水处理操作手册
水处理管理系统HMI操作手册

水处理管理系统HMI操作手册一、概述本操作手册旨在为使用水处理管理系统的操作人员提供指导,特别是HMI(Human Machine Interface)界面及相关的操作步骤。
水处理管理系统是一个用于监控和优化水处理过程的系统,包括一系列的传感器、设备和控制逻辑。
HMI是该系统的人机交互界面,允许操作人员监控和处理水处理过程,以及收集和分析数据。
二、HMI界面介绍1、菜单栏:包括系统配置、数据监控、报警管理、历史数据等选项。
2、实时数据窗口:显示传感器采集的实时数据,如水位、流量、pH 值等。
3、控制面板:可对水处理设备进行控制,如开关泵、调节阀门等。
4、报警窗口:显示系统的报警信息,包括报警类型、报警时间及处理状态。
5、历史数据窗口:显示历史数据趋势图,可查询过去的水处理数据。
三、操作步骤1、开机启动:打开HMI界面,系统自动初始化并加载上次退出时的配置。
2、数据监控:在实时数据窗口中,可以查看各个传感器的实时数据。
如需查看特定数据,可在数据窗口下方选择相应的传感器标签。
3、设备控制:在控制面板中,可根据需要开关泵、调节阀门等。
操作前请确认对设备及流程无影响。
4、报警处理:当有报警信息时,会在报警窗口中显示。
操作人员应根据报警信息进行处理,如确认报警、消除报警等。
5、数据存储和查询:在历史数据窗口中,可以查看过去的水处理数据。
选择时间段,系统将显示对应时间段的数据趋势图。
同时,系统会将所有数据存储在本地数据库中,以供查询和分析。
6、系统配置:在菜单栏中选择系统配置,可以对水处理管理系统进行配置,包括传感器配置、设备配置、报警配置等。
请根据实际需要进行配置。
7、关机退出:在菜单栏中选择关机退出,可关闭水处理管理系统。
退出前请确保所有操作已完成并无遗漏。
四、注意事项1、请严格按照操作步骤进行操作,避免误操作导致设备损坏或流程异常。
2、在进行设备控制时,请确认对设备及流程无影响。
如有疑问,请先咨询专业人员。
水处理操作指南

6T/H反渗透+6T/H EDI操作指南一.工艺流程原水——原水箱——元水泵——砂滤器——碳滤器——保安过滤器——高压泵——反渗透——中间水箱——中间水泵——EDI——除盐水箱二.砂滤器正反洗操作1.反洗确定原水箱出口阀门.两台元水泵进出口阀门在打开状态。
打开砂滤器下进水阀门.上出水阀门.砂滤器排污阀门,关闭砂滤器上进水阀门.下出水阀门,关闭碳滤器上进水阀门.下进水阀门。
启动2号原水泵,5秒后启动1号元水泵,通过两台原水泵同时对砂滤器反冲洗,反冲洗时间为10-15分钟。
反洗完成后停止2号元水泵,5秒后停止1号元水泵。
关闭砂滤器下进水阀门.上出水阀门,关闭砂滤器排污阀门。
2.正洗确定原水箱出口阀门.两台元水泵进出口阀门在打开状态。
打开砂滤器上进水阀门.下出水阀门.砂滤器排污阀门,砂滤器下进水阀门.上出水阀门在关闭状态。
碳滤器上进水阀门.下进水阀门在关闭状态。
启动1号原水泵,5秒后启动2号原水泵,正洗8-12分钟。
正洗完成后停止1号原水泵,5秒后停止2号原水泵,关闭砂滤器上进水阀门.下出水阀门.砂滤器排污阀门。
三.碳滤器正反洗操作1.反洗确定原水箱出口阀门.两台元水泵进出口阀门在打开状态。
打开砂滤器上进水阀门.下出水阀门,砂滤器下进水阀门关闭状态,砂滤器上出水阀门打开1/2。
打开碳滤器下进水阀门.碳滤器上出水阀门.碳滤器排污阀门,碳滤器上进水阀门.下进水阀门在关闭状态,关闭保安过滤器进水阀门。
启动1号原水泵,5秒后启动2号原水泵,反洗时间10-15分钟,反洗完成后停止1号原水泵,5秒后关闭2号原水泵,关闭碳滤器下进水阀门.上出水阀门.碳滤器排污阀门。
2.正洗确定原水箱出口阀门.两台元水泵进出口阀门在打开状态。
打开砂滤器上进水阀门.下出水阀门,砂滤器下进水阀门在关闭状态,砂滤器上出水阀门打开1/2,打开碳滤器上进水阀门.下出水阀门.碳滤器排污阀门,保安过滤器进水阀门在关闭状态。
启动1号原水泵,5秒后启动2号原水泵,正洗时间8-12分钟。
水处理操作指南

