第七章格与布尔代数

合集下载

代数结构-布尔代数与格

代数结构-布尔代数与格

布尔代数举例

({0, 1}, +, ⋅ , , 0, 1)为布尔代数 n度布尔函数全体也构成一个布尔代数

布尔和 布尔积 补函数 全取0的函数、全取1的函数

A的幂集也构成一个布尔代数(ρ(A), ⋂, ⋃, ∼, ∅, A)
布尔代数举例

Bn={(x1, …, xn)| xi∈B, i =1, …, n}构成布尔代数 x= (a1 , …, an), y=(b1 , …, bn), ai∈B, bi∈B
111 110
Bn as Product of n B’s

B1, ({0,1}, ∧, ∨, 1, 0, ’), is denoted as B. For any n≥1, Bn is the product B×B×...×B of B, n factors, where B×B×...×B is given the product partial order.
格中的原子
a
a a b c d (1) e (2) b c d b
c 原子 d e (3)
有限布尔代数的表示定理

任一有限布尔代数B 同构于 B中所有的原子构成的 集合A的幂集代数系统P(A)。 即(B, ∧, ∨, ', 0, 1) ≅ (P(A), ⋂, ⋃, ∼, ∅, A)

备注(关于无限布尔代数)

若 x∧y =x,则 x∨y = (x∧y) ∨ y = y //吸收律
若 x∨y =y,则 x∧ y = x∧ (x∨y) = x //吸收律


证明这个关系满足自反性、反对称性、传递性。 这个偏序构成一个格。

lub{x,y} 即为 x∨y。 glb{x,y} 即为 x∧y。

第7章 格和布尔代数

第7章   格和布尔代数
m∨n=LCM(m,n) m∧n=gcd(m,n)
另外,若将〈L, 〉中的小于等于关系换成大于等 ,即对于L中任何两个元素a,b定义a b的充
分必要条件是b a,则〈L, 〉也是偏序集。我们把偏 序集〈L, 〉和〈L, 〉称为是相互对偶的。并且它们 所对应的哈斯图是互为颠倒的。关于格我们有同样的 性质。
对偶式。
在上述对偶原理中,“如果命题P在任意格
〈L, 〉上成立”的含义是指当命题P中的变量取值于L 中,且上确界运算为∨,下确界运算为∧,则P对于它 们也成立。现在我们深入地讨论格的性质。
定理7.1.3 设〈L, 〉是一个格,那么对L中任何元 素a,b,c,有
(1) a a∨b,b a∨b a∧b a,a∧b b
定理7.1.1 若〈L, 〉是一个格,则〈L, 〉也是一 个格,且它的并、交运算∨r,∧r对任意a,b∈L满足
a∨rb=a∧b a∧rb=a∨b 于是,我们有下列对偶原理。
定理7.1.2 如果命题P在任意格〈L, 〉上成立,
则将L中符号∨,∧,
∧,∨,
公式P*在任意格〈L, 〉上也成立,这里P*称为P的
(1)a b当且仅当a∧b=a当且仅当a∨b=b。 (2)a∨(b∧c) (a∨b)∧(a∨c)。 (3)a c当且仅当a∨(b∧c) a∨b)∧c。
图 7.1.1
在第四章,对偏序集的任一子集可引入上确界(最 小上界)和下确界(最大下界)的概念,但并非每个 子集都有上确界或下确界,例如在图7.1.1中哈斯图所
示的有序集里,{a,b}没有上确界,{e,f}没有下确界
。不过,当某子集的上、下确界存在时,这个上、下 确界是唯一确定的。
定义7.1.1 如果偏序集〈L 的子集都有上确界和下确界,则称偏序集〈L 格(lattice)。

11%20布尔代数与格ppt

11%20布尔代数与格ppt


19
在格中定义运算

在格中可以定义如下的运算:

“保联”:x,yS, x⋁y=lub{x,y}

“保交”:x,yS, x⋀y=glb{x,y}
20
偏序格的例子

({1,2,3,4,6,8,12,16,24,48}, | )

x⋀y=gcd(x,y), x⋁y=lcm(x,y) x⋀y=x⋂y, x⋁y=x⋃y x⋀y=min{x,y}, x⋁y=max{x,y}
9
布尔恒等式(1)
等 式 x=x x+x = x xx = x x+0 = x x1 = x x+1 = 1 x0 = 0 x+y = y+x xy = yx 名 称 双重补律 幂等律 同一律
支配律
交换律
10
布尔恒等式(2)
等 式 x+(y+z)=(x+y)+z x (yz)=(xy) z x+(yz)=(x+y)(x+z) x (y+z)=xy +x z ( x y) = x + y (x+y) = x y x+(xy)=x x (x+y)=x x + x =1 x x =0 名 称 结合律 分配律 德摩根律 吸收律 补律

