对称密钥密码系统
《电子商务安全》第二章 密码技术及应用

2.1.1 对称密码系统 DES
DES(Data Encryption Standard)密码 系统是电子商务系统中最常用的对称密钥加密 技术。
它由IBM公司研制,并被国际标准化组织 ISO认定为数据加密的国际标准。
DES技术采用64位密钥长度,其中8位用 于奇偶校验,剩余的56位可以被用户使用。
公开密钥密码体制最大的特点是采用两个 不同的加密密钥和解密密钥,加密密钥公开, 解密密钥保密,其他人无法从加密密钥和明文 中获得解密密钥的任何消息,于是通信双方无 需交换密钥就可以进行保密通信。
(1) RSA密码系统
1976年,斯坦福大学电子工程系的两名学者Diffle 和Hellman在《密码学研究的新方向》一文中提出了公 钥密码的思想:若用户A有一个加密密钥ka,一个解密密 钥kb, ka,公开而kb保密,要求ka,的公开不至于影响kb 的安全。
1977年,麻省理工学院三位博士Rivest, ShБайду номын сангаасmir 和 Adleman设计一个RSA公开密钥密码算法。RSA密 码算法利用数论领域的一个关键事实:把两个大素数相 乘生成一个合数是件很容易的事,但要把一个大合数分 解为两个素数却十分困难。
公钥密码系统RSA
l)密钥的生成 ①任选两个秘密的大素数 p与q; ②计算n,使得 n=p×q>m,公开n; ③选择正整数e,使得e与ψ(n)=(p-1)(q-1)互素,公开 e,n和e便是用户公钥; ④计算d,使 e×d mod ψ(n) = l ,d保密,d便是用户私钥。
三重DES是DES算法扩展其密钥长度的一种方法, 可使加密密钥长度扩展到128比特(112比特有效)或 者192比特(168比特有效)。
网络安全02 - 密码学简介 -- 对称密码

网络安全密码学简介密码学发展历史 古典密码近代密码现代密码古典密码起始时间:从古代到19世纪末,长达几千年密码体制:纸、笔或者简单器械实现的简单替代及换位通信手段:信使例子:行帮暗语、隐写术、黑帮行话近代密码起始时间:从20世纪初到20世纪50年代,即一战及二战时期密码体制:手工或电动机械实现的复杂的替代及换位通信手段:电报通信现代密码起始时间:从20世纪50年代至今密码体制:分组密码、序列密码以及公开密钥密码,有坚实的数学理论基础。
通信手段:无线通信、有线通信、计算网络等现代密码学的重要事件1949年Shannon发表题为《保密通信的信息理论》,为密码系统建立了理论基础,从此密码学成了一门科学。
(第一次飞跃)1976年后,美国数据加密标准(DES)的公布使密码学的研究公开,密码学得到了迅速发展。
1976年,Diffe和Hellman提出公开密钥的加密体制的实现,1978年由Rivest、Shamire和Adleman 提出第一个比较完善的公钥密码体制算法(第二次飞跃)(现代)密码学的基本概念密码学(Cryptology)是结合数学、计算机科学、电子与通讯等诸多学科于一体的交叉学科,是研究密码编制和密码分析的规律和手段的技术科学。
密码学不仅用来实现信息通信的各种安全目标:机密性,真实性(包括完整性,不可否认性)等●加密,消息认证码,哈希函数,数字签名,身份认证协议,安全通信协议,等安全机制密码学提供的只是技术保障作用现代密码学技术 数据加密数据真实性数据加密的基本思想对机密信息进行伪装●将机密信息表述为不可读的方式●有一种秘密的方法可以读取信息的内容伪装去伪装信息不可读消息原始信息Security services and mechanismsBobAlice ???M=明文%……&¥#@*用k 加密/解密,保密性、机密性密文kk M =“I love you ”明文--加密体制加密系统●一个用于加/解密,能够解决网络安全中的机密性的系统由明文、密文、密钥、密码算法四个部分组成。
