圆中轨迹问题

合集下载

初中圆中轨迹问题瓜豆原理

初中圆中轨迹问题瓜豆原理

初中圆中轨迹问题瓜豆原理
“瓜豆原理”在解决初中圆中的轨迹问题时是一个非常有用的工具。

这个原理可以用于确定从动点的轨迹。

当主动点和从动点与一个定点之间的连线形成的夹角是定值,且主动点和从动点到定点的距离之比是定值时,从动点的轨迹就可以确定。

这个原理可以帮助我们理解主动点和从动点的轨迹之间的关系,并且可以用于解决一些复杂的几何问题。

例如,假设我们有一个圆O,一个动点P在圆O上运动,另一个动点Q与P点有固定的角度和距离关系。

通过应用瓜豆原理,我们可以确定Q点的轨迹是一个以O点为中心,以OP为半径的圆。

这样,我们就可以利用瓜豆原理来解决一些涉及圆和轨迹的几何问题。

总的来说,瓜豆原理是一种非常有用的工具,可以帮助我们解决初中数学中涉及圆和轨迹的问题。

通过理解和应用这个原理,我们可以更好地理解几何图形的运动和变化,从而更好地解决几何问题。

圆的方程(交点,轨迹)难题

圆的方程(交点,轨迹)难题

搞定圆的方程(交点,轨迹类难题)常见的隐藏圆已知动点P和两定点A,B。

�����⃗⋅PPPP�����⃗=λλ1.PPPP2.PPPP2+PPPP2=λλ3.PPPP PPPP=λλ(阿波罗尼斯圆)4.直径所对圆周角为9005.圆周角的相关性质6.关于阿波罗尼斯圆(阿氏圆)的相关性质:内分点(圆内点),外分点(圆外点),(即两定点),阿氏圆圆心在一条直线上当一个圆以及其内分点或外分点中一点确定,另外一点必然唯一确定小结论−DD=xx1+xx2−EE=yy1+yy2FF=xx1⋅xx2=yy1⋅yy2以找临界为通法的一类问题【链接】双动点类问题,其中一个在圆上的动点利用三角换元简化问题:消参数法:变式:若上述问题,两圆及定点不变,MA⊥MB,求AB的最值。

(取AB中点,利用RT三角形中,斜边中线等于斜边一半的结论,转为上述问题)(原问题)临界法:临界法:在平面直角坐标系x Oy 中,已知圆C 1:(x +1)2+(y -6)2=25,圆C 2:(x -17)2+(y -30)2=r 2.若圆C 2上存在一点P ,使得过点P 可作一条射线与圆C 1依次交于点A ,B ,且满足PA=2AB ,则半径r 的取值范围是 . [5,55]临界法:已知圆A:xx2+yy2=1,圆B:xx2+yy2−6xx−8yy+aa=0,若对于圆A上任意一点,,在圆B上总存在不������⃗=3PPMM������⃗,则实数aa的取值范围是________.(9,16]同的两点M,N,使得PPPP中华中学14临界法:角度类临界问题南京一中14易得,M点在轨迹圆xx2+yy2=1上。

对于每一个在轨迹圆上的点M,均做以OM为弦,所对圆周角为30°的外接圆,点P可以在每一个同样的外接圆的优弧上,这些外接圆优弧铺满了一个圆环面,即图中两个圆中间的区域。

我们需要知道最外层的圆的半径,易知,最外层圆的半径即为外接圆的直径2(最远距离)。

与圆有关的轨迹问题

与圆有关的轨迹问题

A
Q M O 与圆有关的轨迹问题
1、 已知:点P 是圆2216x y +=上的一个动点,点A 是x 轴上的定点,坐标为(12,0),当P 点在圆上运动时,求线段PA 的中点M 的轨迹方程
2、 圆22(5)(4)6x y -+-=内一定点A (4,3),在圆上作弦MN ,使90MAN ∠=,求弦MN 中点P 的轨迹方程
3、 求与y 轴相切,且与圆2240x y x +-=也相切的圆P 的圆心的轨迹方程
4、 如图,已知定点A (2,0),点Q 是圆221x y +=上的动点,AOQ ∠的
平分线交AQ 于M ,当Q 点在圆上移动时,求动点M 的轨迹方程
5、 由点P 分别向两定圆221:(2)1C x y ++=及圆222:(2)4C x y -+=所引切线段长度之比为1:2,求点P
的轨迹方程
6、已知与22:2210C x y x y +--+=相切的直线l 交x 轴、y 轴于A 、B 两点,O 为坐标原点,(),2,2OA a OB b a b ==>>.
1求线段AB 中点P 的轨迹;。