29
a*b即{a,b}的最大下界
注意:a◦b=b 当且仅当 a*b=a,因此aRb a*b=a

a*b即{a,b}的下界

(a*b)*a=a*(a*b)=(a*a)*b=a*b, (a*b)Ra (a*b)*b=a*(b*b)=a*b,(a*b)Rb

a*b即{a,b}的最大下界

格与布尔代数

格与布尔代数

对P(S)中任一元素A,S与A的差集S-A是其唯一补元
因为:
(S-A)∪A=S和(S-A)∩A=Φ.
36
7.5 几种特殊的格
定义4(分配格) 格<L, ,*>称作一个分配格,如果对L中 任意元素a,b,c都有: (1) a*(bc)=(a*b)(a*c); (2) a(b*c)=(ab)*(ac). 例:幂集格<P(S),∩,∪>都是分配格. 格<P(S),∩,∪> 的两个二元运算分别是S幂集合上的交和并运算,交 对并和并对交都具有分配律;
M={c,d}
无上确界,下确界为e 上确界为a,下确界为b
12
7.1 偏序集
M={{a},{b}}
上确界{{a,b}},下确界为
M={{a},{a,b}}
上确界{{a,b}},下确界为{a}
M={{a},{b,c}}或 M={{a},{b},{c}}或
上确界{{a,b,c}},下确界为
M={{a,b},{b,c}}
31
7.5 几种特殊的格
定义1 (有界格) 若格<L,≤>存在最大元和最小元,则称该格为有界格。
记最大元为1,最小元为0。记有界格为<L,≤,0,1>。
例: <P(S), , ,S>有界格。
32
7.5 几种特殊的格
定义2 (补元) 有界格<L,≤,0,1>中,如果a*b=0且ab=1. 则称元素b为a的补元。
18
7.2 格的定义
例. 设S是任意集合, 则< P(s), >为偏序格。
|S|=1
|S|=2
|S|=3 两个集合A,B的上确界是A∪B,下确界是A∩B

格与布尔代数课件2

格与布尔代数课件2
= {y | y≤x1} ∩{y | y≤x2} = f(x1) ∧2 f(x2) f (x1∨1x2) = f (max{x1,x2}) = {y | y≤max{x1,x2}}
= {y | y≤x1} ∪ {y | y≤x2} = f(x1) ∨2 f(x2)
存在一个从A1到A2的映射f,使得对 x1,x2 A, 有f(x1∨1x2)=f(x1)∨2f(x2),f(x1∧1x2)=f(x1)∧2f(x2) ∴f 是 A1 到 A2 的格同态。
吸收律:a∨(a∧b) = a、a∧(a∨b) = a
证明:幂等律 ∵ a≤a,∴ a是a的上界,而a∨a是a的最小上界, ∴a∨a≤a ,又 ∵ a≤a ∨a,
由反对称性得:a∨a = a 由对偶原理得,a∧a = a
第15页,共28页。
证明:吸收律 ∵ a ≤a a ∧b ≤a ∴ a∨(a ∧ b)≤a∨a, a∨(a ∧ b)≤a
解:< I+ , D>是格 ∵整除关系是偏序关系,对a,bI, a、b的最小上界等于a、b的最小公倍数, a、b的最大上界等于a、b的最大公约数。
第3页,共28页。
< P(S) , > 是格
∵子集关系是偏序关系,对a,b P(S),
a、b的最小上界等于a∪b,
a、b的最大上界等于a∩b。
<<=S{S<n61, ,D,1D>>>,是<2格,2,>,<偏3,序3>关,<系1,6的>,哈<1斯,2>图,<如1,下3>1:,2<2,6>,<3,6>}
{a,b,c}
a
{a,b} {a,c} {b,c}

