各种仿真系统的模型实例
楼宇温控系统simulink仿真实例

楼宇温度控制系统simulink仿真1 目的通过建立楼宇温度控制系统,学习simulink常用模块的使用、参数设置以及simulink仿真的基本流程。
2 Matlab相关模块的说明2.1版本:Matlab2017b2.2可能用到的模块加法器:sum,多个变量求和;增益器:Gain,按比例增大输入;积分环节:对输入求积分;Contant:产生一个常量,是source中最常用的一种;Relay:滞环比较器(迟滞比较器),一般用作有波动系统的缓冲;Sin模块:产生正弦信号,模拟交变信号;Scope模块:示波器;Flaoting Scope:浮动示波器(无需连接);Subsystem模块:将基本单元封装成一个模块。
3 楼宇温控系统的组成3.1楼宇温控系统组成加热器(被控对象)、调温器(控制器)和房间(环境)。
和家庭空调系统类似。
系统简图见下图1。
图1 楼宇温控系统简图3.2楼宇温控系统的基本过程1)调温器(Thermostat)对加热器发出加热信号,控制加热器(Heater)启动加热,加热器产生恒定温度的和速率的加热空气。
2)加热气体被送到房间内和房间内空气产生热交换,将房间(Room)空气加热,同时房间内等体积的空气被抽送到加热器,循环加热,直至温度达到设定值,加热器停止加热。
3)房间内的空气和室外空气存在热交换,导致房间内有热量损失。
3.3室内温度控制的机理分析及建模1)楼宇中央空调一般采用恒温输出,即加热器设定温度为固定值(T_Heater=常数,单位℃),加热器输出恒定质量速率的加热气体M(kg/h)。
2)加热器产生的热增益:dQ/dt=M*C*deltaT(热量公式),C 是空气的比热。
3)室内空气与室外空气通过门窗、墙壁等进行热交换。
其作用机理满足热导(热阻)方程:R=(T1-T2)/P,其中P为功率,R为热阻(单位℃/W)则P=(T1-T2)/R,即dQ/dt=P=(T1-T2)/R。
dQ/dt表示室内空气和室外空气进行交换产生的热增益。
【案例分析】经典HFSS仿真实例详解

【案例分析】经典HFSS仿真实例详解新朋友请点击上⽅RFsister关注我们关于仿真软件HFSS相信⼤家多少都有听过,这是⼀款⾮常强⼤好⽤的仿真软件,已经被应⽤于多个领域,当然,天线设计也离不开仿真软件。
本期⼩编为⼤家带来的是经典天线——对称振⼦天线仿真。
下⾯我们先来看看软件的简介。
HFSS – High Frequency Structure Simulator,Ansoft公司推出的三维电磁仿真软件,⽬前已被ANSYS公司收购;是世界上第⼀个商业化的三维结构电磁场仿真软件,业界公认的三维电磁场设计和分析的⼯业标准。
HFSS提供了⼀简洁直观的⽤户设计界⾯、精确⾃适应的场解器、拥有空前电性能分析能⼒的功能强⼤后处理器,能计算任意形状三维⽆源结构的S参数和全波电磁场。
HFSS软件拥有强⼤的天线设计功能,它可以计算天线参量,如增益、⽅向性、远场⽅向图剖⾯、远场3D图和3dB带宽;绘制极化特性,包括球形场分量、圆极化场分量、Ludwig第三定义场分量和轴⽐。
使⽤HFSS,可以计算:①基本电磁场数值解和开边界问题,近远场辐射问题;②端⼝特征阻抗和传输常数;③ S参数和相应端⼝阻抗的归⼀化S参数;④结构的本征模或谐振解。
⽽且,由Ansoft HFSS和Ansoft Designer构成的Ansoft⾼频解决⽅案,是⽬前唯⼀以物理原型为基础的⾼频设计解决⽅案,提供了从系统到电路直⾄部件级的快速⽽精确的设计⼿段,覆盖了⾼频设计的所有环节。
下⾯我们先来看看建⽴HFSS⼯程的⼀般过程。
