8 第14章 狭义相对论 作业答案

合集下载

狭义相对论习题和答案

狭义相对论习题和答案

作业6狭义相对论基础研究:惯性系中得物理规律;惯性系间物理规律得变换。

揭示:时间、空间与运动得关系.知识点一:爱因斯坦相对性原理与光速不变K 相对性原理:物理规律对所有惯性系都就是一样得,不存在任何一个特殊(如“绝对静止”)惯性系。

2s 光速不变原理:任何惯性系中,光在真空中得速率都相等。

(A )1(基础训练1)、宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部得宇航员 向飞船尾部发出一个光讯号,经过K 飞船上得钟)时间后,被尾部得接收器收到,则由此可知飞船得固 有长度为(c 表示真空中光速)(A) c ・t (B) V/ (C) (D)【解答】飞船得固有长度为飞船上得宇航员测得得长度,即为°知识点二:洛伦兹变换由牛顿得绝对时空观=> 伽利略变换,由爱因斯坦相对论时空观=> 洛仑兹变换。

(1) 在相对论中,时、空密切联系在一起(在X 得式子中含有t,t 式中含X)。

(2) 当u « c 时,洛仑兹变换=> 伽利略变换。

(3) 若UAC , P 式等将无意义1(自测与提髙5)、地而上得观察者测得两艘宇宙飞船相对于地而以速度v = 0. 90c 逆向飞行.其中一 艘飞船测得另一艘飞船速度得大小【解答】知识点三:时间膨胀(1) 固有时间:相对事件发生地静止得参照系中所观测得时间。

(2) 运动时间:相对事件发生地运动得参照系中所观测得时间。

(B )1 (基础训练2)、在某地发生两件事,静止位于该地得甲测得时间间隔为4 s,若相对于甲作匀速直线 运动得乙测得时间间隔为5 s,则乙相对于甲得运动速度就是(c 表示真空中光速)(A) (4/5) c. (B) (3/5) c ・ (C) (2/5) c ・ (D) ("5)c.【解答】飞行•当两飞船即将相遇时飞船在自己得天窗处相隔2s 发射两颗信号弹•在飞船得观测者测得两颗信 号弹相隔得时间间隔为多少?° 【解答】以地而为K 系,飞船A 为/T 系,以正东为x 轴正向侧飞船B 相对于飞船A 得相对速度-0.6c-0.8c0.8c 1一一^(一0・6。

大学物理第十四章相对论习题解答

大学物理第十四章相对论习题解答

§14.1 ~14. 314.1 狭义相对论的两条基本原理为相对性原理;光速不变原理。

14.2 s ′系相对s 系以速率v=0.8c ( c 为真空中的光速)作匀速直线运动,在S 中观测一事件发生在m x s t 8103,1×==处,在s ′系中测得该事件的时空坐标分别为t =′x 1×108 m 。

分析:洛伦兹变换公式:)t x (x v −=′γ,)x ct (t 2v −=′γ其中γ=,v =β。

14.3 两个电子沿相反方向飞离一个放射性样品,每个电子相对于样品的速度大小为0.67c , 则两个电子的相对速度大小为:【C 】(A )0.67c (B )1.34c (C )0.92c (D )c分析:设两电子分别为a 、b ,如图所示:令样品为相对静止参考系S , 则电子a 相对于S 系的速度为v a = -0.67c (注意负号)。

令电子b 的参考系为动系S '(电子b 相对于参考系S '静止),则S '系相对于S 系的速度v =0.67c 。

求两个电子的相对速度即为求S '系中观察电子a 的速度v'a 的大小。

根据洛伦兹速度变换公式可以得到:a a a v cv v 21v v −−=′,代入已知量可求v'a ,取|v'a |得答案C 。

本题主要考察两个惯性系的选取,并注意速度的方向(正负)。

本题还可选择电子a 为相对静止参考系S ,令样品为动系S '(此时,电子b 相对于参考系S '的速度为v'b = 0.67c )。

那么S '系相对于S 系的速度v =0.67c ,求两个电子的相对速度即为求S 系中观察电子b 的速度v b 的大小。

14.4 两个惯性系存在接近光速的相对运动,相对速率为u (其中u 为正值),根据狭义相对论,在相对运动方向上的坐标满足洛仑兹变换,下列不可能的是:【D 】(A )221c u/)ut x (x −−=′; (B )221cu/)ut x (x −+=′ (C )221c u /)t u x (x −′+′=; (D )ut x x +=′ 分析:既然坐标满足洛仑兹变换(接近光速的运动),则公式中必然含有2211cv −=γ,很明显答案A 、B 、C 均为洛仑兹坐标变换的公式,答案D 为伽利略变换的公式。

