初一数学最新教案-七年级数学分式1 精品

合集下载

初中数学放分式教案

初中数学放分式教案

初中数学放分式教案教学目标:1. 让学生理解分式的意义,掌握分式的基本性质和运算规则。

2. 培养学生解决实际问题的能力,提高他们的数学思维水平。

教学内容:1. 分式的定义和基本性质2. 分式的运算规则3. 分式在实际问题中的应用教学过程:一、导入(5分钟)1. 引导学生回顾整式的知识,复习整式的四则运算。

2. 提问:我们在解决实际问题时,有没有遇到过只用整式表示不够的情况?二、新课讲解(20分钟)1. 讲解分式的定义:分式是两个整式的比,其中分母不能为零。

2. 引导学生通过观察、类比、猜想、尝试等活动,探索分式的基本性质和运算规则。

3. 讲解分式的基本性质:分式的分子和分母同时乘以或除以同一个非零整式,分式的值不变。

4. 讲解分式的运算规则:分式的加减乘除运算,可通过分子分母分别进行运算来实现。

三、例题讲解(15分钟)1. 举例讲解分式的加减乘除运算,让学生理解并掌握运算规则。

2. 给出实际问题,让学生运用分式进行解答。

四、课堂练习(10分钟)1. 布置练习题,让学生独立完成。

2. 挑选学生作业进行讲解,纠正错误,巩固知识点。

五、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结分式的定义、基本性质和运算规则。

2. 强调分式在实际问题中的应用价值。

六、作业布置(5分钟)1. 布置课后作业,要求学生巩固本节课所学内容。

2. 鼓励学生积极参与课堂讨论,提出问题,互相解答。

教学反思:本节课通过讲解分式的定义、基本性质和运算规则,让学生掌握了分式的基本知识。

在例题讲解和课堂练习环节,学生能够运用分式解决实际问题,提高了他们的数学思维水平。

但同时,也发现部分学生在分式运算中存在运算能力不足的问题,需要在今后的教学中加强训练。

总体来说,本节课达到了预期的教学目标。

中学七年级数学下册(9.1.1 分式的概念)教学案+练习(无答案) 沪科版 教案

中学七年级数学下册(9.1.1 分式的概念)教学案+练习(无答案) 沪科版 教案

9.1.1分式的概念教案【学习目标】1、知识与技能:能用分式表示现时情境中的数量关系,了解分式的概念,明确分式与整式的区别;2、过程与方法:经历用字母表示实际问题中的数量关系的过程,进一步发展符号感;3、情感、态度与价值观:在用分式表示现时情境中的数量关系中体会分式的模型思想,感受数学知识的应用价值。

【学习内容】课本第87至88页【学习流程】一、课前准备(预习学案见附件1)学生在家中认真阅读理解课本中相关内容的知识,并根据自己的理解完成预习学案。

二、课堂教学(一)合作学习阶段。

(15分钟左右)(课堂引导材料见附件2)教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。

组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。

教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。

(二)集体讲授阶段。

(15分钟左右)1.各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。

2.教师对合作学习中存在的普遍的不能解决的问题进行集体讲解。

3.各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。

(三)当堂检测阶段(10分钟)(当堂检测材料见附件3)为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。

(注:合作学习和集体讲授可以根据课堂的需要进行交叉或整体交换秩序)三、课后作业(课后作业见附件4)教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。

四、板书设计五、课后反思附件1:9.1.1分式的概念(预习学案)班级:姓名:家长签名:日期:【预习目标】能用分式表示现时情境中的数量关系,了解分式的概念,明确分式与整式的区别。

【预习内容】课本第87至88页【预习流程】(一)旧知回顾1.请写出两个单项式和两个多项式_________________________________2.单项式和多项式统称为___________________。