(1)⾸先第⼀步是运⾏Ansoft HFSS:(2)然后单击下图红框处图标,在当前⼯程中插⼊⼀个设计:(3)选择求解类型,如下图:(4)为建⽴模型设置合适的单位,如下图:(5)在3D窗⼝中建⽴模型。
(6)设置需要的辐射边界。
(7)如果选择激励求解或激励终端求解,则需要为模型设置激励。
(8)设置求解频率及扫频操作等。
(9)点击下图按钮,检查当前⼯程的有效性。
matlab电气仿真实例

matlab电气仿真实例MATLAB电气仿真实例在本文中,我们将探讨MATLAB在电气仿真领域中的应用。
通过一个具体的实例,我们将展示如何使用MATLAB进行电气系统的建模、分析和仿真。
1. 引言电气系统的建模和仿真对于设计和分析电路、控制系统、电力系统等具有重要意义。
传统的电气仿真方法需要手动编写大量的数学方程,并且计算过程繁琐。
而MATLAB提供了一种快速、简便且高效的方式来实现电气仿真。
2. 问题描述假设我们有一个简化的直流电机系统。
系统包括一个直流电机、一个电阻和一个电压源。
我们想要分析在给定电压下电机的转速以及电机周围的电压和电流的变化情况。
3. 建立电气系统模型首先,我们需要建立电气系统的数学模型。
在本例中,我们使用电路定律(基尔霍夫定律和欧姆定律)来建立模型。
根据基尔霍夫定律,我们可以得到电路的电流方程:I = \frac{V}{R}其中,I是电流,V是电压,R是电阻。
根据欧姆定律,我们可以得到电机的速度与电压之间的关系:\omega = \frac{V}{K}其中,ω是电机的角速度,V是电压,K是电机的转速常数。
基于这些方程,我们可以进一步建立系统的状态空间模型:\begin{bmatrix} \dot{\omega} \\ \dot{I} \end{bmatrix} =\begin{bmatrix} 0 & \frac{-1}{K} \\ 0 & \frac{-1}{R}\end{bmatrix} \begin{bmatrix} \omega \\ I \end{bmatrix} +\begin{bmatrix} \frac{1}{K} \\ 0 \end{bmatrix} V其中,\dot{\omega}和\dot{I}分别表示电机速度和电流的导数。
4. MATLAB仿真现在我们可以使用MATLAB进行仿真了。
首先,我们需要定义系统的参数和初始条件。
例如,我们可以选择电压源电压为12V,电阻为1Ω,转速常数为10。
Multisim仿真教程及实例

菜单系统工具栏设计工具栏仪器仪表工具栏电路图编辑窗口四、定制Multisim用户界面操作:设置菜单栏Option /Preferences中各属性选择元件的符号标准ANSI:美国标准DIN:欧洲标准。
元器件和背景的颜色一、电源库电源库中共有30个电源器件,分别是:●接地端●数字接地端● VCC电压源● VDD数字电压源●直流电压源●直流电流源●正弦交流电压源●正弦交流电流源●时钟电压源●调幅信号源●调频电压源●调频电流源● FSK信号源●电压控制正弦波电压源●电压控制方波电压源●电压控制三角波电压源●电压控制电压源●电压控制电流源●电流控制电压源●电流控制电流源●电流控制电压源●电流控制电流源●脉冲电压源●脉冲电流源图●指数电压源●指数电流源●分段线性电压源●分段线性电流源●压控分段电压源●受控单脉冲●多项式电源●非线性相关电源4、时钟电压源实质上是一个频率、占空比及幅度皆可调的方波发生器二、基本元件库●电阻●虚拟电阻●电容●虚拟电容●电解电容●上拉电容●电感●虚拟电感●电位器●虚拟电位器●可变电容●虚拟可变电容●可变电感●虚拟可变电感●开关●继电器●变压器●非线性变压器●磁芯●无芯线圈●连接器●插座●半导体电阻●半导体电容●封装电阻● SMT电阻● SMT电容● SMT电解电容● SMT电感现实元件虚拟元件“GeneralGeneral””页:元件的一般性资料,包括元件的名称、制造商、创建时间、制作者。
