传热学思考题答案(第六章)
传热学课后答案(完结版)

2
tw2
3
tw1 tw 2 q2 1 2 3 1 2 3
再由:
tw1
λ
λ 3
tw2
q1
q2 0.2q1 ,有
tw1 tw 2 t t 0.2 w1 w 2 1 2 1 2 3 1 2 1 2 3
得:
3 43 (
'2 3 2 5 6 2 R 0.265m k / W 2 3 0.65 0.024
"
由计算可知,双 Low-e 膜双真空玻璃的导热热阻高于中空玻璃,也就是说双 Low-e 膜双真 空玻璃的保温性能要优于中空玻璃。 3. 4.略 5 .
m2
(m 2 K )
、 h2 85W
(m 2 K )
、 t1 45 ℃
t2 500 ℃、 k ' h2 85W
求: k 、 、
(m 2 K )
、 1mm 、 398 W
(m K )
解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即: k
tw1 t w 2 x
(设 tw1 tw 2 ) , 否则 t 与平壁 coust (即常物性假设)
其与平壁的材料无关的根本原因在 的材料有关 (2)由 4.略
q
dt dx
知,q 与平壁的材料即物性有关
5.解:
d 2 dt (r )0 dr dr r r1 , t tw1 (设tw1 t w 2 ) r r2 , t tw 2
绪论
思考题与习题( P89 )答案: 1. 冰雹落体后溶化所需热量主要是由以下途径得到:
传热学第六章答案解析

传热学第六章答案解析第六章复习题1、什么叫做两个现象相似,它们有什么共性?答:指那些用相同形式并具有相同内容的微分方程式所描述的现象,如果在相应的时刻与相应的地点上与现象有关的物理量一一对于成比例,则称为两个现象相似。
凡相似的现象,都有一个十分重要的特性,即描述该现象的同名特征数(准则)对应相等。
(1)初始条件。
指非稳态问题中初始时刻的物理量分布。
(2)边界条件。
所研究系统边界上的温度(或热六密度)、速度分布等条件。
(3)几何条件。
换热表面的几何形状、位置、以及表面的粗糙度等。
(4)物理条件。
物体的种类与物性。
2.试举出工程技术中应用相似原理的两个例子.3.当一个由若干个物理量所组成的试验数据转换成数目较少的无量纲以后,这个试验数据的性质起了什么变化?4.外掠单管与管内流动这两个流动现象在本质上有什么不同?5、对于外接管束的换热,整个管束的平均表面传热系数只有在流动方向管排数大于一定值后才与排数无关,试分析原因。
答:因后排管受到前排管尾流的影响(扰动)作用对平均表面传热系数的影响直到10排管子以上的管子才能消失。
6、试简述充分发展的管内流动与换热这一概念的含义。
答:由于流体由大空间进入管内时,管内形成的边界层由零开始发展直到管子的中心线位置,这种影响才不发生变法,同样在此时对流换热系数才不受局部对流换热系数的影响。
7、什么叫大空间自然对流换热?什么叫有限自然对流换热?这与强制对流中的外部流动和内部流动有什么异同?答:大空间作自然对流时,流体的冷却过程与加热过程互不影响,当其流动时形成的边界层相互干扰时,称为有限空间自然对流。
这与外部流动和内部流动的划分有类似的地方,但流动的动因不同,一个由外在因素引起的流动,一个是由流体的温度不同而引起的流动。
8.简述射流冲击传热时被冲击表面上局部表面传热系数的分布规律.9.简述数数,数,Gr Nu Pr 的物理意义.Bi Nu 数与数有什么区别? 10.对于新遇到的一种对流传热现象,在从参考资料中寻找换热的特征数方程时要注意什么?相似原理与量纲分析6-1 、在一台缩小成为实物1/8的模型中,用200C 的空气来模拟实物中平均温度为2000C 空气的加热过程。
传热学:第六章 热辐射及辐射传热

