第四章一元一次方程。用方程解决问题教案
4.3用一元一次方程解决问题(第3课时比例与图形问题)(教学课件)-七年级数学上册(苏科版2024)

(2)如图③,请在三个空白方格中填上适当的数,以满足幻方游
戏的要求;
(3)如图④,试求幻方中 m , n 的值.
解:由题意得13-12+ m =-7+28+ n ,
所以 n = m -20.
由题图④最下面一行与最右边一行的和相等,
可得-7+28+ n = m -2+ n ,
解得 m =23.
(3 n +1)
个
个基础
(2)在上面的图案中,能否找到一个由2 023个基础图形组成的图
案?如果能,说明是第几个图案;如果不能,说明理由.
解:能.由(1)得第 n 个图案由(3 n +1)个基础图形组成,
根据题意,得3 n +1=2 023,解得 n =674.
所以能找到一个由2 023个基础图形组成的图案,
解:设三角形三个角的大小分别为2x,3x,5x
根据题意,得
解得,
所以,
2+3+5=180°
=18°
2=36°,3=54°,5=90°
三角形的三个角的大小分别为:36°,54°,90°
答:这个三角形是直角三角形。
课本例题
例5 用黑白两色棋子按如图所示方式摆图形,依此规律,图形中黑
色棋子的个数有可能是50吗?
大小相同的小长方形(空白部分),其中 AB =5 cm, BC =9 cm,请
认真观察思考并解答下列问题:
(1)求小长方形的长和宽;
解:设小长方形的长为 x cm,
则由图易知宽为(5- x ) cm,
由题意得 x +3(5- x )=9,解得 x =3.5-3=2(cm).
所以小长方形的长为3 cm,宽为2 cm.
苏科版(2024) 七年级数学上册
《一元一次方程的应用(4)》参考教案

4.3 一元一次方程的应用(4)〖教学目标〗1.借助表格分析复杂问题中的数量关系,从而建立方程解决实际问题,发展分析问题、解决问题的能力。
2.让学生在自己不断的努力和对实际问题的探索研究中,体验成功的快乐,激发学生的学习兴趣和热情,培养学生勇于探索的科学精神。
3.通过对“希望工程”义演中的数学问题的探讨,进一步体会方程模型的作用。
〖教材分析〗通过前几节知识的学习,学生已学会通过分析简单问题中已知量与未知量的关系列出方程解应用题。
列一元一次方程解应用题的难点在于根据题意找出等量关系,它同时又是解决这个问题的关键所在。
所以,本节课仍然以生动的联系生活的情境,继续培养学生分析等量关系,列方程解决实际问题的能力。
本节课以求解一个实际问题为切入点,让学生经历抽象、符号变换、应用等活动,展现运用方程解决实际问题的一般过程。
帮助学生认识寻找等量关系是列方程解决实际问题的核心和关键。
我们有时可以借助图示或列表的方法去表达问题的信息,寻求其中的等量关系。
〖教学设计〗(一)创设情境多媒体显示场景“希望工程”义演现场,两人对话如下:A:观众真多呀!B:是呀,这次演出共售出了1000张票。
A:筹了多少钱?B:共筹得票款6950元,全部捐给了“希望工程”。
问:你知道成人票与学生票各售出多少张吗?【教学说明:以动画的形式再现生活场景,让学生感受到数学就在我们身边,有利于调动学生的积极性和参与意识。
】(二)探索研讨1.议一议(1)从动画中,你可以得到哪些信息?(2)在这个问题中包含了哪些等量关系?学生汇报:已知量:成人票价8元/张、学生票价5元/张、成人和学生总票数1000张、成人和学生总票款6950元。
未知量:成人票数、学生票数、成人票款、学生票款。
等量关系:成人票数+学生票数=1000张,(1)成人票款+学生票款=6950元。
(2)【教学说明:让学生将实际问题抽象成数学问题,找出其中的已知量、未知量和等量关系。
】2.为了明确各个量之间的相互关系,我们可以列出下表:【教学说明:引导学生把数学问题用图表语言来表达,借助表格整体把握和分析各个量之间的相互关系。
用一元一次方程解决实际问题( 工程问题、行程问题与球赛积分问题)(课件)七年级数学上册(苏教版)

答:赢一场积2分
情景引入(球赛积分问题)
喜欢体育的同学经常观看各种不同类别的球赛,但是你们知道它们的计分规则吗?以及比赛
是如何计算积分吗?我们将学习如何用方程解决球赛积分问题。
问题五:用式子表示总积分与胜负场积分之间的数量关系?
问题六:某队的胜场总积分能等于它的负场总积分吗?
【详解】设火车车身长为米,依题意得:
4.5 × 800 = 3400 + ,解得: = 200,
答:这列火车车身长200米.
一辆货车从甲地运送货物到乙地,速度为a千米/小时,然后空车按原路返回时
速度为b千米/小时,求货车从送货到返回原地的平均速度.
2
2
+
【详解】解:设甲乙两地的路程为S千米,+ =
可得:6 + 15 − 3 = 27,
解得: = 4,
15 − 12 = 3,
答:该队平了3场,
利用一元一次方程解决实际问题-球赛积分问题
校园足球联赛规则规定:胜一场得3分,平一场得1分,负一场得0分.某
队比赛8场保持不败,得18分,则该队共胜几场?若设该队胜了x场,则
可列方程为__________________.
【详解】
8场比赛不败,说明这8场比赛中只有赢或平局。
根据题意得:3x+(8-x)=18,
利用一元一次方程解决实际问题-球赛积分问题
某电台组织知识竞赛,共设道选择题,各题分值相同,每题必答,下面
记录了个参赛者的得分情况。参赛者得分,它答对了__________道题.