格和布尔代数

格和布尔代数
a,bL,若a≤b a∧b = a
分三步: 1) 证明’≤’是L上的偏序关系 2)证明 a,bL, {a,b}的下确界存在, 且 a∧b = glb(a,b)。 3)a,bL, {a,b}的上确界存在,且 lub(a,b) a∨b 具体证法见后面
1) 证明’≤’是L上的偏序关系 自反性:aL 由等幂律 a∧a=a, a≤a 反对称性:a,bL, 若a≤b, b≤a 则 a∧b=a, b∧a=b a = a∧b = b∧a = b 传递性:a,b,cL, 若 a≤b,b≤c 则a∧b=a, b∧c=b a∧c=(a∧b)∧c = a∧(b∧c)= a∧b=a a≤c
2、格的对偶原理
① 集合S的偏序关系≤的逆关系≥也是偏序关 系,若AS, 其中 ≤的glb(A) 对应于 ≥的lub(A), ≤的lub(A) 对应于 ≥的glb(A), 所以,若<S,≤>是格,则<S,≥>也是格, 称这两个格互为对偶。
2、格的对偶原理
② 因为<S,≤>的交是<S,≥>的并, <S,≤>的并是<S,≥>的交,
一般格只满足分配不等式: a∨(b∧c)≤(a∨b)∧(a∨c)
一、定义
设<L,∧,∨>是格,若a,b,cL,有: (1) a∧(b∨c)=(a∧b)∨(a∧c), (2) a∨(b∧c)=(a∨b)∧(a∨c), 则称 <L,∧,∨> 为分配格。
注:(1)(2)是互相等价的,由对偶原理,从一式可推
2)证明 a,bL, {a,b}的下确界存在, 且 a∧b=glb(a,b)。
a) 因为 (a∧b)∧a =(a∧a)∧b=a∧b a∧b≤a 同理a∧b≤b a∧b 是a,b的下界。

格与布尔代数

格与布尔代数

例7.12 设B={0,1},B n=BxBx…xB,B n中的元 素a=<a1,a2,…,an>,b=<b1,b2,…,bn>, 其中ai与bi取0或1,<0,0,…,0>表示为0n, <1,1,…,1>表示为1n,定义*, ⊕ 与┐运算
如下:
a*b=<a1*b1,a2*b2,…,an*bn>,a⊕b<a1⊕b1, a2⊕b2,…, an⊕bn>, ┐a=<┐a1, ┐a2,…,┐an >,可验证:<Bn,*,⊕,┐,0n,1n>符合条件 (H1)至(H4),故可构成布尔代数。
3、分配格的判定 定理7.7 格L是分配格,当且仅当L中不含有与钻 石格或五角格同构的子格。 推论7.1 (1)小于五元的格都是分配格;(2) 任意一条链都是分配格。 证明P130
例7.7 图7.4中哪个是分配格,哪个不是?
f
f
f
d e
e d
b
c
d
b
c c
e b
a
(a)L1
a
(b)L2
图7.4 格的示意图
7.1 格的基本概念
7.1.1 格的定义 1、格定义7.1 设<A,≤>是一个偏序集,对于 Ɐa,b∈A,子集{a,b}在A中都有一个最大下界(也 称为下确界,记为inf{a,b})和一个最小上界(也称 为上确界,记为sup{a,b}),则称<A,≤>为 格。
2、诱导的代数系统 定义7.2 设<A,≤>是一个格,如果在A上定义两 个二元运算,使得对Ɐa,b∈A,a∧b等于a和b的最 大下界,a∨b等于a和b的最小上界。则称<A,∧, ∨ >为由格<A,≤>所诱导的代数系统。
⊕0 1 00 0 10 1
x ┐x
01 10
可验证<B,*,⊕ ,┐,0,1>是布尔格,也称为 二值布尔代数。

