七年级数学上册正数和负数知识梳理人教版
人教版七年级数学上册:1-1、正数和负数(含知识点、练习与答案)

人教版七年级数学上册:1-1、正数和负数(含知识点、练习与答案)人教版七年级数学上册:第一章:有理数1.1、正数和负数【知识点总结】1、正数和负数的概念负数:比0小的数;正数:比0大的数;0既不是正数,也不是负数。
2、注意:①当字母x表示正数时,-x是负数;当字母x表示负数时,-x是正数;当字母x表示0时,-x是0。
②正数有时也可以在前面加“+”,有时“+”可以省略不写。
3、具有相反意义的量如果正数表示某种意义的量,那么负数可以表示具有与该正数相反意义的量。
4、0表示的意义(1)0表示“没有”;(2)0是正数和负数的分界线,0既不是正数,也不是负数;(3)0表示一个确切的量。
【新课同步练习】1、下列各数中,是负数的是()。
A、0.8B、-5C、0D、32、在-3.1,+2,5.7,0,-9,13这几个数中,正数有()。
A、1个B、2个C、3个D、4个3、如果把向左走8米记为+8,则向右走6米可记为()。
A、+2B、-2C、+6D、-64、如果+250米表示一辆汽车向东行驶了250米,那么-380米表示这辆汽车()。
A、向西行驶了380米B、向南行驶了380米C、向北行驶了380米D、向上行驶了380米5、学校新买了4个新的排球,每个排球的标准质量是250克。
这4个新排球的质量(单位:克)纪录分别是:-0.7、+0.8、+1.2、-1,其中正数表示超过标准质量的克数,负数表示不足标准质量的克数。
仅从轻重的角度看,这4个新排球最接近标准的排球质量的是()。
A、-0.7B、+0.8C、+1.2D、-16、下列说法中,正确的是()。
A、-y一定是一个负数。
B、不大于0的数一定是负数。
C、一个数如果不是正数,则一定是负数。
D、负数比0小。
7、观察下列一组数:-2,4,-6,8,-10,12,…,则第50个数是()。
A、100B、-100C、102D、-1028、某种溶液的说明书上标明,这种溶液的保存温度为(18±2)℃,那么这种溶液可以在()保存。
第1章有理数(单元复习课件)(知识导图+考点梳理+数学活动+课本复习题)七年级数学上册人教版2024

第一季度
第二季度
第三季度
第四季度
盈利/万元
-6.8
-10.7
31.5
27.8
31.5> 27.8 > -6.8 > -10.7
6. 某年我国人均水资源比上年的增幅是 -5.6%. 后续
三年各年比上年的增幅分别是 -4.0%,13.0%,-9.6%.
这些增幅中哪个最小?增幅是负数说明什么?
-9.6%最小
(1)一般地,数轴上表示数 a 的点与原点的距离叫作数 a 的绝对值,记作| a |,
读作“a的绝对值”.
(2)绝对值的性质(非负性).
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是
0.
即: ①如果a>0,那么│a│= a;
②如果a=0,那么│a│= 0;
③如果a<0,那么│a│= -a.
7. 在数轴上表示下列各数、并将这些数按从小到大的顺序排列,
再用“<”连接起来.
3,-4,0,2,-2,-1
-4
-4
-3
-2
-1
0
-2
-1
0
-4 < -2 < -1 <
1
2
3
2
3
0 < 2 < 3
4
知识梳理
4. 相反数
(1)相反数:只有符号不同的两个数,互为相反数;
(2)相反数的几何意义:
在数轴上位于原点两侧并且到原点距离相等的两个点所表示
–(–2) > –|+2|
(3)+|–3| 和 |–(+5)|; (4)–(+ ) 和 –|–
(3)+|–3| = 3, |–(+5)| = 5;
人教版七年级数学上册总复习知识点汇总

七年级数学上册知识点第一章有理数正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
有理数的加减法。
有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。
乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
有理数的乘方1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。
在a的n次方中,a叫做底数,n叫做指数。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何次幂都是0。
2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a <10。
人教版七年级数学上册1.1正数和负数