“SymbolSymbol””页:元件的符号。
“ModelModel””页:元件的模型,提供电路仿真时所需要的参数。
Footprint””页:元件封装,提供“Footprint给印制电路板设计的原件外形。
Electronic Parameters””页:“Electronic Parameters元件的电气参数,包括元件在实际使用中应该考虑的参数指标。
编辑电阻元件“User FieldsUser Fields””页:用户使用信息。
生产系统建模与仿真

第10章 生产系统建模与仿真
本章内容
• • • • 生产系统建模概述 常见生产系统模型 生产系统仿真技术 生产系统仿真实例
1.生产系统建模概述
1.1生产系统模型
– 模型是系统某种特定性能的一种抽象形式。 它是为了某种特定的目的将系统的某一部分 信息进行抽象而构成的系统替代物,是对系 统的简化 – 模型是现实系统的抽象描述,它由一些与所 分析的问题有关的主要因素构成,并表明有 关因素之间的关系
1.生产系统建模概述
• 生产系统的建模原则
– 准确性。模型必须反映现实物理系统的本质规律,数据 必须可靠,公式和图表必须正确,有科学依据 – 可靠性。模型必须反映事物的本质,且有一定的精度。 – 简明性。模型的表达式应明确、简单、抓住本质 – 实用性。模型必须能方便用户,具有实用性,因此要使 模型标准化、规范化 – 反馈性。建模时要注意灵敏问题
1.生产系统建模概述
• 生产系统的一般建模方法
– 优化方法。该方法是依赖精确的数学方程式和严密的数 学过程来分析和评价生产系统的各种可选方案,从数学 上可以证明所得到的解是针对该问题的最优解 – 仿真模型。所谓仿真模型,就是以代数和逻辑语言做出 对系统的模拟,这种模拟通常要利用随机的数学关系。 仿真模型能真实的模拟系统过程,可用于生产系统中的 各种规划 – 启发式模型。启发式模型是以启发式方法为基础建立的 系统模型。启发式方法是指那些能指导问题求解的原理 、概念和经验法则
v jk | y j y k | wij | yi bi |
j 1 i 1
m
n
f 2 (y) =
1 j k m
j 1 i 1 m n
2.常见生产系统模型
• 多设施选址—分配模型
基于SIMULINK的二阶_三阶系统建模与仿真

(3)
根据微分方程 (3) ,并给该方程的各参数赋值 ,建立该
弹性系统的仿真模型如图 2 所示 。
对该弹性系统模型进行仿真 ,仿真时间长度为 10 秒 ,仿真结果如图 3 所示 ,该结果反映了上述弹性阻尼
·20 ·
系统在图 2 所示参数条件下质量块位移随时间变化的 情况 。
在输入一定的情况下 ,我们可以通过调节系统参 数得到最佳输出结果 ,通过对系统各参数的调节 ,得出 不同参数条件下仿真结果 ,对这些仿真结果进行比较 , 可以方便的反映在该系统中各参数变化对输出结果影 响的大小 ,从而真实反映该弹性系统的特性 ,方便确定 各参数的重要性 。
在实际实验中 ,我们可以依据仿真结果方便的对 各系统参数进行比较和选取 ,在该弹性系统的仿真过 程中 ,如果系统参数变化小 ,但对输出结果影响大 ,则 该参数的所要求的精度较高 ,反之则该参数的所要求 的精度较底 ,这些对我们实际实验中各系统参数的选 取具有重要的指导意义 。
3 三阶系统仿真
如图 4 所示的直流电力拖动系统是一个典型的三 阶系统 ,首先对该系统进行模型化 ,即建立该系统的数 学模型 ,得到三阶系统的常系数微分方程如下 :
面积 。通过几何方式求得实测线段与设计轮廓的焦点
后 ,可有几何方式求出封闭图形的面积 。同样 ,在设计
断面轮廓较为复杂时 ,要考虑的边界条件非常多 ,面积