NO.8狭义相对论基础答案

NO.8狭义相对论基础答案

《大学物理》作业(狭义相对论基础) NO.8答案班级: 学号: 姓名: 日期: 成绩:一 选择题1.下列几种说法:(1)所有惯性系对物理基本规律都是等价的;(2)在真空中,光的速度与光的频率、光源的运动状态无关;(3)在任何惯性系中,光在真空中沿任何方向的传播速度都相同。

(A )只有(1)、(2)对; (B )只有(1)、(3)对; (C )只有(2)、(3)对; (D )(1)(2)(3)都对。

[ D ]解:爱因斯坦狭义相对论的两个基本假设2.k 系与k ′系是坐标相互平行的两个惯性系,k ′系相对于k 系沿OX 轴正方向匀速运动,一根刚性尺静止在k ′系中,与O ′X ′ 轴成30°角,而在k 系中观察到该尺与OX 轴成45°角,则k ′系相对于k 系的速度是:(A )32c ; (B )31c ; (C )21)(32c ; (D )21)(31c 。

解:'1'200''230453y yy tg u c x x ⎫∆=∆∆⎪⎛⎫⇒=⇒=⇒= ⎪∆=∆⎝⎭ [ C ]※3.一宇宙飞船相对地球以0.8c 的速度飞行,一光脉冲从船尾传到船头,飞船上的观察者测得飞船长为90m ,则地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为:(A )90m ; (B )54m ; (C )270m ; (D )150m.4.如图,地面上的观察者认为A 、B 两事件同时发生,则在火箭上的观察者看来:(A )A 早于B ; (B )B 早于A ;(C )A 、B 同时; (D )条件不够,不能判断。

解: '''21'220,00x t v t t t x v t t x cc γγ∆>∆=⎫⎪⇒∆=-=-∆<⎬⎛⎫∆=∆-∆ ⎪⎪⎝⎭⎭[ B ]5.若粒子的动能等于它本身的静止能量,这时粒子的速度为: (A )23c ; (B )41c ; (C )21c ; (D )0.8c 。

狭义相对论作业习题及解答.doc

狭义相对论作业习题及解答.doc

4-7.某飞船自地球出发,相对地球以速率v=0.30c匀速飞向月球,在地球测得该旅程的距离为Zo=3.84xl()8m, 在地球测得该旅程的时间间隔为多少?在飞船测得该旅程的距离Z=?利用此距离求出:在飞船测得该旅程的时间间隔为多少?解:取地球为K惯性系、飞船为K,惯性系。

在地球测得该旅程的时间间隔为:Az = L Q/V M4.27(S)在地球地球测得的£o=3.84xlO8 (m),为地球〜月球的固有距离。

则在飞船测得该旅程的距离为在飞船观测,地球与月球共同以速率v=0.30c匀速运行,先是地球、随后是月球掠过飞船,则在飞船测得该旅程的时间间隔为:Ar = Z/v^4.07(s)说明:显然,飞船测自身旅程的时间间隔宜为固有时,在地球测得该旅程的&为观测时。

△t与显然满足狭义相对论时间膨胀效应,即4-8.在K惯性系测两个同时发生相距Im的事件(该两事件皆在X、X,轴)。

在K,惯性系测该两事件间距为2m, 问:在K,惯性系测该两事件发生的时间间隔为多少?解:在K系测两事件相距Ax=lm;同时发生则&=0.在K,系测两事件相距Ax,=2m;两事件发生的时间间隔为由洛伦兹变换,有Ax —M A/A X 1 Ax' ~ V3-/ = = -/ —/ = — 2 u —Jl-("/c)2 Jl-(“/c)2Jl-("/c)2 Ax 24-10.测得不稳定粒子广介子的固有寿命平均值TO=2.6X1O8S,(1)当它相对某实验室以0.80c的速度运动时,所测的平均寿命z应是多少?(2)在实验室测该介子在衰变前运行距离L应是多少?解:取花+介子、实验室为K,和K惯性系,沿该介子运行方向取为X、X,轴,在K,系中观测:也,=宣=2.6*10%, Ax,=0在K系中观测:也与皆为待求量。