【解析】正数是超过80分的数,负数是低于80分的数, 0表示恰好80分
【答案】90+78+80+87+75=410
1.1正数和负数 习题精选
1.如果向北走5米记作+5米,那么向南走10米记作-10米。
2.如果勤俭30千瓦时电记作+30千瓦时,那么浪费10千瓦时电 记作 -10千瓦时 。
3.如果-26.80元表示亏损26.80元,那么+100元表 示 盈利 100元 。
4.如果体重增加1.5千克记作1.5千克,那么-1.5千克表 示 体重减少1.5千克 。
5.如果中午后5小时记作-5小时,那么中午前3小时记 作 +3小时 。
1.1正数和负数 习题精选
6.下列说法正确的是( C ) A.0是正数 B.0是负数 C.0是整数
D.0不是自然数
7.在下列各数中 -5,0,-0.3,+ 1
其中正数的个数是( B )
3
,-
1 4
,
,
A.1
B.2 C.3 D.4
本节课我们从实际问题入手,对于生活中许多相 反意义的量,为了区分它们,规定其中的一个量为正, 用一个正数记录,相反的另一个量为负,用一个负数 记录,引入了正数和负数的概念。又利用正数负数去 表示一些问题中的数量关系,这说明数学和实际生活 是紧密联系的。
1.1正数和负数 习题精选
8.指出下列各数中,哪些是正数?哪些是负数?
0,-2.3,3 1 , - 0.08,- 3 ,9 , 3.14,-103,
2
52
9.若向东走2米记作+2米,向西走5米记作-5米,则一个人 从A地先走15米,再走-18米,又走+25米,你能判断此人 最后在何处吗?
新人教版七年级数学上册知识点汇总

新人教版七年级数学上册知识点汇总第一章有理数一、知识框架:本章主要介绍了有理数的相关概念和运算法则,包括正数与负数、有理数、数轴、相反数、绝对值、比大小、倒数、加法法则、加法运算律、减法法则、乘法法则和乘法运算律等。
二、知识概念:1.正数与负数:大于0的数是正数,小于0的数是负数,0既不是正数也不是负数。
2.有理数:⑴凡能写成 p/q (p、q为整数,且p≠0)形式的数,都是有理数。
正整数、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
注意:0既不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数。
⑵有理数的分类:正有理数:正整数、正分数负有理数:负整数、负分数零:03.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
4.相反数:⑴只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;⑵相反数的和为0,即a+b=0,则a、b互为相反数。
5.绝对值:⑴正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。
注意:绝对值的意义是数轴上表示某数的点离原点的距离;⑵绝对值可表示为:a=|a| (a≥0)a=|a|或a=-a (a<0)绝对值的问题经常分类讨论。
6.有理数比大小:⑴正数大于0,0大于负数,正数大于负数;⑵两个负数比较,绝对值大的反而小。
7.倒数:乘积为1的两个数互为倒数。
注意:0没有倒数;若a≠0,则a的倒数是1/a;若ab=1,则a、b互为倒数;若ab=-1,则a、b互为负倒数。
8.有理数加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加;⑵异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝值;⑶一个数与0相加,仍得这个数。
9.有理数加法的运算律:⑴加法的交换律:a+b=b+a;⑵加法的结合律:(a+b)+c=a+(b+c)。
10.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。
(完整版)人教版七年级数学上册知识点归纳

第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a>⇔= ; 0a 1a a <⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
1.1 正数和负数 课件 2024-2025-人教版(2024)数学七年级上册

课后小结 正数
数
0
比 0 __大__的数
既不是_正__数_ 也不是_负__数_
表示相反 意义的量
负数 在正数前面加上“_﹣__”__号__的数
1. 下列说法,正确的是
( C)
A. 加正号的数是正数,加负号的数是负数
导入新课 观看下面的视频,体会数的产生过程.
回忆自然数的研究过程,探讨我们该如何研究数.
自然数 自然数 的引入 的定义
自然数 的表示
自然数的运算 与运算律
有理数 的引入
有理数 的定义
有理数 的表示
有理数的运算 与运算律
探究新知
知识点1:正数和负数
数的产生
结绳记数 数
没有,空位 0
第一章 有理数
1.1 正数和负数
人教版七年级(上)
教学目标
1. 会判断一个数是正数还是负数. 2. 能用正、负数表示生活中具有相反意义的量. 3. 会用正、负数表示具有相反意义的量,并能用数学
知识来表达一些生活中的事件. 重点:理解正负数的意义,会判断一个数是正数还是
负数. 难点:能用正负数表示生活中具有相反意义的量.
增长 16.0% 下降 9.7%
增长: 16.0% -9.7%
合作探究 观察上面提到的数字,你能找到什么规律吗?
-3
6
3.97
前面有符号
-11.43 16.0% -9.7%
大于0
定义总结 例如:6、3.97、16.0%. 例如:-3、-11.43、-9.7%.
正数:大于 0 的数. 负数:在正数前面加上符号“﹣”(负)的数.
最新人教版数学七年级上册重点知识详细梳理