【详解】
参赛
者
答对题数
分析:1)如果某队胜m场,总场次为 14 场,则负 14-m 场;
一元一次方程及其解法教案教学设计

4.2一元一次方程及其解法教案设计第4章一元一次方程七年级上册苏科版(2024)【教材分析和学情分析】教材分析:第四章“一元一次方程”是初中数学的基础内容,主要介绍了方程的基本概念、方程的解、等式的性质以及如何解一元一次方程。
这一章的学习,旨在通过实际问题的解决,让学生理解并掌握一元一次方程的模型,培养他们的逻辑思维能力和问题解决能力。
教材中通过丰富的实例和习题,帮助学生从实际问题中抽象出数学问题,再通过解决数学问题,反哺解决实际问题,形成数学思维。
学情分析:1. 学生基础:七年级的学生已经学习了基本的算术运算,对数的概念有一定的理解,但可能对如何用数学模型解决实际问题还比较陌生。
此外,他们的抽象思维能力和逻辑推理能力还在发展阶段。
2. 学习兴趣:初中的学生对新鲜事物充满好奇,如果能将一元一次方程与生活实际相结合,设计一些趣味性的教学活动,可以激发他们的学习兴趣。
3. 学习习惯:部分学生可能还习惯于被动接受知识,缺乏主动探究和自我解决问题的习惯,需要教师引导他们主动参与到学习过程中。
4. 学习困难:一些学生可能在理解等式的性质和运用这些性质解方程时遇到困难,需要教师耐心引导,通过实例演示和反复练习帮助他们掌握。
【教学目标】1. 知识与技能:学生应能理解一元一次方程的定义,掌握其标准形式,并能识别和列出实际问题的一元一次方程。
2. 过程与方法:通过实例,让学生经历从实际问题抽象出一元一次方程的过程,掌握解一元一次方程的基本步骤,培养他们的抽象思维和问题解决能力。
3. 情感态度与价值观:培养学生对数学的兴趣,体验数学与生活的紧密联系,提高他们的学习积极性和自信心。
【教学重难点】1. 重点:理解一元一次方程的定义,能正确列出和解一元一次方程。
2. 难点:将实际问题转化为一元一次方程,理解解方程的过程。
【教学过程】1. 导入新课:通过生活中的实例,如“小明有10元钱,他买了一本书花了5元,他还剩下多少钱?”引入方程的概念,让学生初步感知方程是用来表示等量关系的数学工具。
新苏教版七年级第四章《一元一次方程》教案

第四章一元一次方程课标要求:(1)能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数学模型;(2)会解一元一次方程;(3)能根据具体问题的实际意义,检验结果是否合理.课时1 从问题到方程(1)一、教材分析:1.学习目标:知识与技能:学会用方程描述问题中数量之间的相等关系.过程与方法:通过对多种实际问题中数量关系的分析,使学生初步感受方程是刻画现实世界的有效模型.情感、态度与价值观:初步认识方程与现实世界的密切联系,感受数学的价值.2.重、难点:理解题意,寻求数量间的等量关系并列出方程.二、教材处理:1.情景创设:(1)天平称球(或硬币、铅笔等),见课本P114.(2)排球联赛,某队胜多少场?见课本P114.……建议根据实际情况,创设较多的与学生生活相关的实际问题,以激发学生学习兴趣.2.学生活动、意义建构、数学理论:用天平演示实验后,学生思考问题一:可以用什么方法解决这个问题?问题二:你是如何解决这个问题的?借助方程能否解,怎样解?对排球队胜多少场的问题,学生思考问题一:猜一猜,该队胜了多少场?问题二:可以用什么方法解决这个问题?(尝试法;枚举法;列方程等)问题三:设该队胜了x场,能用方程来解吗?如何解?从而揭示课题——从问题到方程.3.数学运用:例1(补):见教师教学参考资料“某校七年级共有216名师生参加某次活动,用一辆面包车和若干辆客车接送,已知这一辆面包车只能坐16人,还需用多少辆40座的客车?”学生思考一:设用x辆40座的客车,则客车能接送多少人?学生思考二:列方程,等量关系是什么?师提供正确的解题格式“设还需用x辆40座的客车.根据题意,得40x+16=216”.变式训练一:用四辆轿车和若干辆客车接送,已知一辆轿车只能坐4人,还需用多少辆40座的客车?变式训练二:用轿车和客车共9辆车接送,已知一辆轿车只能坐4人,还需用多少辆轿车和多少辆40座的客车?……思维拓展见课本P115试一试;也可补充题,见教师教学参考资料……习题处理,见课本P115练一练1,2,3.学生说清每小题的等量关系式,而后师小结.建议补充一些能借用一元一次方程来解的简单的实际问题,如行程问题、工程问题、形积问题、商品销售问题等,介绍一些名词,为后面的学习作一铺垫,但一定要控制难度.4.回顾反思:(1)本课只是要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程是作为刻画现实世界模型的重要意义,建立方程思想.为第3单元作铺垫,对本章知识的学习起到提纲挈领的作用.(2)教学时,要在调动学生的积极性和激发他们的学习兴趣上下工夫.课时2 从问题到方程(2)一、教材分析:1.学习目标:知识与技能:通过对具体实际生活问题的分析,进一步学会根据实际问题的意义设未知数并列出方程,了解一元一次方程的概念.过程与方法:经历把实际问题抽象出数学问题的过程,体会方程是人们分析、解决实际问题的有效工具.情感、态度与价值观:进一步领会方程与现实生活间的密切联系,感受数学建模思想的应用.2.重、难点:分析问题,探寻等量关系列一元一次方程.二、教材处理:1.情景创设:(1)列车提速问题,见课本P115.生活背景:从1997年到2004年,我国共进行了5次列车提速.(2)见教师教学参考资料手机通讯话费付费方式2.学生活动、意义建构、数学理论:结合问题情景,思考:解决这个问题的关键是什么?题中涉及哪些量?这些量之间的关系如何?你能找出表示问题意义的相等关系吗?用方程怎样表达?方法一:用直接未知数.设甲、乙两城市间的路程为x km,相等关系:提速前的运行时间-提速后的运行时间=缩短时间.