由时间膨胀效应关系式,有T = M MI Jl-(v/c)2 =T J J1-(0.80C/C)2| 1~。

狭义相对论习题解答 2014版

狭义相对论习题解答 2014版

习题4 一 选择题1.有下列几种说法:(1)所有惯性系对物理基本规律都是等价的。

(2)在真空中,光的速度与光的频率、光源的运动状态无关。

(3)在任何惯性系中,光在真空中沿任何方向的传播速率都相同。

若问其中哪些说法是正确的,答案是 (A )只有(1)、(2)是正确的 (B )只有(1)、(3)是正确的 (C )只有(2)、(3)是正确的 (D )三种说法都是正确的 [ ] 【分析与解答】根据狭义相对论的相对性原理可知(1)是正确的,根据光速不变原理可知(2)和(3)正确 正确答案是D 。

2.(1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其他惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其他惯性系中是否同时发生?关于上述两个问题的正确答案是: (A )(1)同时,(2)不同时 (B )(1)不同时,(2)同 (C )(1)同时,(2)同时 (D )(1)不同时,(2)不同时 [ ] 【分析与解答】根据洛仑兹变换有2'u t x t ∆-∆∆=,对于(1)0,0t x ∆=∆=,所以'0t ∆=; 对于(2)0,0t x ∆=∆≠,所以'0t ∆≠。

正确答案是A 。

3.某地发生两件事,静止位于该地的甲测得时间间隔为4s ,若相对于甲作匀速直线运动的乙测得时间间隔为5s ,则乙相对于甲的运动速度是(c 表示真空中光速) (A )(4/5)c. (B )(3/5)c. (C )(2/5)c. (D )(1/5)c. [ ] 【分析与解答】根据时间膨胀关系式't ∆=,4,'5t t ∆=∆=,解得35u c =正确答案是B 。

4.一宇航员要到离地球为5光年的星球去旅行,如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度应是(c 表示真空中光速) (A )()1/2.v c = (B )()3/5.v c =(C )()4/5.v c = (D )()1/5.v c = [ ]【分析与解答】根据长度收缩关系式l =,03,5l l ==,解得45u c = 正确答案是C 。

第14章狭义相对论-惯性系-粒子碰撞

第14章狭义相对论-惯性系-粒子碰撞
D.
k
1 k2 k2 1
投票人数:0
12.一光子以速度c运动,一人以0.9c旳速度去追,此
人测得光子运动旳速度为( )。
A. 0.1c
00:30
B. c
C. 0.19c
D. 0.9c
投票人数:0
13. 在某惯性系中,两静止质量都是 m0旳粒子以相同 旳速率v沿同一直线相向运动,碰撞后生成一种新旳
1 1
C.
Ek E0
1 4
E
, E0
3 2
D. Ek 1 ,E 2 E0 1 E0 1
00:30
投票人数:0
16. Ek是粒子旳动能,p是粒子旳动量,那么粒子旳静 止能量为( )。
A. ( p2c2 Ek2 ) / 2Ek B. ( p2c2 Ek2 ) / 2Ek C. ( pc Ek2 ) / 2Ek D. pc Ek
A. (2 / 3)c
B. (1/ 3)c C. (2 / 3)1/ 2 c
00:30
D. (1/ 3)1/ 2 c
投票人数:0
4.一物体因为运动速度旳加紧而使其质量增长了10%, 则此物体在其运动方向上旳长度缩短了( )。
1
A.
10
9
B.
10
10 C. 11
1 D. 11
00:30
投票人数:0
5. (1)对某观察者来说,发生在某惯性系中同一地 点、同一时刻旳两个事件,对于相对该惯性系做匀 速直线运动旳其他惯性系中旳观察者来说,它们是 否同步发生? (2)在某惯性系中发生于同一时刻、不同地点旳两 个事件,它们在其他惯性系中是否同步发生? 有关上述两个问题旳正确答案是( )。 00:30 A. (1)同步,(2)不同步 B. (1)不同步,(2)同步 C. (1)同步,(2)同步 D. (1)不同步,(2)不同步