本章总说明
❖ 物体的辐射特性包含发射特性和吸收特性 ❖ 课程中提到的温度包括两个: ❖ (1)工业高温,小于2000K——红外辐射 ❖ (2)太阳高温,近6000K——太阳辐射
6.1 热辐射的基本概念
6.1.1 热辐射
❖ 辐射——物体向外界以电磁波的方式发射携带 能量的粒子的过程
❖ 宏观-辐射是连续的电磁波传递能量的过程 ❖ 微观-辐射是不连续的光子传递能量的过程 ❖ 电磁波的本质是具有一定能量的光子(粒子),
❖ 引入立体角的目的是衡量表面辐射的方向特性 ❖ 表面在半球空间辐射的能量按不同方向分布的规
律只有对不同方位中相同的立体角来比较才有意 义
❖空间方位不同,可 以见到的辐射面积是 不同的
❖——表面的法线方 向最大
❖——切线方向最小,为零
❖ 表面在半球空间辐射的能量按不同方向分布的规 律只有在相同的辐射面积下来比较才有意义
❖ 几何上,“角”反映了在空间某一方向所占区域 的大小
❖ 平面几何中,用平面角表示在平面上所占区域的 大小
❖ 单位“弧度”
❖ 类似地,为了表示物体在三维空间中某一方向所 占空间的大小,引入“立体角”的概念
❖ 立体角(solid angle):球面面积As与球面半径 r2之比
❖ 单位:sr
As r2
❖ 波长不同,特性不同:
❖ ——短波的γ射线、X射线等,高能物理学家和
核工程师更感兴趣 ❖ ——波长在1mm-1m的电磁波称为微波,能穿
透塑料、陶瓷和玻璃等,但会被水等极性分子 吸收而产生内热源——微波炉的原理 ❖ ——波长大于1米的电磁波主要用于无线电技术 中 ❖ 热辐射中发出的电磁波通常称为热射线,本质 上也是电磁波
❖ 用“E”表示,W/m2 ❖ 辐射力表述了物体在一定温度下发射辐射能本
传热学-第六章5

二. 自然对流与强制对流并存的混合对流 在实际对流问题中总是自然对流与强制对流相混合。 在实际对流问题中总是自然对流与强制对流相混合。 因为有温差才能换热,而有温差就有自然对流, 因为有温差才能换热,而有温差就有自然对流,因 而受迫对流中必然存在自然对流。在分析计算时可 简化。 简化。 强制对流,主要是惯性力起作用;自然对流, 强制对流,主要是惯性力起作用;自然对流,主要是 浮升力起作用,在处理问题时, 浮升力起作用,在处理问题时,是否忽略自然对流或 强迫对流取决于浮升力与惯性力的比值 取决于浮升力与惯性力的比值。 强迫对流取决于浮升力与惯性力的比值。 3 2
Ra < 108
Ra = Gr ⋅ Pr > 109
——层流 层流 ——紊流 紊流 ——过渡 过渡
108 < Ra < 109
在本课程中用Gr数判别流态。 在本课程中用Gr数判别流态。 Gr数判别流态
一. 大空间自然对流换热的实验关联式 1)由实验可知:气体自然对流关联式为: )由实验可知:气体自然对流关联式为: ( P r )
算h,再校核假定值。 ,再校核假定值。
空气在横圆柱外自然对流的统一关联式: 5)空气在横圆柱外自然对流的统一关联式:
Nu=
0 . 3 6
适用范围: 适用范围: 定性温度为: 定性温度为:
Gr + 1 0 6 1 . 3 1 01 3 Gr = − → × ( ) / 2 tm = tw + ∞ t
2、自然对流的特点:a)如图竖直放置的热壁与冷流体 自然对流的特点: 如图竖直放置的热壁与冷流体
接触, 接触,在近壁处会形成温度边界层和速度边界层且
δ =δt在贴壁处由于粘性的作用,速度为零,在边界 在贴壁处由于粘性的作用,速度为零,
传热学课后答案(完整版)