方法二:用间接未知数.设提速前列车从甲地到乙地的运行时间为x 小时,相等关系:提速前的运行速度×运行时间=提速后的运行速度×运行时间,即80x=100(x-3).建议只让学生多一些方法,但不要讲的太多.3.数学运用:例1(补):某班学生39人到公园划船,共租用9艘船,每艘大船可坐5人,每艘小船可坐3人,每艘船都坐满.问:大船、小船各租了多少艘?教学时可以先让学生尝试和探索,然后交流.而后概括从实际问题到方程一般要经历的过程:找出表示问题意义的相等关系,设未知数(通常用x、y等),用含未知数的代数式表示题中相关的量,根据相等关系列方程.思维拓展见课本P116试一试,P116练一练1.习题见课本P117及教师教学参考资料等.……最后,学生观察所列方程的特点,归纳得出一元一次方程的概念,再举出几个类似的方程.建议结合导学与评价,补充练习.4.回顾反思:(1)把实际问题抽象为数学问题,再从数学问题到列出方程.关键在于弄清题意,恰当地巧设未知数,找出问题中的相等关系.(2)设元设得巧,方程列得妙;设元设得好,方程列的得快.一般问什么则设什么,有时设未知的另一个量来求也较方便.(3)解题时,找出问题中的相等关系,要深刻理解题意,把握题中隐含条件及内在联系(如题中等量关系语句、量与量之间的关系).(4)学有余力的同学鼓励其解方程(小学根据逆运算原理),对一般同学不作要求.课时3 解一元一次方程(等式的基本性质)一、教材分析:1.学习目标:知识与技能:了解与一元一次方程有关的概念,掌握等式的基本性质,能运用等式的基本性质解简单的一元一次方程.过程与方法:经历数值代入计算的过程,领会方程的解和解方程的意义.知道求方程的解就是将方程变形为x=a 的形式.情感、态度与价值观:强调检验的重要性,养成检验反思的好习惯.2.重、难点:比较方程的解和解方程的异同;归纳等式的性质;利用性质解方程.二、教材处理:1.情景创设:(1)见课本P118“如何解2x+1=5”.通过填表尝试,即采用枚举这一合情推理的方法找出满足方程的未知数的值,得出方程的解和解方程的概念.(2)见华东师大版七(下)P4由用天平测物,联想到等式的几种变形.探索得出:如果我们在两边盘内同时添上(或取下)相同质量的物体,可以看到天平依然平衡,得x+2=5→x=5-2,3x=2x+2→3x-2x=2;如果我们将两边盘内物体的质量同时扩大到原来相同的倍数(或同时缩小到原来的几分之一),也会看到天平依然平衡,得2x=6→x=6÷2.学生归纳等式的性质.2.学生活动、意义建构、数学理论:出示问题情景(1)后,学生考虑:怎样求方程中的未知数的值?分别将1、2、3、4、5代入方程,哪一个值能使方程成立?学生做课本P118试一试,教师讲授方程的解和解方程的概念.引入问题情景(2)后,鼓励学生说出各自不同的想法,相互交流、补充,逐步引导启发学生归纳等式的性质1:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式;等式的性质2:等式两边都乘以(或除以)同一个数(除数不为零),所得结果仍是等式. 等式的性质比较抽象,教学时不必在理论上作过多的展开,重在问题情景②探索的过程,可多举例讨论.3.数学运用:处理完问题情景(1)(2),学生阅读课本P118—119,进一步熟悉学习内容,思考:比较方程的解和解方程的异同?(方程的解是使方程成立的未知数的值;解方程是求方程解的过程,是一个等价变形过程,而求方程的解就是将方程变形为x=a的形式).出示例1 解下列方程:(1)x+5=2;(2)-2x=4.引导学生自己尝试运用等式的基本性质解方程,说清楚每一步的依据,交流解题方法.教师提供正确的解题格式.强调检验方法及检验的必要性.习题训练:(1)以下变形是否正确?(2)说明变形的依据?(3)解方程,如课本P120练一练1,教师教学参考资料例题等.思维拓展:(1)求作一个方程,使它的解为-1;(2)简单应用题如课本P120练一练2.4.回顾反思:(1)小学阶段利用加减法、乘除法互为逆运算的方法解方程,学生印象深刻,教学时鼓励学生运用等式的性质来求,但不强求.(2)解方程后,虽不要书面检验,但要求学生培养检验反思的好习惯.(3)注意等式的性质中的“都”和“同”:“都”表示两边均要变形,“同”表示两边要作一样的变形.(4)简单介绍等式的另两条性质:对称性与传递性.课时4 解一元一次方程(移项)一、教材分析:1.学习目标:知识与技能:会应用移项、合并同类项法则解一些简单的一元一次方程.过程与方法:通过具体的实例感知、归纳移项法则,进一步探索方程的解法.情感、态度与价值观:进一步认识解方程的基本变形,感悟解方程过程中的转化思想.2.重、难点:移项法则的归纳与应用.二、教材处理:1.情景创设:开门见山,专题训练.解方程(写出解答过程中的第一步):(1)x+2=7→;(2)3+2x=1+x→;(3)-x+3=-2→;(4)2x-3=1→;(5)-2x+9=-5→;(6)3+4x=1-2x→.2.学生活动、意义建构、数学理论:结合上面问题与课本P120例2,P121例3,让学生尝试解答,讨论辨析,观察方程的变形,并叙述这种变形规律,得出移项法则.3.数学运用:课本P120例2,P121例3的教学处理:先让学生自主探求,师发问:解方程4x-15=9时,能否直接把等式左边的-15改变符号移到等式右边?方程4x-15=9与4x=9+15的差别在哪儿?解方程2x=5x-21时,能否直接把等式右边的5 x改变符号移到等式左边?为什么?指导学生在例2、例3解方程的过程中发现规律,结合两例课本云图说明及卡通人的介绍,引出这种方程的变形是移项.学生自主总结出移项法则——移项要变号. 牢记:从等式左边移到等式右边的项要变号;从等式右边移到等式左边的项也要变号.“叛变”了嘛!建议补充什么是多项式的项,未知项,常数项?