狭义相对论基础习题解答

狭义相对论基础习题解答

狭义相对论基础习题解答一 选择题1.判断下面几种说法是否正确 ( ) (1) 所有惯性系对物理定律都是等价的。

(2) 在真空中,光速与光的频率和光源的运动无关。

(3) 在任何惯性系中,光在真空中沿任何方向传播的速度都相同。

A. 只有 (1) (2) 正确B. 只有 (1) (3) 正确C. 只有 (2) (3) 正确D. 三种说法都正确解:答案选D 。

2. (1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生?关于上述两个问题的正确答案是:( )A. (1) 同时, (2) 不同时B. (1) 不同时, (2) 同时C. (1) 同时, (2) 同时D. (1)不同时, (2) 不同时 解:答案选A 。

3.在狭义相对论中,下列说法中哪些是正确的?( )(1) 一切运动物体相对于观察者的速度都不能大于真空中的光速.(2) 质量、长度、时间的测量结果都随物体与观察者的相对运动状态而改变 (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(4) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些。

A. (1),(3),(4)B.(1),(2),(4)C.(1),(2),(3)D.(2),(3),(4) 解:同时是相对的。

答案选B 。

4. 一宇宙飞船相对地球以0.8c 的速度飞行,一光脉冲从船尾传到船头。

飞船上的观察者测得飞船长为90m ,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为 ( )A. 90mB. 54mC. 270mD. 150m 解:x ′=90m, u =0.8c ,8790/(310)310s t -'∆=⨯=⨯2()/1(/)270m x x u t u c ''∆=∆+∆-=。

狭义相对论习题、答案与解法(2010.11.22)

狭义相对论习题、答案与解法(2010.11.22)

狭义相对论习题、答案与解答一. 选择题 1. 有下列几种说法:(1) 真空中,光速与光的频率、光源的运动、观察者的运动无关; (2) 在所有惯性系中光在真空中沿任何方向的传播速率都相同; (3) 所有惯性系对物理基本规律都是等价的。

请在以下选择中选出正确的答案(C )A 、 只有(1)、(2)正确;B 、 只有(1)、(3)正确;C 、 只有(2)、(3)正确;D 、 3种说法都不正确。

2.(1)对某观察者来说,发生在某惯性系同一地点、同一时刻两个事件,对于相对该惯性系做匀速直线运动的其他惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系不同地点、同一时刻的两个事件,它们在其他惯性系中是否同时发生?(A )A 、(1)同时,(2)不同时;B 、(1)不同时,(2)同时;C 、(1)同时,(2)同时;D 、(1)不同时,(2)不同时。

参考答案:(1) ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=∆=∆-∆-∆='∆001222x t c v x c v t t 0='∆t(2) ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≠'∆='∆-''∆+'∆=∆001222x t c v x cv t t 2221c v x c v t -'∆=∆3.K 系中沿x 轴方向相距3m 远的两处同时发生两事件,在K '系中上述两事件相距5m 远,则两惯性系间的相对速度为(A ) A 、c )54( ; B 、c )53(; C 、c )52(; D 、c )51(。

参考答案:221cv vt x x --=' 221cv t v x x -∆-∆='∆ c c x x c v 54531122=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛'∆∆-=4.两个惯性系K 和K ',沿x x '轴方向作相对运动,相对速度为v ,设在K '系中某点先后发生两个事件,用固定于该系的钟测出两事件的时间间隔为0t ∆,而用固定在K 系的钟测出这两个事件的时间间隔为t ∆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、简答题 :
1. 给出相对论性动量表达式,是说明在什么情况下,牛顿定律仍然适用?
答:2
0)(1c
v v
m v m p -=
= ,在狭义相对论中,m 是与速度有关的,成为相对论性质量,而0m 是质点相对某惯性系静止时的质量,为静质量。

从动量关系式可以看出,当质点的速率小于光速,c v <<,这样相对论性质量近似等于静质量,0m m =,这表明,在该种情况下,牛顿力学仍然使用。

2. 给出质能关系,爱因斯坦如何阐明该式的深刻意义的?
答:质能关系:2
mc E =,表示的是质点运动时具有的总能量,包括两部分,质点的动能k E 及其静动能20c m 。