水处理操作指南水是我们生活中不可或缺的资源,而水的质量直接影响着我们的健康和环境的可持续发展。
水处理是确保水质达到可接受标准的过程,它包括一系列的物理、化学、生物处理步骤。
本文将为您提供一份水处理的操作指南,以帮助您有效处理水质问题。
1. 水质检测在进行水处理之前,首先需要进行水质检测。
水质检测可以帮助您确定需要采取哪些处理措施以及处理的优先级。
常见的水质指标包括pH值、浊度、溶解氧、总大肠菌群和重金属含量等。
您可以使用水质测试仪器或将水样送到专业实验室进行检测。
2. 净化过程净化是水处理的核心过程之一。
各种净化方法包括:- 混凝:通过加入混凝剂将悬浮在水中的颗粒物聚集在一起,从而形成较大的颗粒使其易于去除。
- 沉淀:通过让重质颗粒沉入水底,然后将清水从上面取出来来达到分离杂质的目的。
- 过滤:通过隔离水中的微小颗粒来净化水质。
常见的过滤介质包括砂子、活性炭和陶瓷等。
- 水软化:通过去除水中的钙和镁离子来减少水垢的形成。
常见的软化方法包括离子交换和逆渗透等。
3. 消毒处理消毒是保证水安全的重要步骤。
消毒可以杀灭水中存在的细菌、病毒和其他微生物,以防止水传播疾病。
常用的消毒方法有以下几种:- 氯消毒:使用氯气、次氯酸钠或其他含氯化合物进行消毒,杀灭水中的细菌和病毒。
- 紫外线消毒:使用紫外线辐射来杀死水中的微生物。
紫外线可以破坏细胞的DNA结构,从而使微生物失去繁殖能力。
- 臭氧消毒:通过将臭氧注入水中来杀灭细菌和病毒。
臭氧具有强氧化作用,可以破坏微生物的细胞膜。
4. pH调节pH值是水的酸碱度的量化指标。
不同的水质需要调节不同的pH值。
低pH值酸性水可能会对管道和设备造成腐蚀,而高pH值碱性水可能会导致产生水垢。
使用适当的化学品可以调节水的pH 值。
5. 水质监测与维护水处理并不是一次性的过程,水质需要持续监测和维护。
定期检查水质指标,并根据需要采取相应的调整措施。
此外,定期检查和维护水处理设备,确保其正常运转和有效处理水质。
水处理管理系统HMI操作手册

水处理管理系统操作手册目录1、系统介绍2、工艺流程介绍3、界面操作介绍4、操作注意事项1、系统介绍改革开放后,国民经济的快速发展,人民生活水平的显著提高,同时也不断提高水体富营养化氨氮、磷等营养盐的问题拉动了污水处理的需求,国家环保局对污水排放标准也一步步提高,因此污水处理也是当前环保的当务之急。
不少污水处理工艺已经在工业中广泛应用,其对工厂排放污水的处理也具有重要的现实意义。
污水处理厂排出的污(废)水,因含污染物总量或浓度较高,达不到排放标准要求或不符合环境容量要求,从而降低水环境质量和功能目标时,必需经过人工强化处理的场所。
一般分为城市集中污水处理厂和各污染源分散污水处理厂,处理后排入水体或城市管道。
有时为了回收循环利用废水资源,需要提高处理后出水水质时则需建设污水回用或循环利用污水处理厂。
处理厂的处理工艺流程是有各种常用的或特殊的水处理方法优化组合而成的,包括各种物理法、化学法和生物法,要求技术先进,经济合理,费用最省。
设计时必须贯彻当前国家的各项建设方针和政策。
因此,从处理深度上,污水处理厂可能是一级、二级、三级或深度处理。
污水处理厂设计包括各种不同处理的构筑物,附属建筑物,管道的平面和高程设计并进行道路、绿化、管道综合、厂区给排水、污泥处置及处理系统管理自动化等设计,以保证污水处理厂达到处理效果稳定,满足设计要求,运行管理方便,技术先进,投资运行费用省等各种要求。
处理工艺:1、物理法:物理或机械的分离过程。
过滤,沉淀,离心分离,上浮等2、化学法:加入化学物质与污水中有害物质发生化学反应的转化过程。
中和,氧化,还原,分解,混凝,化学沉淀等3、物理化学法:物理化学的分离过程。
气提,吹脱,吸附,萃取,离子交换,电解电渗析,反渗透等4、生物法:微生物在污水中对有机物进行氧化,分解的新陈代谢过程。
活性污泥,生物滤池,生物转盘,氧化塘,厌气消化等。
反渗透法:反渗透法可以有效的清除溶解於水中的无机物,有机物,细菌,热原及其它颗粒等,是透析用水之处理中最重要的一环。
水处理设备使用说明书