人教版初中分式教案

人教版初中分式教案

人教版初中分式教案一、教学目标1. 理解分式的概念,掌握分式的基本性质。

2. 学会分式的约分和通分,能够熟练运用分式的基本性质进行化简。

3. 培养学生的观察、类比、推理能力,提高分析问题、解决问题的能力。

二、教学内容1. 分式的概念与基本性质2. 分式的约分与通分3. 分式的化简与应用三、教学重点与难点1. 重点:分式的概念、基本性质、约分与通分的方法。

2. 难点:确定分式的最简公分母,进行复杂的分式化简。

四、教学过程1. 情境导入通过展示实际生活中的例子,如比例尺、折扣等,引导学生思考数学在实际生活中的应用,从而引入分式的概念。

2. 自主学习让学生阅读教材,了解分式的定义,掌握分式的基本性质。

引导学生通过观察、类比、推理,总结出分式的基本性质。

3. 合作探究让学生分组讨论,探索如何对分式进行约分和通分。

引导学生通过实际操作,总结出约分和通分的方法。

4. 教师讲解针对学生的探究结果,进行讲解和补充,强调约分和通分的关键步骤。

通过例题,演示分式化简的整个过程。

5. 练习巩固布置一些分式化简的练习题,让学生独立完成,检验学生对分式基本性质的掌握程度。

6. 总结拓展让学生总结本节课所学内容,思考分式在实际生活中的应用。

引导学生进行拓展学习,如分式的混合运算。

五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 练习完成情况:检查学生课后练习的完成质量,评估学生对知识的掌握程度。

3. 学生互评:鼓励学生之间进行相互评价,促进学生之间的交流与学习。

六、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。

同时,关注学生在学习过程中遇到的困难和问题,及时给予指导和帮助。

初中数学精品教案:《分式的基本性质》

初中数学精品教案:《分式的基本性质》

课题:分式的基本性质 教材:浙江版七年级下册教学目标: 知识技能目标:1. 让学生理解分式的基本性质及其内涵要点;2. 让学生灵活运用分式的基本性质进行分式的恒等变形;3. 让学生了解类比、归纳、分类等思维方法; 过程性目标:4. 让学生体会学习分式基本性质的必要性及其意义;5. 让学生经历观察、实验、推理等活动,类比、归纳得到分式基本性质及运用其进行恒等变形时的注意要点,并且在这一过程中获得一些探索数学性质的初步经验。

教学重点:组织学生探索发现并掌握(运用)分式的基本性质。

教学难点:从“形”的角度解释分式的变形;分式的负号变化特征和分子、分母是多项式的分式的约分。

教学方法和手段:发现探究 小组合作 主体性讲解 教学过程:一、 创设情景,引入主题(让学生了解学习分式基本性质的必要性)由欣赏“利郎男装的广告”“简约美”过渡到数学的美;齐声朗读“数学因简约、对称、和谐而美”。

引入分式32201R R ,由学生根据“简约、对称、和谐”这一“审美”标准来审视以上分式的和谐性,从而引出用来“美化”这些分式的必需的知识——分式的基本性质。

(设计说明:“追求分式的简约、和谐美”是整节课的主线) 二、 探究发现分式的基本性质1.复习分数的基本性质(为通过“类比”得到分式的基本性质及其运用作铺垫)引出三个等分数41、82、164,通过以下问题组来复习分数的基本性质及其运用:(1) 根据我们的“审美标准”,哪个分数最具“简约美”?(2) 从164、82到41,我们是通过怎样的变形实现的?(3) 请问约分的依据是什么?(分数的基本性质的内容是什么?) 2.探究分式的变形(为通过“归纳”得到分式的基本性质及其运用作铺垫)问题探究:以下分式的变形是否成立?请简要说明理由。

m m 221= mm 122=让学生从“欣赏”的角度来看“矩形模型”:(1)m m 221=(在原来的矩形上拼上(宽重合)相同的矩形,所得面积为2的矩形与原矩形的宽相等)(1)mm 122=(面积为2的矩形沿长的中间部位分开,所得面积为1的小矩形与原矩形宽相等) 注:抽象出矩形,在矩形上分割进行(设计说明:在浙江版的教材中多处(例如:合并同类项、多项式的乘法、乘法公式等)出现了用几何图形的面积来解释代数恒等式,因此这里用图形的面积来解释分式的变形,这是一种学生易于接受的方式,也是对“数形结合”思想的进一步渗透。

13.3分式方程(一)(课件)2024-2025学年七年级数学上册(沪教版2024)