对称密钥密码体制

第三,流密码能较好地隐藏明文的统计特征等。
流密码的原理
❖ 在流密码中,明文按一定长度分组后被表示成一个序列,并 称为明文流,序列中的一项称为一个明文字。加密时,先由 主密钥产生一个密钥流序列,该序列的每一项和明文字具有 相同的比特长度,称为一个密钥字。然后依次把明文流和密 钥流中的对应项输入加密函数,产生相应的密文字,由密文 字构成密文流输出。即 设明文流为:M=m1 m2…mi… 密钥流为:K=k1 k2…ki… 则加密为:C=c1 c2…ci…=Ek1(m1)Ek2(m2)…Eki(mi)… 解密为:M=m1 m2…mi…=Dk1(c1)Dk2(c2)…Dki(ci)…
同步流密码中,消息的发送者和接收者必须同步才能做到正确 地加密解密,即双方使用相同的密钥,并用其对同一位置进行 操作。一旦由于密文字符在传输过程中被插入或删除而破坏了 这种同步性,那么解密工作将失败。否则,需要在密码系统中 采用能够建立密钥流同步的辅助性方法。
分解后的同步流密码
பைடு நூலகம்
密钥流生成器
❖ 密钥流生成器设计中,在考虑安全性要求的前提下还应考虑 以下两个因素: 密钥k易于分配、保管、更换简单; 易于实现,快速。
密钥发生器 种子 k
明文流 m i
明文流m i 加密算法E
密钥流 k i 密钥流 发生器
密文流 c i
安全通道 密钥 k
解密算法D
密钥流 发生器
明文流m i
密钥流 k i
图1 同步流密码模型
内部状态 输出函数
内部状态 输出函数
密钥发生器 种子 k
k
对称密码学

(2) 异或。扩展后的 48 位输出 E(Ri) 与压 缩后的 48 位密钥 Ki 作异或运算。
(3) S 盒替代。将异或得到的 48 位结果分 成八个 6 位的块 , 每一块通过对应的一个 S盒产生一个 4 位的输出。
S 盒的具体置换过程为 : 某个 Si 盒的 6 位输入 的第 1 位和第 6 位形成一个 2 位的二进制数从 0-3, 对应表中的某一行 : 同时 , 输入的中间 4 位构成 4 位二进制数 0-15 对应表中的某一列。 例如 , 第 8 个 S 盒的输入为 001011 , 前后 2 位形成的二进制数为 01, 对应第 8 个 S 盒的第 1 行 : 中间 4 位为 0101, 对应同一S盒的第 5 列。从表 2-6 中可得 S8 盒的第 1 行第 5 列的 数为 3, 于是就用 0011 代替原输入001011。
表2-3每轮移动的位数
轮 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 数 位1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1 数
移动后 , 将两部分合并成 56 位后通过压缩置换 PC-2 后得到 48 位子密钥 , 即 Kj=PC-2(CjDj)。 压缩置换如表 2-4 所示
2.获取子密钥Kj
DES加密算法的密钥长度为56位,但一般表示为 64位,其中,每个第8位用于奇偶校验。在DES加密 算法中,将用户提供的64位初始密钥经过一系列的 处理 得到K1, K2,…, K16,分别作为1-16轮运算的 16个子密钥。首先,将64位密钥去掉8个校验位,用 密钥置换PC-1置换剩下的56位密钥;再将56位分成
在现代密码学中,所有算法的安全性都要求基 于密钥的安全性, 而不是基于算法细节的安 全性。也就是说, 只要密钥不公开, 即使算 法公开并被分析, 不知道密钥的人也无法理 解你所加密过的消息。
第03章 密钥密码体制

4
15
1
12
14
8
8
2
13
4
6
9
2
1
11 15 12
9
3
7
3
10
0
5
6
0
13
14 10
11 10
沈阳航空航天大学
S7-S8盒
S7盒