《解析几何》第5讲 圆的最值与轨迹问题

《解析几何》第5讲 圆的最值与轨迹问题
第八章
平面解析几何
第4课时 圆的最值与轨迹问题
第八章
平面解析几何
2 2 例题1.实数x,y满足x +y -4x+1=0.
(1) 求y-x的最值.
(2) 求y/x的最值.
(3)求x2+y2的最值.
栏目 导引
第八章
平面解析几何
y -b (1) 形如 u= 型的最值问题, x-a 可转化为过点(a, b)和点(x, y)的直线的斜率. (2) 形如 t=ax+by 型的最值问题, 可转化为动直线的截距. (3) 形如(x-a) +(y-b) 型的最值问题, 可转化为动点到定点的距离平方.
栏目 导引
第八章
平面解析几何
解析:圆 x2+ y2+ 2x-4y+ 1= 0 的圆心为(-1, 2),半径 r = 2. 因为直线被截得的弦长为 4,则圆心在直线 2ax- by+ 2= 0 上,所以- 2a-2b+ 2= 0,即 a+ b= 1. a+b 2 1 1 所以 ab≤ ( ) = ,当且仅当 a= b= 时取等号. 2 4 2 1 故 (ab)max= . 4
栏目 导引
2
2
第八章
平面解析几何
例题2.已知点A(2,0)在圆x2+y2=4上, B(1,1)在圆内,P,Q为圆上的动点. (1)求线段AP中点的轨迹方程; (2)若PQ 经过点B,求线段PQ中点 的轨迹方程. (3)若∠PBQ=90°,求线段PQ中点 的轨迹方程.
栏目 导引
第八章
平面解析几何
求与圆有关的轨迹常采用以下方法: (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据圆、直线等定义列方程. (3)几何法:利用圆的几何性质列方程. (4)代入法:找到要求点与已知点的关系,代入已知点满足的 关系式等.

与直线和圆有关的轨迹问题

与直线和圆有关的轨迹问题
例1.如图,圆O1和圆O2的半径都等于1,O1O2 4,过动点 P分 别 作 圆O1、 圆O2的 切 线PM、PN ( M、N为 切 点), 使得PM 2PN.试建立平面直角坐标系,求动点 P的 轨 迹 方 程.
(定义法)
例2.已知点A(1,0), B(1,0),C是圆x2 y2 1上的 动点, 连接BC并延长至D点,使 | CD || BC |,求直 线AC与 直 线OD的 交 点P的 轨 迹 方 程.
直线与圆方程的综合问题
例6.已知圆C : x2 y2 2x 4 y 3 0. (1)若圆C的切线在x轴和y轴上截距的绝对值相等, 求此切线方程; (2)从圆C外一点P( x1, y1 )向圆引一条切线,切点为 M , O为坐标原点,且有 | PM || PO |, 求使 | PM | 最小 时的P点坐标.
(转移法)
练 习:已 知 线 段AB的 端 点B的 坐 标 为(1,2),端 点A 在圆x2 y2 4上运动,求线段AB中点M的轨迹 方 程.
例3.过 点A(0,1)作 直 线 交圆M : ( x 2)2 y2 1于 点 B、C,在 线 段BC上 取 点P,使 | BP |:| PC || AB |:| AC |,求 点P的轨迹方程.
(a 2)(b 2) 2 (2)求线段AB中点的轨迹方程.
总结:
1.求轨迹方程的方法,主要有定义法、转移法、参数法、几 何法、交轨法.
2.(1)求两条直线、直线与曲线的交点的轨迹,首先选用 的是交轨法。
(2)K参数法是选取直线的斜率作为参数。 (3)由于圆的几何性质特别明显,几何法是众多方法中最 简单的.
(参数法)
例4.直 线 l1
:
y