计算容易产生错误 。而采用积分方式计算 ,不论断面
轮廓多么复杂 ,均能得到非常准确的结果 。
积分计算方式 :如图 2 所示 ,首先作一虚拟的能包
容设计断面轮廓和实测断面轮廓的最小矩形 ,左下角
我们在需要构造自己的模块时只需要将自己的功 能代码放在适当的位置 ,定义模块的输入输出端口的 数目和类型即可 ,这样便很方便地实现了对该数据文 件的调用 。
OptiSystem仿真实例

5.2光波分复用系统使用OptiSystem设计模型案例:阵列波导光栅波分复用器(AWG )得设计分析
6光波系统(Lightwave Systems)设计pqZd8。
6、1光波系统简介
6、2光波系统使用OptiSystem设计模型案例:40G单模光纤得单信道传输系统设计
7色散补偿(Dispersion pensation)设计oIcu3。
8、1色散简介
8、2色散补偿模型设计案例:使用理想色散补偿元件得色散补偿分析
8孤子与孤子系统(Soliton Systems)jzDCq。
9、1孤子与孤子系统简介
9、2孤子系统模型设计案例:
9结语
1
1、1光发送机简介
一个基本得光通讯系统主要由三个部分构成,如下图1、1所示:
作为一个完整得光通讯系统,光发送机就是它得一个重要组成部分,它得作用就是将电信号转变为光信号,并有效地把光信号送入传输光纤。光发送机得核心就是光源及其驱动电路。现在广泛应用得有两种半导体光源:发光二级管(LED)与激光二级管(LD)。其中LED输出得就是非相干光,频谱宽,入纤功率小,调制速率低;而LD就是相干光输出,频谱窄,入纤功率大、调制速率高。前者适宜于短距离低速系统,后者适宜于长距离高速系统。TgzY4。
O
1光发送机(Optical Transmitters)设计317QX。
1.1光发送机简介
1.2光发送机设计模型案例:铌酸锂(LiNbO3)型Mach-Zehnder调制器得啁啾(Chirp)分析
2光接收机(Optical Receivers)设计S4Qny。
2.1光接收机简介
2.2光接收机设计模型案例:PIN光电二极管得噪声分析
Simulink建模仿真实例详解

(2)数学仿真:是用数学语言去描述一个系统,并编制程 序在计算机上对实际系统进行研究的过程。
优点:灵活性高,便于改变系统结构和参数,效率高 (可以在很短时间内完成实际系统很长时间的 动态演变过程),重复性好
模型可以分为实体模型和数学模型。
实体模型又称物理效应模型,是根据系统之间的相似性而建 立起来的物理模型,如建筑模型等。
数学模型包括原始系统数学模型和仿真系统数学模型。原始 系统数学模型是对系统的原始数学描述。仿真系统数学模型 是一种适合于在计算机上演算的模型,主要是指根据计算机 的运算特点、仿真方式、计算方法、精度要求将原始系统数 学模型转换为计算机程序。
crta n i m 2
Animation fu n cti o n
Inputs & Sensors1
Double Mass-Spring System
?
(Double click on the "?" for more info)
To start and stop the simulation, use the "Start/Stop" selection in the "Simulation" pull-down menu
0
-0.2
-0.4
-0.6
-0.8
-1
0
1
2
3
4
5
6
7
8
9 10
例子2
单自由度系统:
初始条件:
m&x&+ cx& + kx = 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= 样间隔必须不大于
抽样频率为 2 fm.