14 0 4 15 13 7 1 4 2 14 15 11 2 13 8 1 7 3 10 5 S8盒 15 3 0 13 1 13 14 8 8 4 7 10 14 7 1 6 15 3 11 2 4 15 3 8 13 4 4 1 2 9 5 11 7 0 8 6 2 1 12 7 13 12 10 6 12 6 9 0 0 9 3 5 5 11 2 14 10 5 15 9 14 12 10 6 11 6 12 5 9 9 5 0 3 7 8 12 11
混乱 原则
扩散 原则
实现 方法
应该具有标准的组件结构 (子模块 为了避免密码分析者利用明文与密文之间的依赖关 ),以适应超大规模集成电路的实现 系进行破译,密码的设计应该保证这种依赖关系足 够复杂。 。 为避免密码分析者对密钥逐段破译,密码的设计应该保证密钥的 分组密码的运算能在子模块上通过 每位数字能够影响密文中的多位数字 ;同时,为了避免密码分析 简单的运算进行。 者利用明文的统计特性,密码的设计应该保证明文的每位数字能
IP(初始置换)
58 60 50 52 42 44 34 36 26 28 18 20 10 12 2 4
62
64 57
54
56 49
46
48 41
38
40 33
30
32 25
2对称密码体制

2011-12-10
15
1997 年 DESCHALL 小 组 经 过 近 4 个 月 的 努 力 , 通 过 Internet搜索了 × 1016 个密钥,找出了DES的密钥, 恢 搜索了3× 个密钥, 找出了 的密钥, 搜索了 的密钥 复出了明文。 复出了明文。 1998年5月美国 年 月美国 月美国EFF(electronics frontier foundation) 宣布,他们以一台价值20万美元的计算机改装成的专用解 宣布,他们以一台价值 万美元的计算机改装成的专用解 密机, 小时破译了56 比特密钥的 比特密钥的DES。 密机,用56小时破译了 小时破译了 。
2011-12-10
14
DES首次被批准使用五年,并规定每隔五年由美国国 首次被批准使用五年, 首次被批准使用五年 家保密局作出评估, 家保密局作出评估,并重新批准它是否继续作为联邦加密 标准。最近的一次评估是在1994年1月,美国已决定 标准。最近的一次评估是在 年 月 美国已决定1998年 年 12月以后将不再使用 月以后将不再使用DES。因为按照现有的技术水平,采 月以后将不再使用 。因为按照现有的技术水平, 用不到几十万美元的设备,就可破开 密码体制。 用不到几十万美元的设备,就可破开DES密码体制。目前 密码体制 的新标准是AES,它是由比利时的密码学家Joan Daemen和 ,它是由比利时的密码学家 的新标准是 和 Vincent Rijmen设计的分组密码 设计的分组密码—Rijndael(荣代尔)。 设计的分组密码 (荣代尔)。
置换选择pc1循环移位置换选择pc2置换选择pc2置换选择164比特201492731子密钥产生器?给出每次迭代加密用的子密钥ki子密钥产生器框图密钥64bit置换选择1pc1除去第816?64位8个校验位201492732置换选择2pc2ci28bitdi28bit循环左移ti1bit循环左移ti1bitki57494133251791585042342618102595143352719113605044366355473931231576254463830221466153453729211352820124置换选择1pc1迭代次数12345678循环左移位位数11222222左循环移位位数2014927331417112415328156211023191242681672720132415231374755304051453348444939563453464250362932置换选择2pc2迭代次数910111213141516循环左移位数12222221201492734des的安全性?穷举攻击分析穷举攻击就是对所有可能的密钥逐个进行脱密测试直到找到正确密钥为止的一种攻击方法方法