离散数学-格和布尔代数

离散数学-格和布尔代数

的次序图如下
-1 的次序图如下
6 2 1 3 2
1 3 6
若 < L; > 是一个偏序集,则对于任意元素 l1, l2, l3 L,有以 下六个关系式成立: l1 l1 若 l1 l2,l2 l1,则 l1 = l2 若 l1 l2,l2 l3,则 l1 l3 l1 l1 若 l1 l2,l2 l1,则 l1 = l2 (7-1) (7-2) (7-3) (7-1) (7-2)
60以上说明与格一样布尔代数也是一个代数系统该代数系统可取交换律分配律同一律和互补律作为公二元运算是一元运算若这些运算满足交换律分配律同一律和互补律则称称作集合代数它是一个布尔代数
第二部分 抽象代数
0
第七章
格和布尔代数
格是 Birkhoff (1884 - 1944) 在 20 世纪 30 年代提出的,格的提出 以子集为背景。 历史上最初出现的格是英国数学家 George Boole 于 1854 年提出 的,是他在研究命题演算中发现的,通常称为布尔格或布尔代 数。 格和布尔代数的理论成为计算机硬件设计和通讯系统设计中的 重要工具。格论是计算机语言的指称语义的理论基础。格是一 种特殊的偏序集,也可以看作是有两个二元运算的代数系统, 布尔代数是一种特殊的格。在保密学、开关理论、计算机理论 和逻辑设计以及其他一些科学和工程领域中,都直接应用了格 与布尔代数。 1
7.2 格及其性质
一、格的定义
定义7-5 设 < L; > 是一个偏序集,如果 L 中任意两个元素都 存在着最大下界和最小上界,则称 < L; > 是格。 由于每对元素的最大下界和最小上界唯一,故引入记号: l1 l2 = glb(l1, l2),l1 l2 = lub(l1, l2), 其中 和 均可看作是集合 L 上的二元运算,分别称为交和并。 注:若 < L; > 是一个格,则意味着 < L; > 也是一个形为 < L; , > 的代数系统,其中 和 是 L 上的两个二元运算, 对于任意 l1, l2 L,l1 l2 表示在偏序 “ ” 意义下,l1 和 l2 的最小上界,l1 l2 表示 l1 和 l2 的最大下界。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由于上式中的b是任意的,可以令b=a∨b 并代入⑴式得
a∨(a∧(a∨b)) =a 由⑵式得 a∨a=a
同理可证a∧a=a
8
8. ∨和∧不满足分配律。但有分配不等式:
a∨(b∧c)≤ (a∨b)∧(a∨c) ,
(a∧b)∨(a∧c)≤ a∧(b∨c) 。
b
我们先看右图的例子:
d∨(b∧e)=d∨c=d (d∨b)∧(d∨e) =a∧e=e d≤e 即 d∨(b∧e) ≤ (d∨b)∧(d∨e) 证明:⑴ ∵ a≤a∨b a≤a∨c ∴a ≤(a∨b)∧(a∨c) ∵ b∧c≤b≤ a∨b b∧c≤c≤ a∨c ∴ b∧c ≤(a∨b)∧(a∨c) 于是有 a∨(b∧c) ≤(a∨b)∧(a∨c)
设<A, ≤>是格,在A上定义二元运算∨和∧为:a,b∈A
a∨b=LUB {a,b}, {a,b}的最小上界.Least Upper Bound
a∧b=GLB {a,b}, {a,b}的最大下界.Greatest Lower
Bound
称<A,∨,∧>是由格<A,≤>诱导的代数系统. (∨-并,∧-交a )
4. 子例格如:右设<边A,的≤>是格格中, <aA∧,∨b,∧=b>是由a∨b=a b∧c=e b c d
<A,≤>诱导的代数系统。B是A的非空子
集,如果∧和∨在B 上封闭,则称<B, ≤> 是<A, ≤>的子格。
a
b
c b
d
e
f e
<C,≤>是<A,≤>的
g
e a
c
a
b f
g
c
d
子格。而<B,≤>不是.
2. 平凡格:所有全序都是格,称之为平凡格。 因为全序中任何两个元素x,y,要么x≤y, 要么y≤x。 如果x≤y,则{x,y}的最大下界为x,最小上界为y。 如果y≤x,则{x,y}的最大下界为y,最小上界为 x 。
即这{x,y}的最大下界为较小元素,最小上界为较大元素.
3
3. 由格诱导的代数系统
∵ a≤ a a∧b ≤a ∴ a∨( a∧b) ≤a
最后由≤反对称得 a∨( a∧b) =a,
类似可证 a∧(a∨b) =a。
7. <A,∨,∧>是代数系统,如果∨和∧是满足吸收律的二
元运算,则∨和∧必满足幂等律。
证明:任取a,b∈A ∵ ∨和∧是满足吸收律。∴有
a∨( a∧b) =a ------⑴ a∧(a∨b) =a -------⑵。
P中的≤换成≥,∧换成∨,∨换成∧,就得到命题P’ ,
称P’为P的对偶命题,则P’对任何格也是为真的命题。
例如:P: a∧b≤a
P’: a∨b≥a
{a,b}的最大下界≤a {a,b}的最小上界≥a
三. 格的性质
<A,∨,∧>是由格<A,≤>诱导的代数系统。a,b,c,d∈A
1. a≤a∨b b≤a∨b a∧b≤a a∧b≤b
2. B的最小元与最大元 y是B的最小元y∈B∧x(x∈By≤x) y是B的最大元y∈B∧x(x∈Bx≤y) {2,3,6}的最小元:无 最大元: 6 B如果有最小元(最大元), 则是唯一的。
3. B的下界与上界
24。 36。 12。 6。
2。 3。 1。
y是B的下界y∈A∧x(x∈By≤x)
y是B的上界y∈A∧x(x∈Bx≤y)
{2,3,6}的下界:1 上界: 6,12,24,36
4. B的最大下界(下确界)与最小上界(上确界)
y是B的最大下界(下确界):B的所有下界x,有x≤y。
y是B的最小上界(上确界):B的所有上界x,有y≤x。
{2,3,6}下确界:1 上确界:6 (B若有下(上)确界,则唯一)
1
7-1 格 (Lattice)
此性质由运算∨和∧的定义直接得证。
5
2.如果a≤b,c≤d,则 a∨c≤b∨d,a∧c≤b∧d。 证明:如果a≤b,又b≤b∨d, 由传递性得a≤b∨d, 类似由c≤d, d≤b∨d,由传递性得c≤b∨d, 这说明b∨d是{a,c}的上界,而a∨c是{a,c}的最小上界, 所以a∨c≤b∨d。
类似可证 a∧c≤b∧d。 推论:在一个格中,任何 a,b,c∈A,如果b≤c,则
∴ (a∨b)∨c ≤a∨(b∨c)
⑵同理可证 a∨(b∨c)≤(a∨b)∨c
最后由反对称得 (a∨b)∨c =a∨(b∨c)