人教版数学七年级上册重点知识详细梳理一、有理数1.正数和负数:1)正数:大于0的数。
2)负数:在正数前面加上符号“-”的数。
3)0的意义:不仅表示没有,还可以表示某种量的基准。
2.有理数:1)定义:整数和分数统称为有理数。
2)分类:正整数、0、负整数、正分数、负分数。
3.数轴:1)定义:规定了原点、正方向和单位长度的直线叫做数轴。
2)数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数。
4.相反数:1)定义:只有符号不同的两个数叫做相反数。
2)性质:正数的相反数是负数,负数的相反数是正数,0的相反数是0。
5.绝对值:1)定义:数轴上某个数与原点的距离叫做这个数的绝对值。
2)性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
6.有理数的运算:1)加法:同号两数相加取相同的符号,并把绝对值相加;异号两数相加取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
2)减法:减去一个数等于加上这个数的相反数。
3)乘法:两数相乘,同号得正,异号得负,并把绝对值相乘。
4)除法:除以一个不等于0的数,等于乘这个数的倒数。
7.乘方:1)定义:求几个相同因数积的运算叫做乘方。
2)性质:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何次幂都是0。
二、整式的加减1.单项式:1)定义:都是数或字母的积的式子叫做单项式。
2)系数:单项式中的数字因数叫做这个单项式的系数。
3)次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2.多项式:1)定义:几个单项式的和叫做多项式。
2)项:每个单项式叫做多项式的项。
3)次数:多项式里次数最高项的次数,叫做这个多项式的次数。
3.合并同类项:1)定义:把多项式中的同类项合并成一项,叫做合并同类项。
2)性质:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【知识梳理】
1、负数的引入
在现实生活中,常会遇到这样一些问题: (1)温度是零上10℃或零下5℃; (2)运进80筐梨和运出50筐梨; (3)盈利400元和亏损300元;
在这里出现的每一对量,虽然有不同的具体内容,但都有一个共同特点:它们都是具有相反意义的量.
2、负数的表示方法:
用我们小学学过的数就不容易来区分这样相反意义的量了.比如,零上5℃和零下5℃都用数字5来表示就会产生误会.也就是说,我们原来学的数不够用了.大家知道,在天气预报中,零下5℃是用-5℃来表示的,“-5℃”读作负5摄氏度.这样我们就引入了负数.
像5,1.2,
2
1
,500,……这样的数叫做 正数,它们比0大. 在正数前面加上“-”号的数叫做 负数,如-10,-3,-2
1
,-0.3145,……它们比0
小.0既不是正数,也不是负数.
为了突出数的符号,也可以在正数前面加“+”号,如+5,+1.2,+2
1
,+500,…… 有了正数和负数就可以表示相反意义的量了: 3、有理数的概念:
引进了负数,我们学过的数可以分为:⎪⎩
⎪
⎨⎧负整数
零正整数
整数和⎩⎨⎧负分数正分数分数
整数和分数统称为 有理数. 4、有理数的分类可有两种方式:
(1)⎪⎪⎪
⎩
⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩
⎪⎨⎧负分数正分数
分数负整数零正整数整数有理数
(2)⎪⎪⎪⎩
⎪
⎪
⎪⎨⎧⎩⎨⎧⎩⎨
⎧负分数负整数负有理数零正分数正整数
正有理数有理数
注意,0是一个特别的数,它既不是正数,也不是负数,它是一个整数,也是我们在分类时很容易漏掉的数,在学习这节时要特别注意.
5、到现在为止,我们学过的数有:
正整数(也叫自然数),如1,2,3,…;
零,0;
负整数,如-1,-2,-3,…;
正分数,如1/2,5.3,2/3,…;
负分数,如-1/2,-3.6,-6/7,…。
正整数、0、负整数统称整数,正分数、负分数统称分数。
整数和分数统称有理数。
【重点和难点】
重点:正负数的意义,有理数的分类。
难点:正、负数的意义以及在表示相反意义的量中的应用。