密钥管理系统

密钥管理系统密钥管理系统是一种通过密码保护数据的电子工具。
它被广泛应用于企业和个人的加密和安全保障工作中,可以帮助用户在互联网上安全地存储和传输机密信息。
随着网络科技的飞速发展,实现网络安全保护已经成为许多行业的共同需求。
本文将探讨密钥管理系统的定义、功能、应用及其对安全保障的作用。
一、密钥管理系统的定义密钥管理系统是一种基于加密技术的安全保护系统。
它主要依靠密码技术对机密信息进行加密,从而实现信息保密。
密钥管理系统通常包括密钥的生成、存储、交换、发布、注销等功能。
根据密钥的种类和用途,可将密钥管理系统分为对称密钥管理系统和非对称密钥管理系统。
对称密钥管理系统,又称为传统加密系统。
对称密钥系统商讨好密钥后,一方将密钥发送给另一方,双方共用该密钥。
这种方式的优点是加密速度快,缺点是密钥的传递对安全性要求较高,一旦密钥泄露,后果将非常严重。
非对称密钥管理系统是一种新型的加密方式。
它包含两种密码,一种是公开密码,另一种是私有密码。
公开密码可以自由分发,而私有密码只有用户本人知道。
非对称密钥系统鉴别双方身份后,通过传输公开密码,发出一次或多次数据交换请求,以了解对方具体要求、解密数据,等到对方全部要求满足时,再用私有密码加密数据,传递给对方的公开密码解密。
由于非对称密钥管理系统的特殊设计,数据交换时不需要传输密钥,因此更加具有安全性。
二、密钥管理系统的功能1.密钥生成和存储密钥生成和存储是密钥管理系统最基本的两个功能。
密钥生成是指根据要求自动产生密钥或者手动输入密钥;密钥存储是指将密钥安全地保存起来,并确定只有经过授权的用户才有权使用。
2.密钥交换密钥交换是指在安全通信前,双方交换密钥的过程。
在对称密钥系统中,通常采用密码固定的方法,即通信双方提前商定一个密钥,然后再进行交换。
在非对称密钥系统中,一般采用公钥加密的方式来实现密钥的安全交换。
3.密钥发布和注销密钥发布和注销是指从密钥管理系统中找到被授权的密钥,然后在需要的时候对密钥进行发布和撤销。
对称密钥密码体制的原理和特点

对称密钥密码体制的原理和特点一、对称密钥密码体制的原理1. 对称密钥密码体制是一种加密方式,使用相同的密钥进行加密和解密。
2. 在对称密钥密码体制中,加密和解密使用相同的密钥,这个密钥必须保密,只有合法的用户才能知道。
3. 对称密钥密码体制使用单一密钥,因此在加密和解密过程中速度较快。
4. 对称密钥密码体制中,发送者和接收者必须共享同一个密钥,否则无法进行加密和解密操作。
二、对称密钥密码体制的特点1. 高效性:对称密钥密码体制使用单一密钥进行加密和解密,因此速度较快,适合于大量数据的加密和解密操作。
2. 安全性有限:尽管对称密钥密码体制的速度较快,但密钥的安全性存在一定的风险。
一旦密钥泄露,加密数据可能会遭到破解,因此密钥的安全性对于对称密钥密码体制至关重要。
3. 密钥分发困难:在对称密钥密码体制中,发送者和接收者必须共享同一个密钥,因此密钥的分发和管理可能会存在一定的困难。
4. 密钥管理困难:对称密钥密码体制密钥的管理和分发往往需要借助第三方机构或者密钥协商协议来实现,这增加了密钥管理的复杂性。
5. 广泛应用:尽管对称密钥密码体制存在一定的安全性和管理困难,但由于其高效性,仍然广泛应用于网络通信、金融交易等领域。
对称密钥密码体制是一种加密方式,使用相同的密钥进行加密和解密。
它具有高效性和广泛应用的特点,然而安全性较差并且密钥管理困难。
在实际应用中,需要权衡其优劣势,并采取相应的安全措施来确保其安全性和有效性。
对称密钥密码体制的应用对称密钥密码体制作为一种快速高效的加密方式,在现实生活中有着广泛的应用。
主要的应用领域包括网络通信和数据传输、金融交易、安全存储、以及移动通信等。