绪论思考题与习题(89P -)答案:1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。
2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。
(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。
(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。
7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。
以热传导和热对流的方式。
9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。
当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。
10.t R R A λλ=⇒ 1t R R A λλ==2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线 12、略13.解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃ 222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯= 14. 解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.24.4441045t R λσλ-===⨯2m K W • 3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.()i w f q h t h t t =∆=-⇒i w f qt t h=+51108515573=+=℃0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=16.解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()W m K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯= 若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h ,21h σλ 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。
化工答案 第六章传热

第六章传热习题热传导6-1. 如图所示,某工业炉的炉壁由耐火砖λ1= 1.3W/(m ·K)、绝热层λ2 = 0.18W/(m ·K)及普通砖λ3= 0.93W/(m ·K)三层组成。
炉膛壁内壁温度1100℃,普通砖层厚12cm, 其外表面温度为50℃。
通过炉壁的热损失为1200W/m 2, 绝热材料的耐热温度为900℃。
求耐火砖层的最小厚度及此时绝热层厚度。
设各层间接触良好,接触热阻可以忽略。
解:()()()433332222111t t t t t t q -=-=-=δλδλδλ ()5012.093.012003-=t 1553=t ℃ 6-2. 如图所示,为测量炉壁内壁的温度,在炉外壁及距外壁 1/3 厚度处设置热电偶,测得 t 2=300℃, t 3 =50℃。
求内壁温度 t 1 。
设炉壁由单层均质材料组成。
解:()()322211t t t t q -=-=δλδλ8001=t ℃6-3. 某火炉通过金属平壁传热使另一侧的液体蒸发,单位面积的蒸发速率为0.048kg/(m 2·s ),与液体交界的金属壁的温度为110℃。
时间久后,液体一侧的壁面上形成一层2mm 厚的污垢,污垢导热系数λ=0.65W/(m ·K)。
设垢层与液面交界处的温度仍为110℃,且蒸发速率需维持不变,求与垢层交界处的金属壁面的温度。
液体的汽化热r =2000kJ/kg 。
解:2kW/m 962000048.0=⨯=q38.4051=t ℃6-4. 为减少热损失,在外径Φ150mm 的饱和蒸汽管道外复盖保温层。
已知保温材料的导热系数λ=0.103+0.000198t (式中t 为℃),蒸汽管外壁温度为 180℃,要求保温层外壁温度不超过 50℃,每米管道由于热损失而造成蒸汽冷凝的量控制在 1×10-4kg/(m ·s)以下,问保温层厚度应为多少?解:查180℃水蒸汽kJ/kg 3.2019=r126.0250180000198.0103.0=⎪⎭⎫⎝⎛+⨯+=λW/(m ﹒℃) *6-5. 如图所示,用定态平壁导热以测定材料的导热系数。
《传热学》第五版复习资料--课后重点习题答案

西安建筑科技大学《传热学》第五版复习资料----课后重点习题答案绪论思考题与习题(89P -)答案:1. 冰雹落体后溶化所需热量主要是由以下途径得到:Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。
6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。
(T T 〉外内) 冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。
(T T 〈外内) 挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。
9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层 两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。
当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。
15.已知:50i d mm =、 2.5l m =、85f t =℃、273()Wh m K =•、25110Wq m =求:i w t 、φ()i w f q h t h t t =∆=-⇒i w f qt t h =+51108515573=+=℃0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()Wm K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯=若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h ,21h σλ 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。
传热学第六章习题讲解讲诉