用移项法解方程须注意:(1)目标明确,解方程目标是把方程变形为x=a的形式;(2)移项时,要移谁,移到哪?(3)怎样移项?方法一是利用加、减法互逆运算这一关系;方法二是利用等式的性质;方法三是移项法则.用课本P121例4来进一步熟悉移项法则在解方程中的运用.注意解题步骤的规范化.习题训练:(1)以下移项变形是否正确?(2)解方程,如课本P122练一练1,2等.思维拓展,解简单的应用题,如课本P122练一练3或补充一些题.4.回顾反思:(1)学生从利用逆运算解方程到用移项法则解方程要有个过程,不宜操之过急.在移项时,学生常犯的错误是忘记变号,这主要是学生不熟悉移项法则,要对照等式的性质逐渐来理解.(2)解例题时要不拘泥于课本上的解法,追求解题策略的多样化.另外,注意解题格式的规范化和检验的必要性.(3)合并同类项法则学生可能已淡忘,适时进行整式的加减法的专项训练.教训:不要求学生“-x+2x=(-1+2)x=1x=x”谨小慎微,步子小了,也会拌自己的脚.(4)以练促讲,以练代讲.当堂检测,即时反馈.课时5 解一元一次方程(去括号)一、教材分析:1.学习目标:知识与技能:会应用去括号、移项、合并同类项、系数化为1的方法解一些简单的一元一次方程.过程与方法:经历探索用去括号的方法解方程的过程,进一步熟悉方程的变形,弄清楚每步变形的依据.情感、态度与价值观:初步掌握解方程的一般步骤,培养学生的概括能力和耐心、细致的学习态度..2.重、难点:去括号法则在解方程中的熟练应用.二、教材处理:1.情景创设:(1)小明说:“我姐姐今年的年龄是我去年的年龄的2倍少6,”已知姐姐今年20岁,问小明今年几岁?(2)见教师教学参考资料,即课本P116试一试.2.学生活动、意义建构、数学理论:学生分析:情景(1)是配平问题.若取小明今年为x岁,则依据下面的等量关系式列方程:姐姐今年的年龄=小明去年年龄的2倍-6.得2(x-1)-6=20.情景(2)得方程:x+2(30-x)=50.师提出问题,如何解方程?用上节课的知识能不能求解?有什么困难?如何去掉这个方程中的括号?谈谈你的想法.学生讨论,教师把话题引到课本较为简单的例5上(见下面数学运用),引出去括号.3.数学运用:学生讨论:解方程P122例5 -3(x+1)=9教师充分让学生活动起来,畅所欲言,说出如何变形为x=a的形式.(生:利用乘除法互为逆运算;利用等式的基本性质;利用乘法分配律;利用去括号的方法等等)前两种方法实际上是把x+1看作一个整体;后两种方法只是整理方程的左边,实则去括号.师生一道解方程例5、情景问题(1)、(2).总结:根据乘法分配律和去括号法则(括号前面是“+”号,把“+”号和括号去掉,括号内各项都不改变符号;括号前面是“-”号,把“-”号和括号去掉,括号内各项都改变符号)去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是“-”号,,记住去括号后括号内各项都变号.习题训练:解方程,如课本P122练一练1,P113练一练2等.思维拓展,解简单的应用题,如课本P123练一练3或补充一些题,如含小括号、中括号、大括号的方程(这方面课本安排几乎没有,只限浅显问题,教师不必深究).4.回顾反思:(1)注意解法的灵活性,不要过分强求学生按固定格式来解,可适当引导学生找出较好的解题方法和书写过程.(2)学生去括号时错误之处:数字系数漏乘某一项;乘后各项符号的确定不准确.(3)系数化为1时,注意不要和移项搞混,建议整数和小数系数可用除法,分数系数可改用乘法.课时6 解一元一次方程(去分母)一、教材分析: 1.学习目标:知识与技能:知道解一元一次方程的一般步骤,能灵活运用去分母、去括号、移项、合并同类项、系数化为1等五大步骤解一元一次方程.过程与方法:巩固方程解法,经历求解过程,能体会到解法应根据具体方程本身特点而定.情感、态度与价值观:体会化归思想——把复杂变简单,将未知变已知的作用,体会数学的应用价值. 2.重、难点:利用“去分母”将方程作变形处理. 二、教材处理: 1.情景创设:毕达哥拉斯是古希腊著名的数学家,有一次有位数学家问他:“尊敬的毕达哥拉斯,请告诉我,有多少名学生在你的学校里听你讲课?” 毕达哥拉斯回答说:“我的学生,现在有21在学习数学,41在学习音乐,71沉默无言,此外,还有三名妇女.”算一算:毕达哥拉斯的学生有多少名? 2.学生活动、意义建构、数学理论:由情景问题入手,引导学生审清题意,根据等量关系:学生总数的21+学生总数的41+学生总数的71+3=学生总数列出方程.即设毕达哥拉斯的学生有x 名,由题意得x /2+x /4+x /7+3=x .学生独立思考问题,尝试解方程,交流自己的解法,相互加以比较.(生:①先移项再合并同类项;②先合并同类项后移项;③两边同时乘以28,56,84……) 学生比较上述方法,判断选择,引入——去分母. 3.数学运用:结合情景问题的解法,师生互动处理课本P 123例7、例8.反馈矫正学生出现的问题,让学生展开讨论,发现解答时出错之处.去分母时须注意:(1)确定各分母的最小公倍数;(2)不要漏乘没有分母的项;(3)分数线有括号作用,去掉分母后,若分子是多项式,要加括号,视多项式为一整体.建议进行专项训练,如23x -,-23x -乘以6,8……概括解一元一次方程一般步骤,强调变形时各步易出现错误的内容.习题练习:见课本P 124练一练1,2,3 思维拓展:见课本P 124议一议2.02x --5.01 x =3;又如03.01.0x -7.02.09.0x-=1 (提示:分子、分母是小数、分数的可以首先利用分数的基本性质将其化为整数系数,然后再解方程.) 4.回顾反思:(1)回顾去分母注意事项,见上面数学运用.(2)本课时蕴涵的数学思想方法主要是化归思想.