久期、凸度的定义及数学推导

合集下载

《久期与凸度》课件

《久期与凸度》课件

用风险等。
3
影响因素的分析
我们将分析各个因素对市场利率和债 券价格的影响,以帮助我们更好地理 解债券市场。
Байду номын сангаас
久期概念
基本定义
久期是指债券价格对利率变动的敏感性。
久期的特点
久期越高,债券价格对利率变动的敏感性越大,反之亦然。
关键影响因素
债券期限、票面利率、市场利率和债券价格的关系等因素都会对久期产生影响。
久期的计算方法
公式方法
表格方法
通过数学公式计算债券的久期。
利用Excel等软件进行计算,提 高计算效率。
在线计算器
利用互联网上的在线计算器, 快速准确地计算债券久期。
久期的应用
1
债券投资方面
利用久期来评估债券价格的风险和回报,帮助投资者合理配置投资组合。
2
债务管理方面
使用久期来管理公司负债结构,优化债务组合,降低融资成本。
价值投资
通过寻找久期和凸度不匹 配的债券,并对其进行价 值投资,在波动性较大的 债券市场上实现超额收益。
传统投资组合的风险控制方法
风险多样化
将不同行业、不同股票、不同 债券组合在一起,降低整个投 资组合的风险。
市值平衡
通过平衡不同股票和债券的市 值,降低整个投资组合的波动 性。
目标收益
通过预设目标收益,明确投资 组合的风险收益特征,制定相 应投资策略。
3
情景模拟
利用久期和凸度,对债券价格波动的不同情景进行模拟,制定应变措施,提高投 资组合的回报率。
久期和凸度的投资组合
动态平衡
在投资组合构建中,根据 不同债券的久期和凸度, 动态调整投资组合的持仓 比例,以保持投资组合的 风险回报平衡。

久期凸度的定义、表达式以及背后的数学原理

久期凸度的定义、表达式以及背后的数学原理

久期、凸度的定义及数学推导目录1久期D (1)1.1久期定义 (1)1.2久期表达式 (2)1.3久期作用 (2)1.3.1 衡量加权平均期限 (2)1.3.2 测度利率敏感性 (3)2 凸度C (5)2.1凸度定义 (5)2.2表达式 (5)2.3数学原理 (5)1久期D1.1久期定义久期是债券价格相对于债券收益率的敏感性(一)麦考利久期Dm:最早的久期衡量指标,其本质是通过计算债券偿还现金流的加权平均年限,来衡量债券价格变化敏感度。

(二)修正久期D *:对麦考林久期进行了修正,加入考虑了到期收益率r 。

比如到期收益率是5%,那么修正久期就要在麦考林久期的基础上,除以1.05。

(三)美元久期D **:对修正久期进一步修正,加入了债券价格P ,比如债券价格95,那么美元久期就要在修正久期的基础上,乘以95。

1.2久期表达式 麦考利久期:t P r t ∑==+=n t 1t t )1/(CF Dm 公式(1) 修正久期: D * =Dm/(1+r) 公式(2)美元久期: D ** =D *P 公式(3)【CFt :债券每期现金流】;【r :到期收益率或市场利率】;【t :债券期数】。

1.3久期作用1.3.1 衡量加权平均期限麦考利久期Dm 是对债券实际平均期限的一个简单概括统计,使用加权平均数的形式计算债券的平均到期时间,其权重是各期现值在债券价格中所占的比重;1.3.1.1 数学原理从公式(1)t P r t ∑==+=nt 1t t )1/(CF Dm 出发: Dm 是时间t 的加权平均值,第t 期的权重为P r t t )1/(CF +; 比如t=2时第二期的权重为P r 22)1/(CF +;求证:权重加总求和∑==+n t 1t t )1/(CF P r t =∑==+n t 1t t )1/(CF p 1t r (带入债券定价公式: P )1/(CF n t 1t t =+∑==t r ) =P p1 =11.3.2 测度利率敏感性当利率发生变化时,迅速对债券价格变化或债券资产组合价值变化作出大致的估计。