13.3分式方程(一)(课件)2024-2025学年七年级数学上册(沪教版2024)
左边=
= =右边
3×3+1 2
所以原方程的解是x=3.
典例分析

1
例2 解方程
+1=
.
−1
−1
解: 方程两边同乘x-1,得x+(x-1)=1.
移项,化简,得
x=1
将x=1代入原方程检验,此时方程中分式的分母的值为0,分式无
意义.
所以x=1不是原方程的解,原方程无解.
新课讲授
你能归纳出解分式方程的一般步骤吗?
新课导入
京沪高铁上海虹桥站至北京南站全程约1318km.如果某趟列车的平
1
均速度提高 ,其从上海虹桥站至北京南站的行驶时间将缩短37min,
6
那么这趟列车提速前后的平均速度分别为多少(结果精确到1km/h)?
新课讲授
设火车提速前的平均速度是xkm/h,根据问题可以列出方程
1318 1318 37
2 1
(3) + =
2
1;
2x=x-2
移项,化简,得
x=-2
将x=-2代入原方程检验,得
2
1
左边=
=- =右边
−2−2 2
所以原方程的解是x=-2.
4
1
(4)
=
−3 3−
+2.
学以致用
基础巩固题
2.解方程:
2
(1) =5;

2 1
(2)
= ;
−2
解: (3)方程两边同乘2x,得
2 1
的分母的值为0,所以x=2不是原分式方程
−2
的解.
沪教版(2024)七年级数学上册
第13章 分式
13.3 分式方程(一)

沪科版七年级上册数学精品教案之分式及其基本性质第1课时教案

沪科版七年级上册数学精品教案之分式及其基本性质第1课时教案

第9章分式及其基本性质(第1课时)-教案蒙城县第六中学方伟(一)教材内容简介本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,分式方程的概念及可化为一元一次方程的分式方程的解法。

全章共包括三节:9.1 分式 9.2 分式的运算 9.3 分式方程(二)本章知识结构框图(三)课程学习目标本章教科书的设计与编写以下列目标为出发点:1.以描述实际问题中的数量关系为背景,抽象出分式的概念,体会分式是刻画现实世界中数量关系的一类代数式。

2.类比分数的基本性质,了解分式的基本性质,掌握分式的约分和通分法则。

3.类比分数的四则运算法则,探究分式的四则运算,掌握这些法则。

4.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想。

一、教学背景(一)教材分析本节共3个课时,它分为分式的概念,分式的基本性质以及约分,其中分式的基本性质是整章的中心与灵魂,是整章的重点,可类比小学所学过的分数的基本性质来理解分式的基本性质。

(二)学情分析学生在小学学过分数,分数的意义,其实分式是分数的“代数化”,所以其性质与运算是完全类似的.在前面的学习中学生已经学会用字母表示实际问题中的数量关系,其中包括整式与分式等数量关系.在整式的学习中,学生初步具备了用整式表示现实情境中的数量关系,建立数学模型的思想.在相关的学习中学生初步具备了观察、归纳、类比、猜想的能力以及自主探索、合作交流的能力.二、教学目标知识与技能:了解分式、有理式的概念,明确分式和整式的区别。

过程与方法:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。

情感与态度:通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创造,体会分式的模型思想。

三、教学重点与难点重点:分式的概念难点:识别分式有无意义;用分式描述数量关系四、教学方法分析及学习方法指导基于以上教材特点和学生情况的分析,本节课主要采用“引导—发现教学法”,通过“问题情境—建立模型—解释、应用与拓展”的模式展开教学。

初中分式的教案

初中分式的教案一、教学目标1. 让学生理解分式的概念,掌握分式的基本性质和运算方法。

2. 培养学生解决实际问题的能力,提高学生的数学思维水平。

二、教学内容1. 分式的概念及其表示方法2. 分式的基本性质3. 分式的运算方法4. 分式在实际问题中的应用三、教学重点与难点1. 重点:分式的概念、基本性质和运算方法。