类似可证 (a∧b)∧c =a∧(b∧c) 。
7
6. ∨和∧都满足吸收律。即
a∨( a∧b) =a, a∧(a∨b) =a。
证明:⑴显然有 a≤a∨( a∧b)
⑵.再证 a∨( a∧b) ≤a
a∨b≤a∨c,a∧b≤a∧c。 此性质称为格的保序性。 3. ∨和∧都满足交换律。即 a∨b=b∨a,a∧b=b∧a。 此性质由运算∨和∧的定义直接得证。
6
4. ∨和∧都满足幂等律。即 a∨a=a a∧a=a
证明:由性质1 得 a≤a∨a (再证a∨a≤a)
由≤自反得a≤a, 这说明a是{a}的上界,而a∨a是{a}的
一 . 基本概念
1. 格的定义
<A,≤>是偏序集,如果任何a,b∈A,使得{a,b}都有最大
。 。 。 下界和最小上界,则称<A,≤>是格。
❖ 右图三个偏序 24
36
30
集,哪个是格?
。 12 6。 10。
<A,≤>不是格, 因为{24,36} 无最小上界。 <B,≤>和<C,≤>
2。6。3。2。 1。
3。 1。
15。 5。
2。 1。 4。 3。
是格。再看下面三个偏序集<A,,≤哪> 个是格?
<B,≤>
<C,≤>
2
a
b
c
d
e
1
2
3
4
5
6
a
b
c
d
e
第一个与第三个是同构的。因为 d和e无下界,也无 最小上界;b,c虽有下界,但无最大下界。
第二个图:2,3无最大下界,4,5无最小上界。 这三个偏序集,都不是格,
<A,≤>
<B,≤>
<C,≤>
因b∧c=dB, (判定子格:看去掉的元素是否影响封闭)
4
二. 格的对偶原理
设<A,≤>是格,≤的逆关系记作≥,≥也是偏序关系。
所以<A, ≥>也是格,<A,≥>的Hasse图是将<A,≤>的
Hasse图颠倒180º即可。
格的对偶原理:设P是对任何格都为真的命题,如果将
最小上界,所以 a∨a≤ a。最后由≤反对称得 a∨a=a 。
由对偶原理得 a∧a=a
5. ∨和∧都满足结合律。即
(a∨b)∨c =a∨(b∨c) , (a∧b)∧c =a∧(b∧c) 。
证明:⑴先证明(a∨b)∨c ≤a∨(b∨c)
∵ a≤ a∨(b∨c) b≤b∨c ≤ a∨(b∨c)
∴ (a∨b) ≤a∨(b∨c) ∵ c≤b∨c ≤ a∨(b∨c)
相关文档
最新文档