2(x t

与圆有关的轨迹问题 -高二数学(人教A版2019选择性必修第一册)(解析版)

与圆有关的轨迹问题 -高二数学(人教A版2019选择性必修第一册)(解析版)

与圆有关的轨迹问题知识点1 5种定义形式的圆1、“定义圆”:在平面内,到定点的距离等于定长的点的集合.数学语言描述为:在平面内,{|}M MA r =,其中M 为动点,A 为定点,0r >为定值.2、“斜率圆”:在平面内,与两定点斜率之积为-1的点的集合(除去定点所在垂直于x 轴的直线与曲线的交点).数学语言描述为∶在平面内,{|1}MA MB M k k ⋅=-,其中M 为动点,A ,B 为定点.且点M 的横坐标不等于A ,B 的横坐标.3、“平方圆”:在平面内,到两定点距离的平方和为定值的点的集合.数学语言描述为:在平面内,22{|}M MA MB λ+=,其中M 为动点,A ,B 为定点,λ为定值.注:若(,).(,)A a b B c d ,则点M 的轨迹方程为22221()()[()()]2224a cb d x y ac bd λ++-+-=--+-,此时221[()()]2a cb d λ>-+-.4、“向量圆”:在平面内,与两定点形成向量的数量积为定值的点的集合.数学语言描述为∶在平面内,{|}M MA MB λ⋅=,其中M 为动点,A ,B 为定点,λ为定值 注:若(,).(,)A a b B c d ,则点M 的轨迹方程为22221()()[()()]224a cb d x y ac bd λ++-+-=+-+-,此时221[()()]4a cb d λ>--+-.特别地,若A ,B 为定点,且0MA MB ⋅=,则点M 的轨迹是以AB 为直径的圆拓展:“角度圆”:在平面内,与两定点所成角为定值的点的集合.(角度可用向量的夹角公式表示) 5、“比值圆”(阿波罗尼斯圆):在平面内,到两定点距离之比为定值的点的集合. 数学语言描述为:{|}MAM MBλ=,其中M 为动点,A ,B 为定点,λ为定值,λ>0且λ≠1. 注:当1λ=时,M 的轨迹是线段AB 的垂直平分线. 6、这些圆彼此之间的联系:(1)斜率圆可以看成向量圆的特例,即两向量互相垂直时可以转化为两直线斜率之积等于-1,需要注意斜率不存在的情形.也就是说数量积为零比斜率之积为-1更一般. (2)比值圆与平方圆是一样的,都是用两点间距离公式求解.知识点2 注意“轨迹”与“轨迹方程”的区别1、“轨迹”是图形,“轨迹方程”是方程.2、求轨迹方程后要检验求轨迹方程后一定要注意检验轨迹的纯粹性和完备性,在所得的方程中删去或补上相应的特殊点,以保证方程的解与曲线上的点具有一一对应关系.考点一 直接法求轨迹解题方略:直接法是指将动点满足的几何条件或者等量关系,直接坐标化,列出等式,然后化简而求出动点轨迹方程的一种方法.此法的一般步骤∶建系、设点、列式、化简、限制说明.注:(1)根据已知条件及一些基本公式(两点间距离公式、点到直线的距离公式、直线斜率公式等) (2)根据公式直接列出动点满足的等量关系式,从而得到轨迹方程。

圆的一般方程(轨迹问题)

圆的一般方程(轨迹问题)

(P124,B3) 已知一曲线是与定点O(0,0),A(3,0)距离的
比是 1 的点的轨迹,求此曲线的轨迹方程,并画出曲线.
2
解:在给定的坐标系里,设点M(x,y)是曲线上的任意一点,
也就是点M属于集合
{M
|
|
OM|
1 }
| AM| 2 由两点间的距离公式,得
y
M
x2 y2 1 (x 3)2 y2 2
CO
Ax
化简得
x2+y2+2x3=0