【典例解析】
例1、下面两题是有关“正”和“负”的概念,怎样表示出来。
-元表示什么?
(1)在收入和支出两项目中,若把收入定为正的,那么160
+米表示什么?
(2)在前进和后退的军训操练中,若把后退定为负的,那么102
解:
-元表示支出160元。
(1)160
+米表示前进102米。
(2)102
例2、如果把向北的方向规定为正,那么走3.5千米,走-1.2千米,走0千米的意义各是什么?
分析:规定“向北”的方向为正,那么“向南”的方向就为负;
解:(1)走3.5千米就是向北走3.5千米;
走-1.2千米就是向南走1.2千米;
走0千米意即原地未动.
例3、把下列各数分别填在相应的表示集合的圈里.
分析:自然数包括正整数和0,非正数的集合包含负数和零.应注意有限小数和无限循环小数都可以写成分数的形式,都是有理数. 解:
【过关试题】
一、选择题:
1、下面说法中正确的是 ( )
A .“向东5米”与“向西10米”不是相反意义的量;
B .如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;
C .如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;
D .若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米. 2、0是( )
A. 正数
B. 负数
C. 整数
D. 正有理数 3、 下列说法中正确的是( )
A. 整数又叫自然数
B. 0是整数
C. 一个数不是正数就是负数
D. 0不是自然数
8、0、102
-1、-0.03 0、-47
-1、8、0; -47、102
%9;7.5;13
7 ·
4、下面说法中,不正确的是 ( )
A .在有理数中,零的意义仅表示没有;
B .0不是正数,也不是负数,但是有理数;
C .0是最小的整数;
D .0不是偶数.
二、 填空题:
1、 用正数或负数表示下列各题中的数量:
(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______; (2)球赛时,如果胜2局记作+2,那么-2表示______; (3)若-4万表示亏损4万元,那么盈余3万元记作______;
(4)+150米表示高出海平面150米,低于海平面200米应记作______;
2、最小的自然数是 ,最大的负整数是 ,最小的非负整数是 。
3. 将下列各数分别填入相应的大括号里:5,32-
,2003,02.0-,6.8,0,25
-
,13-,
57
,2-。
正数集合{ } 整数集合{ } 负数集合{ } 分数集合{ } 4. 不用负数,请讲出下列各题的意义。
(1)某公司在2003年上半年营销情况是50-万元。
(2)向西走了150-米。
(3)运走80-吨大米。
三、 解答题:
1、 把下列各数分别填在题后相应的集合中:25-
,0,1-,0.73,2,5-,87
,52.29-,
+28。
(1)正数集合: (2)负数集合: (3)整数集合: (4)分数集合: (5)正整数集合: (6)负整数集合:
(7)正分数集合:
2、某地一天中午12时的气温是6°C ,傍晚5时的气温比中午12时下降了4°C ,凌晨4时的温度比傍晚5时还低4°C ,问傍晚5时的气温是多少?凌晨4时的气温是多少?
答案:
一、1、D ;2、C ;3、B ;4、A 二、1(1)-4000米;(2)负2米;(3)+3万元;(4)-200米 2、0;-1;0
3、正数集合{5,2003,6.8,57};负数集合{32-,02.0-,25
-
,13-,2-} 整数集合{5,2003,0,13-,2-};分数集合{32-
,02.0-,6.8,25-
,57
}
4、(1)亏损50万元 (2)向东走了150米 (3)运进80吨大米
三、1、(1)正数集合:0.73,2,87,+28 (2)负数集合:25
-
,1-,5-,52.29-
(3)整数集合:0,1-,2,5-,+28
(4)分数集合:25-
,0.73,87
,52.29-
(5)正整数集合:2,+28 (6)负整数集合:1-,5-
(7)正分数集合:0.73,87
(8)负分数集合:25
-
,52.29-
2、2°C ;-2°C.。