解方程的过程就是通过去分母、去括号、移项、合并同类项、(未知数)系数化为1等步骤,把一个一元一次方程逐步转化为x =a 的形式.这是一个等量变形的过程,也是一个化归的过程.(3)具体解方程时,可根据具体情况,有些步骤可能用不上;有些步骤可以前后顺序颠倒;有时还可以省略一些步骤,以使运算简化.课时7 用方程解决问题(配料问题)一、教材分析: 1.学习目标:知识与技能:大致了解用方程解决问题的一般步骤和方法,明确其关键是找出能表示实际问题全部含义的相等关系.过程与方法:经历活动和思考、交流与讨论、分析解决问题等过程,体会数学的应用价值.情感、态度与价值观:经历“问题情景——建立数学模型——解释、应用与拓展”的过程,感悟数学建模思想. 2.重、难点:寻找等量关系. 二、教材处理: 1.情景创设:冰淇淋配料问题,见课本P 126. 2.学生活动、意义建构、数学理论:借用课本中两个卡通人的对话,学生思考:(1)如果用算术解法你能解出结果吗?如何求?(2)若用方程求解,如何设未知数?等量关系式是什么?(3)如果在三色冰淇淋中,咖啡色、红色和白色配料比是2∶3∶5,那么如何设未知数?学生在教师指导下完成问题,了解解法步骤:理解题意,找出一个能表示实际问题全部含义的相等关系,分析解答过程,设未知数,再根据相等关系列出方程,解这个方程,并写出答案.在设未知数和作出解答时,应注意量的单位.3.数学运用:课本P127问题1:分析:根据题中关键语句“做这批桌子,恰好用去木材3.8m3”,得相等关系:做桌面的木材+做桌腿的木材=3.8m3.设共做了x张桌子,做桌面的木材需0.03x m3,做桌腿的木材需4×0.002x m3,方程为0.03x+4×0.002x=3.8……学生自主解决问题.习题练习:课本P128练一练1,2;再举例如螺母螺栓、盒身底盖、人员调配问题等.思维拓展:数学实验室(月历问题),下图提供2005年11月的月历表(3)根据“数学实验室”中的游戏,请你再编一个游戏,并列出方程求解. 如:①某列3个数的和为54,这3个数是几?和能为56吗?②月历中能有2×2矩形方块中的4个数之和为80吗?若有,这四个数之间有什么样的关系?4.回顾反思:(1)进一步熟悉解一元一次方程的方法步骤;(2)弄清楚用一元一次方程解决问题的关键;(3)根据学生情况,适当补充安排较多类型的问题.如课本P129练一练3,4和教师教学参考资料补充例题.课时8 用方程解决问题(表格建模)一、教材分析: 1.学习目标:知识与技能:能利用表格作为建模策略,分析实际问题中的数量关系列方程解决问题.过程与方法:进一步体会运用方程解决问题的关键是寻找等量关系,提高分析问题、解决问题的能力. 情感、态度与价值观:综合运用已有知识,在探索和解决问题的过程中获得体验,发展自己的思维能力. 2.重、难点:表格设计,用表格分析题中的数量关系. 二、教材处理: 1.情景创设:广东宏远队的朱芳雨是中国男篮的主力前锋.在一场洲际杯比赛中,他一人独得23分(不含罚球得分).已知他投进3分球比2分球少4个,他一共投进了几个3分球和几个2分球? 2.学生活动、意义建构、数学理论:学生分析:题中涉及哪几个量?(投中3分球和2分球的个数关系,得分);相等关系是什么?(3分球的得分+2分球的得分=23)教师提示,师生建构表格,学生填写. 根据表格和相等关系列出方程: 3x +2(x +4)=23. ……学生在问题情景中初步体验用表格建模策略分析问题各量间的相互关系,列表格是解决问题的一个重要手段.3.数学运用:课本P 129问题2.学生仔细审题(齐读或精读后能复述题意)思考:(1)指出问题中的数、数量、已知数量和未知数量;(2)表格可以怎样设计?(3)设小丽买了x kg 苹果,如何用表格分析问题中的数量关系?列出方程是什么?思维拓展:本题还有没有其它解法?(如:设小丽买了x kg橘子;设小丽买了x元苹果;设小丽买了x元橘子)教师小结,让学生体会用方程解决问题时,设未知数的方法不同,方程的复杂程度也常常不同,因此要有所选择.习题练习:见课本P130练一练2,3或安排其它.4.回顾反思:(1)解方程,读懂题意是解决问题的前提,审题不要留于形式,“磨刀不误砍材工”.(2)所谓解题建模策略,是帮助学生理解题意,找清楚各量间的关系的一种方法,一种策略,一种途径,一个手段,不要过多地加大对解题策略(列表格)的分析、构建,这不应成为解方程的新的难点.学习时,可用列表格法表示问题的数量关系,列出代数式,帮助理清思路,找准等量关系列方程.课时9 用方程解决问题(示意图建模)一、教材分析:1.学习目标:知识与技能:能利用示意图作为建模策略,分析实际问题中的等量关系列方程解决问题.过程与方法:经历用方程解决实际问题的过程,提高应用数学的意识.情感、态度与价值观:进一步体会建构方程模型的作用,培养抽象、概括、分析问题的能力的勇于克服困难的意志.2.重、难点:示意图的构建和分析.二、教材处理:1.情景创设:简介“中国结”的文化内涵:见教师教学参考资料“课程资源”.问题情景,见课本P130.2.学生活动、意义建构、数学理论:呈现问题后,教师点拨:(1)直接分析:题中两个条件分别交代了计划做“中国结”总数可用含小组成员数(设x )的两个代数式来表示,得方程 5x -9=4x +15;(2)借助示意图分析相等关系.结合课本示意图,学生思考:根据问题中的第(2)个条件,这个 小组计划做的中国结多少个?怎样在示意图 上表示?你能根据示意图中线段和或差写出相等关系吗?并根据相等关系列出方程吗?你能列出几个不同的方程,不妨与同学交流一下.(5x -4x =9+15;5x -9-15=4x ;5x =4x +15+9等)示意图通常可以画成直线图或环形图等,用线段的长或曲线的长来表示某些量,并根据这些线段或曲线的长度关系列出方程.行程类问题中的数量关系多数可以用示意图来表达. 3.数学运用:例:甲、乙两人在环形跑道上练习跑步.