1 2 fm
(其中
m
2fm),即最低
模拟信号的抽样与恢复
子系统
抽样与恢复系统图符设置
图符 库/图符名称 编号
参数
0 Source:Sinusoid Amp=1v,Freq=10Hz,Phase=0deg
1 Source:Sinusoid Amp=1v,Freq=12Hz,Phase=0deg
c(t)
载波信号
将基带调制信号变换成适合在信道中传 输的已调信号
有效地利用频带,实现信道的多路复用 传输
提高通信系统抗噪声/干扰性能
• 调幅(AM)信号
❖ 基带信号中含有直流分量
mo
mt
sm t
m't cosc t
s AM (t) m(t)cos ct [m0 m' (t)]cos ct
设置系统时间
图符的设定
图符的设定
图符的设定
图符的设定
设置接收计算器、计算功率谱
已调信号的功率谱
过调制示意图
例2: 抽样定理
抽样定理
一个频谱受限的信号f (t),且F f (t) F()
,其频谱F ()只占据(m~ m )范围,那么
f (t)可以用等间隔抽样值来唯一地表示,而抽
现代通信系统的 System View仿真
一、模拟通信系统的 System View仿真 二、脉冲编码调制 三、数字通信的 System View仿真
例1: 常规双边带调幅(AM)
调制
❖调制:按基带调制信号 • 的变化规律去改变高频 • 载波某些参数的过程。
❖调制的目的
调制器
m(t)
调制信号
sm(t) 已调信号
一、二进制振幅键控(2ASK) ASK:Amplitude Shift Key ASK:利用数字基带信号控制载波的幅度。
▪ 调制信号
st angt nTs n
0 p an 1 1 p
gt
1 0
0 t Ts elsewhere
❖2ASK调制的实现
eo t angt nTs cosct
构建系统
通断控制法实现OOK的模型
仿真波形
n
开关电路
e2ASK(t) 乘法器 s(t)
cosct (a)线性调制
cosct
e2ASK(t)
s(t) (b)通-断键控(OOK,On-Off Keying)
二进制振幅键控信号调制器原理框图
1
0
1
1
0
0
1
s(t)
Tb
t
载波信号 t
2ASK信号 t
二进制振幅键控信号时间波型
OOK模型
设置系统时间
2 Source:Sinusoid Amp=1v,Freq=8Hz,Phase=0 deg
3 Adder
5 Meta System
7 Meta I/O:Meta Out
8 Operator: Linear Sys
9 Multiplier 10 Source:
Pulse Train
11 Sink: 12 Analysis 13
• m0 : 调制信号中的直流成分 • m’(t) : 需传送的原始信号
m''(t) O
m0+m''(t)
O
cosc(t)
O
sAM(t)
O
t
t
M()
1
t
-H 0 H
m0
t
-c
SAM()
1 2
0
m
0
c
AM信号的波形和频谱
❖sAM(t)的频谱表达式 ❖ 设m’(t)M’(ω),根据欧拉公式
• sAM(t) = [m0+m’(t)](e jωct+ e-jωct)/2 • 而 m0 e jωct2πm0δ(ω-ωc) • m’(t) e jωctM’(ω-ωc) • 故sAM(t) 的频谱表达式为
Butterworth Lowpass IIR, 4 Poles,Fc=12Hz
Amp=1v,Freq=30Hz, PulseW=10-3sec,Offset=0 v, Phase=0 deg
设置系统时间
构建子系统
构建系统
仿真结果
改变抽样频率,观察恢复的波形。
例3:2ASK
二进制数字调制原理
• AM波占用的带宽是原始信号带宽的2倍,即2) 对于所有t,必须满足 m0+m’(t) ≥ 0 • (b) 载波频率应远大于m’(t)的最高频率分量,
即ωc>ωH。
cos(t )
A
+ S AM f(t)
普通调制系统原理图
普通AM调制的System View模型
S AM () m 0[( c ) ( c )]
1 [M( 2
c
)
M(
c
)]
• AM的特点
• 调幅过程使原始频谱M( ω )搬移了±ωc,且频 谱带中 分包 量1含/2载[ M频’分(ω量-ωπc)m+0 M[ δ’((ωω-+ωωc)c+)]δ两(ω部+ω分c)。] 和边
• 标准调幅信号的频谱包含两个频带且|sAM(ω) | 对的的于 频 频±带 带ω叫 叫c是做 做对上 下称边边的带带。((LUS通SBB常))。,把把大大于于ωc-或ωc小且于小-于ωcωc