久期和凸性分析

久期和凸性分析
期 限 票息 票息

0
5年 10年 20年 15 55 210
10%
7.3% 12.3% 31.2%
从表中看出:(1)长生命期的债券(如前面的
永续年金图形)与息票利率变化之间的关系具有 明显的凸性性质;(2)短期债券(如前面的3年 期债券)的价格-利率关系几乎是一条直线,只 有适度的弯曲;因此短期债券的凸性最小。(3) 凸性随着票息的降低而增大,随着票息的上升而 降低。(4)低利率水平下的凸性大于高利率水平 下的凸性。(5)债券价格与利率关系在曲线的低 利率部分更加弯曲。


首先,计算利率变化引起的与久期有关的影响。
P k 9% 10% 0.01 d ( ) (10)( ) (10)( ) 0.0909 或9.09 % P 1 k 1 10% 1.10

这里的价格变化为9.09%,小于所导出的9.33% 的变化幅度。这个未预料出的9.33%9.09%=0.24%的变化就表现了凸性的影响。即:


债券价格随着利率变化而变化的关系接近于一条 凸函数而不是一条直线函数。 下图对一个10年期零息票到期收益率为10%的债 券的已得价格变化和以久期为基础对债券价格变 化的预期相比较,说明了凸性对价格收益关系的 影响。
债券价值 (美元)
凸性曲线(价格变化对利率变化的实际关系)
650 600 550 500 450 400 350 300



什么是梯形投资法?梯形投资法是什么意思? 梯形投资法,又称等期投资法,就是每隔一段时 间,在国债发行市场认购一批相同期限的债券, 每一段时间都如此,接连不断,这样,投资者在以 后的每段时间都可以稳定地获得一笔本息收入。 梯形投资法就是将全部投资资金平均投放在各种 期限的证券上的一种组合方式。具体的做法是买 入市场上各种期限的证券,每种期限购买数量相 等,当期限最短的证券到期后,用所兑现的资金 再购买新发的证券,这样循环往复,投资者始终 持有各种到期日证券,并且各种到期日的数量都 是相等的。这种情况反映在图形上,形似间距相 等的阶梯,故称“梯形投资法”。这种方法的特 点是计算简单,收益稳定,便于管理,但不便于 根据市场利率变动转换证券。

金融工程学-第六章久期与凸度

金融工程学-第六章久期与凸度
可以看出,永久债券的久期只与到期收益率有关
三、久期值的计算方法
1.列表法,这便是上文所有计算久期的方法。 2.封闭式久期计算法 3.有效久期计算法 计算公式
四、久期的性质及应用
1.久期的性质 久期的性质或特点有如下几条: (1)久期值与债券期限长度成正比。具体又有: ①债券期限越长,麦考莱久期和修正久期就越长; ②附息债券的麦考莱久期和修正久期均小于其到期时间,三者的关系是: D修<D麦<n ③零息债券的麦考莱久期等于债券本身的期限,修正久期小于债券期限。
四、资产组合的凸度
在利用凸度进行风险管理时,首先遇到的是计算资产组合的凸度,资产 组合的凸度定义为:资产组合的凸度等于资产组合中的各个证券凸度的 加权平均,权重是各个证券的价值。有时还用到资产的价值凸度,价值 凸度的定义为: 价值凸度=价格×凸度 资产组合的价值凸度定义为: 资产组合的价值凸度=资产组合的价格×资产组合的凸度
一、久期概述
(3)久期的一般表达式 由上所述,可得久期的一般表达式为:
一、久期概述
(4)久期概念的用途:久期可用来表示不可提前赎回债券面临的利率风 险。它考察债券价格对利率变动的敏感性的衡量指标,具体说,久期是 债券价格变化与债券到期收益率变化的比例系数。
一、久期概述
3.修正(Modified)久期 这是实际应用中经常使用的一种久期形式。它是由麦考莱久期衍生出来 的, 修正久期的定义为:
四、久期的性质及应用
(3)预测利率上涨,买入久期较短息票利率较高的债券,因为债券价格 下跌较少(因为快要到期时,价格向价值回归,没有下跌空间)。 (4)一个债券组合的久期为组合中各个债券久期的加权平均值,具体含 义看下一个内容。
五、资产组合的久期
1.一个资产组合的久期的标准定义是:资产组合的久期等于组成资产组合 的各个资产的久期的加权平均(这里的久期是指修正久期),权重是各 个资产的现值。与资产组合久期的定义相对应的是资产组合的收益率, 资产组合的收益率定义为:资产组合的收益率是资产组合的现金流的到 期收益率。