已知环形跑道一圈长400m ,乙每秒中跑6m ,甲每秒中跑8m.(1)如果甲、乙两人在跑道上相距8m 处同时反向出发,那么经过多少秒两人首次相遇?(2)如果甲在乙前面8m 处同时同向出发,那么经过多少秒两人首次相遇?安排构思:补充环形示意图和线形示意图的作用,为下节课学习作一准备.分析:第(1)问是相遇问题,相等关系为:甲的行程+乙的行程=环形跑道一圈长-8m ;第(1)问是追及问题,相等关系为:甲的行程=乙的行程+相差距离(400一8)m..教师可以指导学生利用环形示意图 和线形示意图来帮助理清相等关系.习题见课本P 131练一练1,2,3,4.思维拓展:情景问题若设计划做x 个中国结,能不能解决? 课本习题可提高要求,一题多解,变式训练. 4.回顾反思:(1)利用示意图进行分析是继列表格法之后解决问题的又一个重要手段,示意图帮助我们分析各个量之间的相互关系的一种有效的工具.教学时,可多找一些实例去分析,让学生切身体会示意图的作用.(2)教学时,多让学生去探索、讨论、交流,来感悟画示意图帮助分析问题、解决问题.。
苏科版数学七年级上册4.3.1《用一元一次方程解决问题》教学设计

苏科版数学七年级上册4.3.1《用一元一次方程解决问题》教学设计一. 教材分析《苏科版数学七年级上册4.3.1》这一节主要让学生掌握一元一次方程的解法以及如何应用一元一次方程解决实际问题。
通过这一节的学习,学生能够理解一元一次方程的概念,掌握一元一次方程的解法,并能够运用一元一次方程解决实际问题。
二. 学情分析学生在之前的学习中已经掌握了整数、分数、小数的基本运算,对代数概念有一定的了解。
但是,对于一元一次方程的概念和解法可能还比较陌生,需要通过实例来理解和掌握。
同时,学生可能对解决实际问题感到困惑,需要通过具体的例子来引导和启发。
三. 教学目标1.知识与技能:学生能够理解一元一次方程的概念,掌握一元一次方程的解法,并能够运用一元一次方程解决实际问题。
2.过程与方法:学生能够通过实例来理解一元一次方程的概念和解法,通过解决实际问题来运用一元一次方程。
3.情感态度与价值观:学生能够感受到数学与生活的联系,增强对数学的兴趣和信心。
四. 教学重难点1.重点:一元一次方程的概念,一元一次方程的解法,一元一次方程的应用。
2.难点:一元一次方程的解法,一元一次方程在实际问题中的应用。
五. 教学方法采用问题驱动法,通过实例来引导学生理解一元一次方程的概念和解法,通过解决实际问题来运用一元一次方程。
同时,采用分组合作法,让学生在小组内讨论和解决实际问题,培养学生的合作意识和解决问题的能力。
六. 教学准备1.教师准备:教师需要准备相关的实例和实际问题,制作PPT进行辅助教学。
2.学生准备:学生需要预习相关的内容,了解一元一次方程的概念和解法。
七. 教学过程1.导入(5分钟)教师通过一个简单的实例来引导学生理解一元一次方程的概念,例如:小明有2个苹果,小红的苹果数量是小明的2倍,请问小红有多少个苹果?通过这个实例,让学生理解一元一次方程的概念。
2.呈现(15分钟)教师通过PPT呈现一元一次方程的解法,例如:解方程2x+1=5。
一元一次方程的应用(2)销售问题(教案)
在今天的教学过程中,我发现学生们对一元一次方程在销售问题中的应用表现出较高的兴趣。他们在分组讨论和实验操作环节积极参与,提出了很多有见解的问题。但在教学过程中,我也注意到以下几个问题需要反思和改进。
首先,关于一元一次方程的应用,部分学生对于从实际问题中抽象出方程模型这一步骤感到困难。在今后的教学中,我需要更加注重引导学生如何从具体问题中找出关键信息,提炼出等量关系,进而列出方程。
其次,在讲授重点难点时,我发现有些学生对一元一次方程的解法掌握不够熟练。针对这一问题,我打算在下一节课前安排一次小测验,以检验学生们对一元一次方程解法的掌握程度。此外,在授课过程中,我会增加一些典型例题的讲解,让学生们更好地理解解法原理。
另外,关于小组讨论环节,虽然学生们表现出较高的积极性,但部分学生在讨论过程中仍显得有些拘谨,不够主动。为了提高学生的参与度,我计划在接下来的教学中,多设置一些开放性问题,鼓励学生们大胆发表自己的观点,培养他们的团队合作精神。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元一次方程在销售问题中的基本概念。一元一次方程是描述销售问题中数量、单价、总价等关系的数学模型。它在解决实际问题中具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用一元一次方程解决购物折扣问题,以及它如何帮助我们求出商品的原价。
举例:若甲商品每件售价为20元,买n件可享受8折优惠,求购买m件(m>n)时的实际平均单价。学生需要列出方程(20n*0.8+20(m-n))=20m,进而求解出平均单价。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一元一次方程的应用(2)销售问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过购物时打折、优惠等销售问题?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索销售问题中的一元一次方程的奥秘。
4.3 用一元一次方程解决问题 (1)教案
初一年级数学教案课题:4.3用一元一次方程解决问题课型:新授课主备人:时间:审核人:教学目标:1.能用一元一次方程解决简单的实际问题,并能根据实际问题的意义检验所得结果是否合理,提高分析问题和解决问题的能力.2.经历“问题情境——建立数学模型——解释、应用与拓展”的过程,体会数学的应用价值.教学重难点:1、能用一元一次方程解决简单的实际问题。