1. 网络通信和数据传输在网络通信和数据传输中,对称密钥密码体制被广泛应用于加密数据传输过程。
在互联网传输中,大量的数据需要在用户和服务器之间进行传输,为了保护数据的安全性,对称密钥密码体制被用来加密数据,确保传输过程中数据不被窃取或篡改。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对称密钥密码系统
2000多年以前,罗马国王Julius Caesar使用过现今被称为“凯撒密码”的加密算法。
此加密算法其实是“移位密码”算法的一个特例。
由于移位密码安全性不高,使用穷举爆力技术很容易将其破解,于是人们发明了“代换密码”。
而移位密码其实是代换密码的一个子集。
虽然代换密码安全性有所提高,使用穷举爆力技术较难破解,然而使用统计密码分析技术却可以很容易地破解代换密码。
到了几百年前,有人发明了“置换密码”有时也叫“换位密码”,之后现代密码技术开始出现。
很多人把Claude Shannon誉为现代密码学之父,他提出了“扩散”和“混淆”来构造密码体制的基本要素。
这种加密技术可以有效的挫败使用统计分析技术来破解密码。
1973年,Horst Feistel公开了他的“Feistel密码”,这是第一个体现密码之父Shannon思想的密码系统。
目前,几乎所有的对称密码系统都使用了Feistel密码的设计特征。
1973年,(美)国家标准局(NBS),即现在的(美)国家标准技术研究所(NIST)公布了征求国家密码标准的提案,人们建议了许多的密码系统。
1977年7月,NBS经过对众多的密码系统进行评估后,采纳了IBM在20世纪60年代(1960s)研制出来的一个密码系统作为数据加密标准(DES),此系统是由Horst Feistel领导的一个研究组研制出来的。
这个密码系统基于一个称为LUCIFER[Fic73]的密码系统。
LUCIFER密码系统本质上是Feistel密码的一个推广。
1983年、1988年和1993年,DES再度被认定为(美)国家标准。
1997年,RSA实验室发布了一个以10000美元作为酬金的挑战:寻找一个前面带有一个已知明文块的密文的DES密钥。
由Roche Verse牵头的一个工程小组动用了70000多台通过因特网连接起来的计算机系统,使用穷举爆力攻击程序大约花费96天的时间找到了正确的DES密钥。
意识到DES已经快完成它的历史使命,NIST于1997年1月宣布了一项选择一个用作高级加密标准(AES)的候选算法的计划:这个新的标准的将取代DES。
1998年7月,电子前沿基金会(EFF)花费了250000美元制造了一台机器,用它在不到3天的时间里就攻破了DES。
为了响应NIST征求AES的提议,有关各方在1998年上半年提交了15个密码算法。
1999年8月9日,NIST宣布已经选出5个最终候选算法来参加第二轮的角逐成为AES。
这个5个算法是“MARS”,由IBM的一个研究小组研发出来;“RC6”,由Ronold Rivest和来自RSA实验室的一个小组开发出来;“Rijndael”,由比利时的Joan Daemen和Vincent Rijmen设计得出;“Serpent”,由英国剑桥大学的Ross Anderson和以色列海法市Technion的Eli Bibam以及热挪威卑尔根大学的Lars Knudsen共同研究出来;“Twofish”,由Bruce Schneier、John Kelsey、Doug Whiting、David Wagner、Chris Hall和Niels Ferguson设计出来。
1999年10月25日,NIST在还没有找到合适的AES期间,采纳了三重DES (一个更安全的DES变形)作为国家标准。
2000年10月2日,NIST在5个候选算法中的Rijndael算法定为AES的最终候选算法。