2. 难点:分式的运算规律和实际问题中的应用。

四、教学过程1. 导入:通过复习整式的知识,引导学生思考整式在表示数量关系方面的局限性,从而引出分式的概念。

2. 新课讲解:a) 分式的概念:用分数的形式表示两个整式的商。

b) 分式的表示方法:分子、分母及分式的约分和通分。

c) 分式的基本性质:分式的分子、分母都乘(或除以)同一个不为0的整式,分式的值不变。

d) 分式的运算方法:分式的加减法、乘除法及混合运算。

3. 例题解析:通过例题讲解,让学生掌握分式的运算方法,培养学生的解题能力。

4. 课堂练习:设计一些练习题,让学生巩固所学知识,提高运算能力。

5. 实际问题应用:通过解决实际问题,让学生了解分式在生活中的应用,提高学生的实际问题解决能力。

6. 课堂小结:对本节课的主要内容进行总结,强调分式的概念、基本性质和运算方法。

五、课后作业1. 完成教材后的练习题。

2. 收集生活中的分式问题,下节课分享。

六、教学反思1. 课后及时了解学生的学习情况,针对性地进行辅导。

2. 在教学中,注重学生的参与,提高学生的动手操作能力和思维能力。

3. 注重分式知识与实际生活的联系,提高学生的应用能力。

七、教学评价1. 学生对分式的概念、基本性质和运算方法的掌握程度。

2. 学生解决实际问题的能力。

3. 学生对分式知识的兴趣和积极性。

分式方程(一)教案

5.4.1 分式方程(一)教学设计
2、甲、乙两班参加植树活动,已知乙班每小时比甲班多种3棵树,甲班种62棵树所用的时间与乙班种68棵树所用的时间相等.求甲、乙两班每小时各种多少棵树?
课堂小结 1.利用分式方程模型解决实际问题:
问题情境---提出问题---建立分式方程模型---解
决问题
2. 列分式方程的一般步骤小节由同学们
讨论,教师只
是顺势把学生
的话进行一个
归纳总结。