久期和凸性——精选推荐

久期和凸性——精选推荐

四、利率的久期与凸性(一)久期久期有许多不同的形式和解释。

几种尤为重要的种类是麦考莱久期(Macaulay duration)、修正久期(Modified duration)、封闭式久期(Closed-form duration)和有效久期(Effective duration)。

1.麦考莱久期“久期”又叫“持续期”,要归功于F.R·麦考莱,他在1938年提出要通过衡量债券的平均到期期限来研究债券的时间结构。

当被运用于不可赎回债券时,麦考莱久期就是以年数表示的可用于弥补证券初始成本的货币加权平均时间价值。

久期对于财务经理的主要价值在于它是衡量利率风险的直接方法,久期越长,利率风险越大。

麦考莱久期有如下假设:收益率曲线是平坦的;用于所有未来现金流的贴现率是固定的。

其中:D——久期Ct——t时的现金流R——到期收益率(每期)P——债券的现价N——到期前的时期数;t——收到现金流的时期。

上述公式给出了理解麦考莱久期的方法。

它表明时间的权重是每期收到的现金流的现值。

每一贴现的现金流都代表了债券现金流现值的一部分。

如果加总债券所有的贴现现金流,就得到了债券的价格。

麦考莱久期也可以表达为连续复利形式:2.修正久期债券价格等于与债券相关的现金流的现值:我们可以将上述公式对利率R求导,得到公式:上述公式表示了当债券收益率发生很小变动时以美元表示的债券价值发生的变动。

将公式两边同时除以债券价格便得到了每一单位利率百分比变动时债券价格的百分比变动:上述公式是修正久期的表达式。

括号中的项是麦考莱久期公式的分子。

因而修正久期等于麦考莱久期除以(1+到期收益率):修正久期显示了与债券到期收益率的小变动相关的价格百分比变化。

注意,按上述公式计算的久期是负值,这是因为,债券价格与利率水平的运动方向相反是一致的。

实际上,久期的负号常常被忽略。

3.封闭式久期这一方法的优点在于计算简便,这也是为什么大多数计算久期的软件程序都使用封闭形式的公式。

久期与凸度

久期与凸度
输入参数同bnddury. 其中: • YearConvexity指根据年为单位的凸度, • PerConvexity是以半年为单位的债券凸度
,为YearConvexity的4倍。
例10:三种债券到期收益率分别为5%,5.5%和6%,票 息率都为5.5%,结算日为1999年8月2日,到期日为 2004年6月15日,每年付2次息,应计天数法则为 ACT/ACT。求凸度。 解:
21.1839 PerConvexity = 20.8885 84.7357
例4:一项投资各期现金流如上表,贴现率为 0.025,问该项投资的久期是多少?
解: >> cashflow= [2000 2000 3000 4000 5000]; >> [Durartion,
ModDuration]=cfdur(cashflow,0.025) Durartion = 3.4533
• 这是重要的风险管理方法。在 同等要素条件下,修正久期小 的债券较修正久期大的债券抗 利率上升风险能力强,但抗利 率下降风险能力较弱。
王鑫
07级王鑫说:利率 上升风险是债券价 格下降的风险,这 时,修正久期小的债 券下降就小所以 修正久期小的债券 较修正久期大的债 券抗利率上升风险 能力强。
例2:已知某种债券当前的市场价格为125美元, 当前的市场年利率为5%,债券的久期为4.6年, 求:如果市场利率上升40个基点,债券的市场价 格将发生怎样的市场变化?
>> Yield=[0.05, 0.05, 0.06];>> CouponRate = 0.055;
>> Settle = '02-Aug-1999';>> Maturity='15-Jun-2004';