3. 给出相对论性动量和能量的关系,说明在什么条件下,cp E =才成立?
答:相对论性动量和能量的关系为:222
02c p E E +=,如果质点的能量0E E >>,在这种情况下则有
cp E =。

4. 经典电磁理论中,电磁波的波长和频率满足c =λν,从狭义相对论来看,说明这个关系是否仍然成立?
答:由狭义相对论动量和动能的关系:222
02c p E E +=,200c m E =,对于光子有00=m ,所以有
pc E =,而νh E =,所以有λ
h c hv c E p ===
,所以c =λν仍然成立。

二、填空题:
1.坐标轴相互平行的两惯性系 S 、S’,S 相对沿 ox 轴正方向以 v 匀速运动,在 S’ 中有一根静止的刚性尺,测得它与 ox’ 轴成 30° 角,与 ox 轴成 45 °角, 则v 应为 。

'0'00x 000'0x L =L sin 30,cos30223
y x L L L L L L L v ==
====⇒=
解: 2. 质子在加速器中被加速,当其动能为静止能量的 4 倍时,
其质量为静止质量的 倍。

2220045k o E E E mc c m c m m =-=-=⇒=解:
3. 某微观粒子在加速器中被加速,当其质量为静止质量的 3 倍时,其动能为静止能量的 倍。

解:222000022k E E E mc m c m c E =-=-==
4. 把一个静止质量为 0m 的粒子,由静止加速到 v =0.6c (c 为真空中光速)需作的功为 。

0220054
104
k k m m W E E mc m c m c =
=
=∆=-=-=
5. 有一观察者测出电子的质量为02m ,则电子的速度为 。

三、计算题:
1.设快速运动的介子的能量约为E =3000MeV,而这种介子在静止时的能量为 0E =100MeV.若这种介子的固有寿命有 0τ=2⨯10-6s ,求它运动的距离。

2、坐标轴相互平行的两惯性系 S 、S’,S’相对 S 沿 x 轴匀速运动,现有两事件发生,在 S 中测的其空间、时间间隔分别为 m x 6
100.5⨯=∆, ∆t =0.010 s 而在 S’ 中观测二者却是同时发生,那么其空间间隔 ∆x’ 是多少?
22
005000854,30300.999430 6.0100.9994310 6.010 1.79910E mc E m c E E m m v c t s s vt m
τ--===⇒=
=⇒==
==⨯==⨯⨯⨯=⨯解:,
''1
2
11222
2
'
'212121228212121221'6()()[()()]0()3() 1.810/5
6.2510vx vx t t t t c c v
t t t t x x c
t t c v t t x x v c m s
c x x x m γγγ=-
=-
-=--
-=--=-⇒===⨯-∆=
=⨯解:
3.在惯性系 S 中的某一地点发生了两事件A 、B ,B 比 A 晚发生 ∆t = 2.0 s , 在惯性系 S’ 中测得 B 比 A 晚发生 ∆t’ = 3.0s 。

试问在 S ’ 中观测发生 A 、B 的两地点之间的距离为多少?
1'''
'
12
1122
22'
'''212122'''22''3()
()
[()()]
33(2)2t t v t vx vx t t t t c
c
v t t t t x x c
v
x x c
γγγ∆∆=
⇒==⇒=∆=+=+-=---=-∆⇒∆=
4.一个立方体的静质量为0m ,体积为0V ,当它相对某惯性系 S 沿一边长方向以 v 匀速运动时,静止在 S 中的观察者测得其密度为多少?
5.某微观粒子的静质量为0m ,经加速后其动能与静止能量相等求该粒子的动质量和动量大小。

22200000
00222
k E E E mc m c m c m m m m m v p mv c =-=-=⇒==
=⇒=
===
3
000
20020
,[1()]x V L
L L V L L V m m
m v V V c ρ===⋅====
-解:设立方体变成为L
6. 有静量为0m 粒子,具有初速度c v 4.00=。

求 (1) 若粒子速度增加一倍,动量为初动量的多少倍?
(2) 若粒子的末动量为初动量的10倍,则粒子的末速度为初速度的多少倍?
1022211 3.24
p mv p mv p p ==
==
==解:()
1221(2)100.9747p p p v c
p =
=
===⇒==。

相关文档
最新文档