关注学生从现实
生活中发现并提
出数学问题的能
力,关注学生能
否尝试用不同方
法寻求问题中数
量关系,并用分
式方程表示,能
否表达自己解决
问题的过程。

板书
5.4.1 分式方程(一)
1、利用分式方程模型解决实际问题
2、列分式方程的一般步骤
例题
变式。

初中数学分式下册教案

初中数学分式下册教案教学目标:1. 理解分式的概念,掌握分式的基本性质。

2. 学会分式的化简、运算和应用。

3. 培养学生的逻辑思维能力和解决问题的能力。

教学内容:1. 分式的概念和基本性质2. 分式的化简和运算3. 分式的应用教学过程:一、导入(5分钟)1. 复习分数的概念和性质。

2. 引入分式的概念,解释分式与分数的区别。

二、分式的基本性质(15分钟)1. 展示分式的基本性质,如分式的分子、分母和值的变化规律。

2. 让学生通过例题来理解和掌握分式的基本性质。

三、分式的化简(20分钟)1. 介绍分式的化简方法,如分子分母的公因式提取、分式的乘除法等。

2. 分组讨论和练习化简分式的题目,教师进行指导和解答。

四、分式的运算(15分钟)1. 介绍分式的运算规则,如加减法、乘除法等。

2. 让学生通过例题来理解和掌握分式的运算规则。

3. 进行一些分式运算的练习题,教师进行指导和解答。

五、分式的应用(15分钟)1. 介绍分式在实际问题中的应用,如比例、折扣、浓度等问题。

2. 让学生通过例题来理解和掌握分式的应用方法。

3. 进行一些分式应用的练习题,教师进行指导和解答。

六、总结与布置作业(5分钟)1. 对本节课的内容进行总结,强调分式的概念、基本性质和运算规则。

2. 布置一些分式的化简、运算和应用的练习题,让学生进行巩固练习。

教学评价:1. 通过课堂讲解、练习和应用题的解答,评价学生对分式的概念、基本性质和运算规则的理解和掌握程度。

2. 观察学生在分组讨论和练习中的表现,评价学生的合作和沟通能力。

3. 对学生的作业进行批改和评价,了解学生对分式应用的掌握情况。

以上是一篇初中数学分式下册的教案,根据学生的实际情况和教学环境,可以进行适当的调整和修改。

希望对您的教学有所帮助。

七年级数学下册《分式的通分》教案、教学设计

6.总结反思,提升素养
-通过课堂小结,让学生回顾本节课所学内容,总结分式通分的要点。
-鼓励学生反思学习过程中的得失,培养自我评价和自我改进的能力。
7.课后作业,巩固拓展
-布置适量的课后作业,让学生在课后继续巩固所学知识。
-设计具有挑战性的拓展题目,激发学生的求知欲,提高学生的数学素养。
在教学过程中,教师应关注学生的主体地位,注重启发式教学,引导学生主动探究、合作交流。同时,关注学生的个体差异,因材施教,使每位学生都能在课堂上得到充分的发展。通过本章节的学习,使学生掌握分式通分的知识,提高数学素养,为后续学习打下坚实基础。
1.重点:理解分式通分的概念,掌握寻找最简公分母的方法,能够熟练运用通分解决实际问题。
2.难点:对分式通分法则的理解与应用,特别是在解决复杂问题时,如何灵活运用通分技巧。
(二)教学设想
1.创设情境,导入新课
-通过生活中的实例,如比较不同物体的速度、密度等,引出分式通分的概念。
-利用多媒体展示,激发学生的兴趣,引导学生思考分式通分在实际生活中的应用。
5.总结反思:要求学生撰写一篇关于分式通分学习心得的文章,内容包括学习过程中的收获、遇到的困难、解决方法以及今后如何提高分式通分的能力。
作业布置要求:
1.作业量适中,保证学生在课后有足够的时间进行复习和巩固。
2.鼓励学生自主完成作业,培养独立思考和解决问题的能力。
3.作业批改要及时,对学生的错误给予指出和指导,帮助学生找到问题所在,提高解题能力。
4.练习巩固,内化知识
-设计不同难度的练习题,让学生在课堂上及时巩固所学知识。
-对学生的练习进行反馈,指出错误原因,帮助学生找到解决问题的方法。
5.拓展延伸,提高能力
-引导学生思考分式通分在生活中的其他应用,如科学实验、工程设计等领域。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章分式目录7.1 分式(1) (2)7.1 分式(2) (3)7.2 分式的乘除 (5)7.3 分式的加减(1) (7)7.3 分式的加减(2) (8)7.4 分式方程(1) (10)7.4 分式方程(2) (11)7.1 分式(1)〖教学目标〗◆1.了解分式的概念.◆2.了解分式有意义的条件.◆3.会用分式表示简单实际问题中的数量关系. 〖教学重点与难点〗◆教学重点:本节教学的重点是分式的概念.◆教学难点:例2的问题情境较为复杂,并涉及列分式、求分式的值等多方面的问题,是本节教学的难点. 〖教学过程〗 (一)发现新知1.创设情境:“代数式”庄园的果树上挂满了“整式”的果子:t ,300,s ,n ,a -x ,0,180(n -2),请你任选其中的两个,运用整式的除法运算,合成一个代数式;并与同组的伙伴交流你的成果.2.探索交流:(1)议一议:你们所构造的这一些代数式:s t ,na -t ,…它们有什么共同特征?它们与整式有什么不同?(得出分式的概念)(2)类比分数,概括分式的概念及表达形式: (3)练习:课本做一做第1题.练习采用小组内互相提问、口答完成,通过列举具体例子,互说判别过程,鼓励学生积极参与活动.在活动的过程中强化分式概念,并及时纠正学生可能因分数负迁移所造成的认知障碍,注意辨析分式与整式的本质区别,强调分式的分母中必须含有字母. (二)再探新知1.提出问题(课本做一做第2题):分式ba 的分母中的字母能取任何实数吗?为什么?分 式2x -3x +2中的字母x 呢? 2.自主概括:引导学生通过类比分数得出:当分母的值为零时,分式就没有意义.对一般表达式AB ,分母B 不能等于零.3.例题与练习 例1 对于分式2x +13x -5(1)当x 取什么数时,分式有意义? (2)当x 取什么数时,分式的值是零? (3)当x =1时,分式的值是多少?例1由学生在自主完成的基础上同桌交流,然后师生评述.其中第(1)题的讲解要突出从反面考虑问题以及排除法的思想方法,即先考虑问题的反面何时2x +13x -5 无意义,当3x -5=0,即x =53 时,分母为零,分式无意义.排除x =53 的情况,即x ≠53 时,分式就有意义.强调分式有意义是求分式的值的大前提,也是今后进行分式其他运算的前提.并指出分式无意义与分式的值为零的区别,以防学生混淆. 练习:完成课本课内练习第1题.练习采用组内合作、组间抢答的形式开展活动,激发兴趣,并加深学生对新知识的理解,强调分数线的括号作用及分式求值必须在有意义的前提下进行,强化分子、分母的整体意识.(三)应用新知例2 甲、乙两人从一条公路上某处出发,同向而行.已知甲每时行a 千米,乙每时行b 千米,a >b .如果乙提前1时出发,那么甲追上乙需要多少时间?当a =6,b=5时,求甲迫上乙所需的时间.并想一想:若取a =5,b =5,你所得到的分式有意义吗?它所表示的实际意义是什么?讲解例2时,可先复习同时出发追及问题的基本等量关系: 追上所需的时间=追距÷甲、乙的速度差. 解释题意,指出关键是确定追距.然后由学生自主分步列出表示以下数量关系的代数式:追距、甲与乙的速度差、甲追上乙所需的时间.第2问由学生独立完成,第3问在小组内合作完成.练习:课本课内练习第2题. (四)小结巩固 1.小结(1)请学生谈一谈:你这一节课有什么收获(知识、方法、情感)? (2)教师板书整理学生的回答. 2.布置作业(1)课本作业题(分层布置).(2)请你联想:尽可能多地找出你学过的与分式有关的知识内容(例如,已知三角形的面积为s ,底边长为a ,那么底边上的高长为2sa),并将它写进你今天的数学小日记.7.1 分式(2)〘教材内容分析〙本节的主要内容是:分式的基本性质。

