B. 42 种
C. 36 种
D. 24 种
4. 3 对夫妇去看电影,6 个人坐成一排.若女性的邻座只能是其丈夫或其他女性,则
坐法的种数为 ( )
A. 54
B. 60
C. 66
D. 72
5. 四个不同的小球放入编号为 1,2,3 的三个盒子中,则恰有一个空盒的放法共有 种(用数字作答).
6. 某车队有编号为 1,2,3,4,5 的 5 辆车,现为完成一件任务,需派三辆车按不同时间出车,其中若选取的车辆中有 1 号,4 号时,则 1 号车一定要排在 4 号车的前面,则这样不同的派法共有 种(用数字作答).
7. 设 a 、 b ∈{1,2,3},则方程 ax +by =0 所能表示的不同的直线的条数是 .
8. 甲、乙、丙三人站到共有 7 级的台阶上,若每级台阶最多站 2 人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).
9. 解方程:C x+2x−2+C x+2x−3=1
10A x+33.
1 、 A 2、 B 3、 A 4、 B 5 、 4
2 6、 57 7、 7 8、 336 9、x =4。