久期和凸性分析范文

久期和凸性分析范文

久期和凸性分析范文久期和凸性分析是在金融市场中用于评估债券投资风险和收益的重要工具。

久期是衡量债券价格变动对利率变动的敏感度的指标,而凸性则是衡量债券价格对利率波动的非线性变化。

下面我们将详细介绍久期和凸性的概念、计算方法以及其在投资决策中的应用。

首先,久期是衡量债券投资风险的关键指标。

它是一个衡量债券价格变动对利率变动的敏感度的指标。

具体来说,久期表示的是债券的平均回本期限,也就是该债券的现金流入与出的时间加权平均。

久期越长,表示债券的回本期限越长,价格受利率变动的影响越大。

反之,久期越短,表示债券的回本期限越短,价格受利率变动的影响越小。

计算久期的方法有几种,其中一种是Macaulay久期。

Macaulay久期的计算公式为:Macaulay久期=(C1*T1+ C2*T2+...+Cn*Tn)/B,其中Ci为第i期的现金流量,Ti为第i期的现金流入与出的时间,B为债券的价格。

除了久期,凸性也是衡量债券投资风险的重要指标。

凸性描述了债券价格对利率波动的非线性响应。

凸性可以帮助投资者更好地了解债券价格的波动性以及在不同市场环境下债券的价格变化趋势。

凸性大的债券价格波动幅度相对较大,而凸性小的债券价格波动幅度相对较小。

计算凸性的方法有几种,其中一种是麦堪昆凸性。

麦堪昆凸性的计算公式为:麦堪昆凸性=(C1*T1^2+C2*T2^2+...+Cn*Tn^2)/(B*(1+r)^2),其中Ci为第i期的现金流量,Ti为第i期的现金流入与出的时间,B为债券的价格,r为债券的到期收益率。

久期和凸性分析在投资决策中有着重要的应用。

首先,久期和凸性可以帮助投资者衡量债券投资的风险。

通过计算久期和凸性,投资者可以了解债券价格对利率变动的响应程度,从而判断债券投资的风险水平。

其次,久期和凸性可以帮助投资者优化投资组合。

久期和凸性可以作为评估不同债券的工具,投资者可以在不同债券之间做出选择,以实现投资组合的风险和收益平衡。

a3金融风险的度量__久期、凸性及久期缺口模型

a3金融风险的度量__久期、凸性及久期缺口模型

2 (1 y )2T 1
2
2
T
1 2
2t
Ct
t1 (1 y )2t1
2
2
金融风险管理
赵建群
T
dP P' ( y) • dy
tCt
T
• dy
tCt • dy
t1 (1 y )2t1
t1 (1 y )2t (1 y )
2
2
2
2
2
T
tCt
t1 2
(1
y )2t 2
P

P• (1
(为了克服上面的第二种缺陷,引入凸性)
金融风险管理
赵建群
四、久期缺口模型
1、利率敏感性(资产、负债)价值变化与久期
令利率敏感性资产价值为 PA ,
则有
PA PA
DA
y 1 y
其中 DA 为资产的久期
金融风险管理
Байду номын сангаас
赵建群
令利率敏感性负债价值为 PL ,
则有
PL PL
y DL 1 y
其中 DL 为负债的久期

dP D • Pdy 1 y
变形得 D dP dy P 1 y
或者取其离散形式 D P y
P 1 y
(之所以采用 ≈ ,是因为 dP 的推导采取的是Taylor一阶近似,当 利率的变化比较大时,取一阶近似是不对的)
金融风险管理
赵建群
考察 D dP dy
P 1 y
或者
D P y P 1 y
CT
t1 (1 y)t
(1 y)T
金融风险管理
赵建群
③息票债券久期的上限是相应的永久债券的久期
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档