分式的基本性质是分式的约分、通分、运算等恒等变形的依据。

课本通过具体的例子,用分数的基本性质引入分式的基本性质易于学生理解、接受。

与传统教材不同的是课本中没有明确给出分式的符号法则,而是在想一想中渗透的,所以在教学中应注意让学生体会。

〘教学目标〙1、通过类比分数的基本性质,说出分式的基本性质,并能用字母表示。

2、理解并掌握分式的基本性质和符号法则。

3、能运用分式的基本性质和符号法则对分式进行变性和约分。

〘教学重点〙分式的基本性制及利用基本性质进行约分〘教学难点〙对符号法则的理解和应用及当分子、分母是多项式时的约分。

〘教学过程〙一、类比引入,探求新知问:下面这些式子成立吗?依据是什么?23 =2×53×5 =1015 1642 =16÷242÷2 =821生:分子与分母都乘以或除以同一个数,分数的值不变。

问:这个是分数的基本性质,完整吗? 补充:不为0的数。

类似地,分式也有以下基本性质:(板书)分式的分子与分母都乘以(或除以)同一个不等于0的整式,分式的值不变。

(并举例对性质中的关键词:都、同一个、不等于0的整式加以理解)强调关键词,可举例说明,如:23 ≠2⨯23,23 ≠2⨯43⨯5,23 ≠2⨯03⨯0用式子表示为A B =A ×M B ×M ,A B =A ÷MB ÷M(其中M 是不等于零的整式)设计说明:分式与分数有许多相似之处,通过类比几个浅显的例子,直观易懂,让学生经历分式的基本性质的得来过程;对几个关键词的理解,目的是让学生更好的掌握和应用性质。

二、应用新知,巩固新知1、想一想:下列等式成立吗?为什么?-a -b =a b -a b =a -b =-a b类比:2–3 = - 23,–15 = - 15,–3–7 = 37 = - –37(有理数的乘法和除法法则) 注:这里较难解释a -b =-ab ,教师可用类比、归纳的方法来帮助学生理解。

先让学生讨论,待学生回答后,教师引导学生得出结论:(板书)分子、分母与分式本身的符号,改变其中任何两个,分式的值不变——符号法则。

2、练习: P170做一做。

P172课内练习1、2设计说明:目的是应用和巩固分式的基本性质及符号法则。

3、问:2233怎么化简?化简的实质是什么?(约分)例3:化简下列各式:(1)-8ab 2c -12a 2b (2)a 2+4a+4-a 2+4教学建议:教师可以先写出一个能约分的分数,让学生化简,并指出化简的实质:是约分(学生应该能讲出的)。