2、经历“问题情境——建立数学模型——解释、应用与拓展”的过程,体会数学的应用价值.教学过程一、情境引入:数学实验室:准备一本月历,两人一组做游戏:(1)在月历的同一行上任意圈出相邻的5个数,并把这5个数的和告诉同学,让同学求出这5个数;(2)在月历上任意找1个数以及它的上、下、左、右的4个数,把这5个数的和告诉同学,让同学求出这5个数.问题解决问题1 一张桌子有一张桌面和四条桌腿,做一张桌面需要木料0.03 m3,做一条桌腿需要木料0.002 m3.用3.8 m3木材可做多少张这样的桌子(不计木材加工时的损耗)?分析:这个问题中有这样的相等关系:做桌面所需木材的体积+做桌腿所需木材的体积=3.8 m3.解:设共做了x张桌子.根据题意.得0.03x+4×0.002x=3.8.解这个方程.得x=100.答:共做了100张这样的桌子.总结:用一元一次方程解决问题,通常先用字母表示适当的未知数,并用含有这个字母的代数式表示其他相关的量,再根据题中的相等关系列出方程,然后解这个方程,写出问题的答案.思维拓展某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15立方米,每立方米按1.8元收费;如果超过15立方米,超过部分按每立方米2.3元收费,其余仍按每立方米1.8元计算.另外,每立方米加收..污水处理费1元.若某户一月份共支付水费58.5元,求该户一月份用水量.分析:本题的相等关系是:前15立方米的水费+超过15立方米的水费+污水处理费=该月水费解:因为若某户每月用水量为15立方米,则需支付水费15×(1.8+1)=42元,而42<58.5,所以该户一月份用水量超过15立方米.设该户一月份用水量为x立方米,根据题意,得15×1.8+2.3(x-15)+x=58.5.解得x=20.答:该户一月份用水量为20立方米课堂练习1.某商店今年共销售21英寸(54 cm)、25英寸(64 cm)、29英寸(74 cm)3种彩电360台,它们的销售数量的比是1∶7∶4.这3种彩电各销售了多少台?2.某学生寄了2封信和一些明信片,一共用了5.6元.已知每封信的邮费为1.2元,每张明信片的邮费为0.8元.他寄了多少张明信片?3.一本书封面的周长为68 cm,长比宽多6 cm.这本书封面的长和宽分别是多少?二、课堂总结:回顾本节课的教学内容,从知识和方法两个层面进行总结..三.作业:课时作业本四、板书设计:五、教学反思。
利用一元一次方程解决实际问题的教案
一元一次方程是中学数学中比较基础的概念之一,它不仅是许多高级数学的基础,也广泛应用于实际生活中。
本文将阐述如何利用一元一次方程解决实际问题的教案。
一、教学目标1、了解一元一次方程的定义和基本概念。
2、学会利用一元一次方程解决实际问题。
3、培养学生的逻辑思维能力和计算能力。
二、教学重点与难点1、要求学生正确理解一元一次方程的定义和相关概念。
2、帮助学生理解如何应用一元一次方程解决实际生活中的问题。
三、教学过程1、引入本节课将要学习的是如何利用一元一次方程解决实际问题。
在我们的日常生活中,我们经常需要使用一元一次方程来计算一些问题,例如购物时的折扣、人均消费、速度、时间等等。
学习如何应用一元一次方程解决实际问题是非常必要的。
2、讲解(1)一元一次方程的基本概念在学习一元一次方程之前,我们需要先了解它的基本概念。
一元一次方程又称作线性方程,它的一般形式为ax+b=0,其中a和b为已知数(常数),x为未知数。
解一元一次方程即为求出x的值。
(2)解决实际问题的步骤为了能够应用一元一次方程去解决实际问题,我们需要掌握以下步骤:a)明确未知量我们需要阅读问题并弄清楚需要求解的未知量是什么。
例如:小明骑自行车走了多少时间到学校?b)设定代数式设定辅助量和方程式。
可以用x表示未知量,根据问题中的关系式列出代数式。
例如:设小明骑自行车t小时,自行车速度为s,自行车行驶的距离为d,学校距离小明距离为m。
可设代数式为:d=s×t,m=d。
c)列出方程根据代数式,列出方程。
例如:因为小明在学校那里,距离为0,即m=0。
:d=s×t=0,解得t=0。
(3)应用一元一次方程解决实际问题我们来看几个例子,来帮助理解如何应用一元一次方程解决实际问题。
例1:一幅画原价800元,现在正在打7折的促销活动,问现在需要花多少钱才能买到这幅画?解:设现在打折后的价格为x元,则800元的7折价格为:800×0.7 = 560(元)我们可以得出方程:x = 560因为x即为现在打折后的价格,现在需要花560元才能购买这幅画。
4.3《用一元一次方程解决问题(2)》教案
4.3 用一元一次方程解决问题〔2〕教学目标:1.能利用表格作为建模策略,分析实际问题中的数量关系列方程解决问题;2.进一步体会运用方程解决问题的关键是寻找等量关系,提高分析问题、解决问题的能力;教学重点:列表分析问题中的数量关系,找出问题中的等量关系.教学难点:用列表法分析问题.教学过程:教学过程〔教师〕:一、问题引入问题2 小丽在水果店花18元买了苹果和橘子共6kg ,苹果每千克元,橘子每千克元,小丽买了苹果和橘子各多少?思考1:〔1〕找出问题中的数量,并填入下表;价格〔元/kg〕质量/kg 总金额/元苹果橘子〔2〕设小丽买了x kg苹果,根据表格分析问题中的等量关系,列出方程.思考2:〔1〕此题数量关系的分析和以前有什么不一样?〔2〕列表有什么好处?〔3〕如何列表?议一议:在问题2中,如果设橘子买了x千克,还可以列出怎样的方程?学生活动:学生审题.给出表格,学生填表.感受利用表格分析数量关系的优越性,并引导学生观察表格以及如何画表格.设计思路:本节课的教学重点是利用列表格来分析实际问题中的数量关系.在问题引入中,首先出示表格,让学生填表,并根据表格分析等量关系.表格具有直观、数量关系清楚的特点,学生容易感受到利用表格的优越性.教学过程〔教师〕:二、数学运用例1.