这就是所求的曲线方程.
直译法
把方程①的左边配方,得(x+1)2+y2=4.
所以方程②的曲线是以C(1,0)为圆心,2为半径的圆.
(P124,B2)长为2a的线段AB的两个端点分别在相互 垂直的两条直线上滑动,则线段AB的中点轨迹为?
x2 y2 a2
轨迹的常用求法:
1.直译法; 2.定义法;
y
B
M

A
x
【课堂练习】
1.已知Rt△ABC中,A(-1,0),B(3,0),
复习引入
【思考1】平面内到一定点A的距离等于定长的
点M的轨迹是什么?
M r
|MA|=r
A
【答】以定点A为圆心,定长r为半径的圆。
【思考2】平面内与两定点A、 B距离相等的点
M的轨迹是什么?
M
|MA|= |MB|
【答】线段AB的垂直平分线。 A
B
典型例题
【例1】已知线段AB的端点B的坐标是(4,3),端点A在圆 (x+1)2+y2=4上运动,求线段AB的中点M的轨迹方程.
3.求轨迹方程的步骤:①建系设点(x,y); ②列式代入; ③化简检验.

与圆有关的轨迹问题

与圆有关的轨迹问题

课下探索: 课下探索: 与两个定圆都相切的动圆的圆心的轨迹
(1)与两圆均外切 )
y A B x
(2)与两圆均内切 ) y
A B x
内切、 外切、 (3)与圆 内切、与圆 外切 4)与圆 外切、与圆 内切 )与圆A内切 与圆B外切 )与圆A外切 与圆B内切 (
y y A B x A B x
方法小结 :与定圆相切的动圆圆心的轨迹情 况复杂, 况复杂, 1.抓牢两个圆心,一个切点,三点一定共线。 1.抓牢两个圆心,一个切点,三点一定共线。 抓牢两个圆心 一定共线 2.抓牢定圆的半径,设出动圆半径作辅助。 2.抓牢 圆的半径 设出动圆半径作辅助。 抓牢定 半径, 动圆半径作辅助 3.抓牢动点到两定点的距离的和与差不放。 3.抓牢动点到两定点的距离的和 不放。 抓牢动点到两定点的距离的
C

探索与定圆相切的动圆圆心轨迹要抓牢动 探索与定圆相切的动圆圆心轨迹要抓牢动 圆圆心到两定点的距离的和与差不放 不放。 圆圆心到两定点的距离的和与差不放。
S A B
C A S S B A B
定点A,同时与定圆 定圆⊙ 结论 :过定点 ,同时与定圆⊙ B 相 的动圆圆心 的轨迹可能是椭圆 圆心S的轨迹可能是椭圆或 切 的动圆圆心 的轨迹可能是椭圆或双 曲线或直线的一部分。 曲线或直线的一部分。
x
x y 变题 2 :已知双曲线的方程为 2 − 2 = 1( a > 0, a b b > 0 ), F1 , F2 分别为左右焦点 , Q 是双曲线上任意 一点 , 从左焦点 F1 作 ∠ F1QF 2 平分线的垂线 , 垂足 为 P , 求点 P 的轨迹方程
F1
O
F2
x
P
M
经过点 A(5,0)且 与 且 例3: C ( x + 5) 2 + y 2 = 49 :圆 的轨迹方 外 切的圆的圆心 P 的轨迹方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与圆有关的轨迹问题
例1:设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以 OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.
变式:已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.
(1)求M 的轨迹方程;
(2)当OP =OM 时,求l 的方程及△POM 的面积.
例2:已知BC =2,且AB =2AC ,求点A 的轨迹.
变式1:若在ABC ∆中,BC =2,且AB =2AC ,求ABC ∆面积的最大值。

变式2:已知点 (5,0)A - ,直线OA 上(O 为坐标原点)是否存在定点
B (不同于A ),对圆229x y +=上的任意一点P ,使得PB PA
为一常数.
变式3:已知点(2,0),(4,0)A B -,圆22:(4)()16C x y b +++=,P 为圆 上的动点,若
PA PB 为定值,求实数b 的值.
变式4:已知圆)0,1(,1)4(:221Q y x C =++,过点P 作圆C 1的切线,切点为M , 若PQ PM 2=,求P 点的轨迹方程。

相关文档
最新文档