对比分数的化简让学生试着完成例3。

(教师巡视过程中应对基础弱的学生加以引导)归纳:1、例题化简过程的依据是什么?(分式的基本性质)2、具体是怎样操作的?(先找出分子和分母中的公因式,再分子分母同时除以公因式) 由此得出:(板书)分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分。

设计说明:因为前一章刚刚学过因式分解,学生对公因式应该比较熟悉,所以直接让学生完成,给学生探索和尝试的机会。

4、练习:P171课内练习3、用分式表示下列各式的商,并约分(1)4a2b÷(6ab2)(2)-4m3n2÷2(m3n4)(3)(3x2+x)÷(x2-x)(4)(x2-9)÷(-2x2+6x)教学建议:板演或投影展示学生的解题过程,评价方式应以学生为主,尤其做错的,应该让学生知道错在哪里,及时改正。

三、小结1、分式的基本性质2、符号法则3、约分4、以上知识在应用时应注意什么?四、作业:课后作业题备选作业或练习:目标与评定中的3、4、5、6题。

7.2分式的乘除〖教学目标〗◆1、掌握分式的乘除法则。

◆2、会进行分式的乘除运算,并会用来解决简单的实际问题。

〖教学重点与难点〗◆教学重点:本节教学的重点是分式的乘除法则。

◆教学难点:例1的第(3)题计算过程比较复杂,例2牵涉到较复杂的图形,有一定的难度,这些都是本节教学的难点。

〖教学过程〗一、复习旧知1化简下列各式:(1)323642a ba b-(2)22164mm m-+二、引入新知合作学习,探究新知。

1、根据分数的乘除法的法则计算(1)(—23)×45;(2)76÷149类似的法则可以推广到分式的乘除运算中去吗?为什么?2、请根据你的猜想填空(1)ba×dc=(2)ba÷dc=3、通过上面的讨论与猜想,与分数的乘除法则类似,你能总结出分式的乘除法则吗?答1(1) (23)×45=-2435⨯⨯=815-(2)76÷149=79614⨯=34能,因为从本质上看分式和分数具有很大的共性。

2.(1)b da c⨯=bdac(2)b da c÷=b ca d⨯=bcad3.分式的乘除法则是:分式乘分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

即b d ac ⨯=bd ac ; b d a c ÷=b c a d ⨯=bc ad应用法则,解决问题。

例1计算(1)276b a ×3287a b (2)2ab ÷(23b a-)(3)22269a a a a +-+÷2243a a a -- (4)216123m m--÷(24m m +)讲解例1要注意以下几点:(1)第(1)、(2)两题的解法都是将分子与分子,分母与分母分别相乘,然后再约分,以体现法则的运用。

实际运算中两个分式相乘时,可以直接进行约分,然后再分子与分子,分母与分母分别相乘,得出最简的结果。

如果两个分式相除,可以利用法则,先把除法转化为乘法。

(2)例1第(3),(4)两题反映了当分式中含有多项式时的乘除运算。

基本步骤是先将多项式分解因式,然后进行约分得出最简结果;(3)如果是分式与整式的乘除,只要把整式的分母看做1,就可以运用分式的乘除法则来运算。

例2书本173p讲解例2时可按以下步骤进行分析: (1) 理解问题。

明确以下已知条件:长方体纸盒的长、宽、高为l ,b ,h ;圆柱形易拉罐的高为h ;易拉罐只放了一层就装满纸盒。

这些条件是分析数量关系所必需的; (2) 制定计划(分析解题途径)。

从所求出发考虑问题,只要分别求出纸箱的容积和易拉罐的总体积。

纸箱的容积很容易求,这样问题的关键就归结为如何求出易拉罐的总体积,也就要求出单个易拉罐的体积和易拉罐的个数。

如果设易拉罐的底面半径为r ,根据易拉罐的排列方式,每行易拉罐的个数为2l r ,每列易拉罐的个数为2br,这样就可以求出易拉罐的总数;(3) 执行计划。

让学生自己尝试求出结果;(4)回顾。

本题解法中所设的易拉罐的半径为r ,它不是已知数据,在最后结果中也不出现,但是它在表示各数量关系方面都起了很重要的作用。

相关文档
最新文档