学校团委组织65名新团员为学校建花坛搬砖.女同学每人每次搬6块,男同学每人每次搬8块,每人搬了4次,共搬了1800块.问这些新团员中有多少名男同学?分析:男同学女同学总数参加人数x 65-x65每人搬砖数8×4 6×4共搬砖数32 x24〔65-x〕1800等量关系是:.例2.某天,一蔬菜经营户用70元钱从蔬菜市场批发了辣椒和蒜苗共40kg到市场去卖,辣椒和蒜苗这天的批发价与零售价如表所示:品名辣椒蒜苗批发价〔单位:元/kg〕零售价〔单位:元/kg〕问:〔1〕辣椒和蒜苗各批发了多少kg?〔2〕他当天卖完这些辣椒和蒜苗能赚多少钱?分析:等量关系是:买辣椒的金额+买蒜苗的金额=70元.例3.某校七年级共有65名同学在植树节活动中担任运土工作.现有45根扁担,请你安排一下有多少人抬土,多少人挑土,可使扁担和人数恰好相配?学生活动:学生尝试列表格分析设计思路:说明:利用表格分析数量关系,清楚、直观,但学生独立设计表格还是有困难的,教师应多加强指导.另外,列表只是一种辅助策略,对于一些理解能力强的同学,不一定需要通过列表来分析等量关系,因此,列表不要强求.教学过程〔教师〕:三、思维拓展:食堂有煤假设干,原来每天烧煤3t,用去15t后,改良设备,耗煤量为原来的一半,结果多烧了10天.求原存煤量.四、课堂稳固:1.期中考试后,班主任为了奖励学习进步的12名同学,让班长去买了12件奖品,其中笔记本每本3元,圆珠笔每支4元,共用了43元.班长买了几本笔记本和几支圆珠笔?2.一场篮球赛中,小林一人独得28分〔不含罚球得分〕,他投中的两分球比三分球多4个,他一共投中了多少个两分球?多少个三分球?3.甲、乙两个仓库共有粮食60t,甲仓库运进粮食14t,乙仓库运出粮食10t 后,两个仓库的粮食数量相等.两个仓库原来各有多少粮食?4.某课外活动小组的女学生人数占全组人数的一半,如果再增加6个女学生,那么女学生人数就占全组人数的23,求这个课外活动小组的人数.5.两枝一样高的蜡烛,同时点燃后,第一支蜡烛每小时缩短8cm,第二支蜡烛每小时缩短6cm,2h后第二支蜡烛的高度是第一支蜡烛的1.5倍,求这两支蜡烛原来的高度学生活动:学生练习.设计思路:稳固练习.教学过程〔教师〕:五、课堂小结:通过这节课你学到了什么?学生活动:回忆用方程解决问题的一般解法步骤.设计思路:通过对所学知识总结,促进对知识的理解和内化.教学过程〔教师〕:六、课后作业:课本P107练一练〔或教师补充〕.学生活动:独立完成.设计思路:了解学生对所学知识的掌握程度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.3用方程解决问题(3)
学习目标:
1.进一步熟悉用方程解决问题的一般步骤,探索具体问题中的数量关系和变化规律,体验用方程解决问题的优越性。
2.培养学生观察、思考、分析问题、解决问题的能力,渗透建模的数学思想。
3. 感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣。
学习难点:
分析与确定问题中的等量关系。
教学过程:
一.情景引入,激情示标
用一元一次方程解应用题的步骤有哪些?
二.自主学习,引导思考
某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个。
问:小组成员共有多少名?他们计划做多少个中国结?
问题1、题目中涉及哪些量?它们有着怎样的数量关系?
问题2、能不能用线形示意图的形式把上面的这些量简明的表示出来?
问题3、题目中的相等关系是什么?
请你根据上面的分析写出解答过程:
三.分组讨论,合作交流
议一议:你还有其它办法解决这个问题吗?
四、探索发现,创新运用
1、将一堆糖果分给幼儿园某班的小朋友,如果每人2颗,那么就多8颗,如果每人3颗,那么就少12颗,这个班共有多少名小朋友?
2、某汽车对运送一批货物,每辆汽车装4吨还剩下8吨未装,每辆汽车装4.5吨就恰好装完,该车队运送货物的汽车共有多少辆?
3、某班举行了一次集邮展览,展出的邮票张数比每人4张多14张,比每人5张少26张,问:(1)这个班共有多少名学生?(2)展出的邮票共有多少张?
4、某班同学分组参加活动,原来每组8人,后来重新编组,每组六人,这样比原来增加了2组,这个班共有多少学生?
五.分层巩固,反馈评价
1, 请你编一道用方程 “ 8x –6=6x+4 ”求解的应用题。
2, 谈谈本节课你有哪些收获?
3.用火车运送一批货物,如果每节车厢装34吨,还有18吨装不下;如果每节多装4吨,那么还可以多装26吨,问共有几节火车车厢?
4,某工厂原计划在规定的时间内加工一批零件,如果每小时加工10个零件,就可以超额完成5个;如果每小时加工11个零件,就可以提前一个小时完成,问这批零件有多少个?按原计划需多长时间完成?
5.若干辆汽车装运一批货物,若每辆装3.5吨,这批货物就有2吨不能运走;每辆装4吨,那么这批货物装完后,还可以装其他货物1吨。
问汽车有多少辆?这批货物有多少吨?
6. 七(5)班举办一次集邮展览,展出的邮票比平均每人4张多14张,比平均每人5张少26张,问:
(1)这个班共有多少名学生? (2)展出的邮票共有多少张?
7. 一个邮递员骑自行车在规定时间内把特快专递送到单位。
他每小时行15千米,可以早到24分钟,如果每小时行12千米,就要迟到15分钟。
原定的时间是多少?他去的单位有多远?
8.体育馆入场券3元一张,若降价后观众增加一半,收入增加 ,那么每张入场券
降价多少元?
9.小丽在水果店花了18元买了苹果和橘子共6千克,苹果每千克3.2元,橘子每千 克2.6元,苹果和橘子各买了多少?
10.某班学生分两组参加植树活动,甲组有17人,乙组有25人,后来由于需要,又从甲组抽调了部分学生到乙组,结果乙组人数是甲组人数的2倍。
问从甲组抽调了多少学生去乙组?
14。