Gr Pr gtd 3 Pr 9.8 4.04 104 65 20 0.0253 1012 4.118 2.86 107
v2
0.6332
Nu
2
0.5892.86 107 1/ 4
1 0.469 / 4.1189/16 4/ 9
2 43.07 1.122
40.4
则加热功率: Aht d 2htw t 3.14 0.0252 1031 65 20 1.9625 103 1031 45 91W
如有讲不好或不对的地方,请大家批评指正
谢谢!
解:依题意得:
定性温度;t
tm
tw t f 2
133 165 149 ℃ 2
得空气物性值为:
0.0356W /(m K ), v 28.8 106 m2 / s, Pr 0.683,
Re ud 6 0.04 8333
s1 2, s2 1.25
v 28.8106
,由 d d
解:依题意得:
金属球的努塞尔数:
Nu
2
0.589Gr Pr1/ 4 1 0.469 / Pr9/16
4/9
定性温度:
Gr Pr 1011, Pr 0.7
tm
tw
t 2
20 65 2
42.5C
0.638W /m K , v 0.633106 m2 / s Pr 4.118, 4.04 104
上述模化实验虽然模型与流体的数并不严格相等但十分相近这样的模化实验是有实用价值的
传热学第六章部分习题讲解
制作人:陈重日 学号:2012051B0231
6 -1 在一台缩小成为实物1/8的模型中,用20℃的空气来模拟实物中平 均温度为200℃空气的加热过程。P286 问题: (1)实物中空气的平均流速为6.03m/s,问模型中的流速应为若干? (2)若模型中的平均表面传热系数为195W/(m2 K),求相应实物中的值。 (3)在这一实物中,模型与实物中流体的Pr数并不严格相等,你认为这 样的模化试验有无实用价值?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、热辐射与导热和对流换热相比有何本质区别?
答:1、辐射换热不依靠物质的接触进行热传递,而导热和对流换热都必须由冷、热物体直接接触或通过中间介质接触才能进行。
2、辐射换热过程伴有能量的两次转化,首先是发射物体的内能转化为电磁波向外发射,到达吸收物体时电磁波能又转化为内能。
3、一切物体只要温度高于绝对零度,即T>O K时,都在不断地发射热射线。
对有a差的两物体,高温物体辐射给低温物体的能量大于低温物体辐射给高温物体的能量;相同温度的物体间仍在进行辐射换热,只是悔物体辐射出去的能量等于吸收的能量。
2、什么叫黑体?在热辐射理论中为什么引入这一概念?
答:吸收比a=1的物体叫做黑体,黑体是一个理想化的物体,黑体辐射的特征反映了物体辐射在波长、温度和方向上的变化规律,这位研究实际物体的辐射提供了理论依据和简化分析基础。
3、一个物体,只要温度T>0K就会不断向外界辐射能量,试问它的温度为什么不会因热辐射而降至0K?
4、温度均匀的空腔壁面上的小孔具有黑体辐射的特性,那么空腔内部的辐射是否也是黑体辐射?
答:空间内壁壁面不一定是黑体辐射,之所以小孔呈现出黑体特性,是因为辐射在空腔内经历了很多次吸收和反射过程,使离开小孔的能量微乎其微。
5、黑体的辐射能按空间方向是怎样分布?定向辐射强度与空间方向无关是否意味着黑体的辐射能在半球空间各方向上是均匀分布的?答:黑体辐射能按空间方向分布服从兰贝特定律。
定向辐射强度与空间方向无关并不意味着黑体辐射能在半球空间各方向上是均匀分布的,因为辐射强度是指单位可见面积的辐射能,在不同方向,可见面积是不同的,即定向辐射力是不同的。
6、为什么要引入灰体这样的理想物体?说明引入灰体的简化对工程辐射换热计算的意义。
答:光谱吸收比与波长无关的物体叫做灰体,灰体的吸收比恒等于同温度下的发射率,把实际物体当做灰体如理,可以不必考虑投入辐射的特性,将大大简化辐射换热的计算。
7、对于一般物体,吸收比等于发射率在什么条件下成立?
答:任何物体在与黑体处于热平衡的条件下,对来自黑体辐射的吸收比等于同温度下该物体的发射率。
8、气体辐射有何特性?
答:气体辐射对波长有选择性固体能发射和吸收全部波长范围的辐射能,而气体只能发射和吸收某些波长范围内的辐射能.气体的辐射和吸收在整个体积内进行固体、液体的辐射和吸收在其表面进行,而气体的发射和吸收在整个体积内进行.当热射线穿过气体层时,其辐射能量因被沿途的气体分子吸收而逐渐减少;在气体界面上所接受到的气体辐射为达到界面上整个体积气体辐射之总和.气体的吸收和辐射与气体层的形状和体积大小有关.。