水处理设备使用说明书使用说明书一、产品简介水处理设备是一款用于处理水质的专业设备。
本设备采用先进的技术和高效的处理方法,能够有效地去除水中的污染物,提供清洁、安全的水源。
二、安全注意事项1. 在使用前,请确保设备接线正确并牢固,防止线路松动或短路引发电气故障。
2. 使用设备时请穿戴适当的个人防护装备,包括手套和眼镜等。
避免直接接触处理液体。
3. 不要在设备运行时触摸任何电气部件,以免触电危险。
4. 定期检查设备的运行状况,如发现异常情况,请立即停止使用并联系售后服务人员。
5. 请将设备放置在通风良好的区域,避免火源附近使用以防止火灾发生。
三、设备操作步骤1. 打开设备箱体,检查设备内部是否有异物,并确保设备连接正常。
2. 将水源接入设备的进水口,确保水源干净并符合要求。
3. 打开设备的电源开关,此时设备将开始工作。
4. 根据所需的处理效果,可以根据设备面板上的控制按钮进行参数调整。
5. 在设备运行期间,定期检查设备的运行状态,确保正常工作。
6. 当需要停止设备时,先关闭电源开关,然后将水源断开。
四、设备维护保养1. 每天使用后,应对设备进行清洁和消毒,防止细菌滋生。
2. 设备需要定期更换滤芯或过滤材料,以保证处理效果和设备的正常运行。
3. 如设备长时间不使用,应将设备进行彻底清洁,并放置在干燥通风的地方。
4. 定期进行设备的检查和维修,以确保设备的正常运行。
注意:为了延长设备的使用寿命,请按照使用说明进行维护保养,并遵循设备售后服务人员的指导。
五、故障排除若设备出现以下故障,请参考以下排除方法:1. 设备无响应:检查电源是否接通、电源开关是否正常工作。
2. 设备不能正常处理水质:检查进水口是否有堵塞或水源是否符合要求。
3. 设备噪音过大:检查设备内部是否有异物,并排除。
4. 设备渗漏:检查设备连接部件是否松动,是否需要更换密封件。
六、售后服务如在使用设备过程中遇到任何问题或疑问,请及时联系我们的售后服务团队,我们将尽快提供解决方案,并为您提供维修服务。
水处理设备操作手册

水处理设备操作手册一、引言水处理设备是用于处理水源中的污染物质,提供清洁安全的用水。
本操作手册旨在帮助操作人员正确使用水处理设备,确保设备的高效运行和长期稳定性。
二、设备概述1. 设备名称:水处理设备2. 设备型号:根据实际设备型号填写3. 设备用途:处理水源中的杂质、细菌、病毒等污染物质,提供安全用水4. 设备特点:高效过滤、消毒杀菌、不产生二次污染5. 设备组成:主要包括进水系统、滤材层、消毒系统、排水系统等组成部分三、设备安全操作指南1. 操作前的准备:a) 检查设备是否正常运行,各部分连接是否牢固;b) 确保设备的供电和电气连接正常;c) 配戴个人防护装备,如手套、防护眼镜等。
2. 启动设备:a) 打开进水系统,并确保水源处于正常状态;b) 逐步打开设备各部分的开关,以避免突然液压冲击;c) 监测设备运行状态,确保无异常噪音和泄漏现象。
3. 设备操作:a) 根据水质情况调节滤材层的运行时间和清洗周期;b) 定期清洗和更换滤材,避免滤材堵塞影响水处理效果;c) 注意观察消毒系统的工作情况,及时检修或更换消毒设备;d) 定期检查设备的排水系统,确保排出的废水符合环保要求。
四、设备维护与保养1. 定期检查:a) 每月对设备进行一次全面检查,包括滤材层、消毒系统、排水系统等;b) 检查设备的电气连接是否正常,有无松动或损坏;c) 清洁设备表面,确保设备外观整洁。
2. 滤材层维护:a) 定期清洗滤材层,去除附着的污垢;b) 根据水质情况和设备需求,定期更换滤材。
3. 消毒设备保养:a) 根据消毒设备的工作原理和说明书,定期检查设备的运行状况;b) 清洁消毒设备,确保光线照射不被阻挡;c) 及时更换消毒设备中的UV灯或消毒剂,保证消毒效果。
4. 排水系统维护:a) 定期检查排水系统的排放情况,确保废水排放合格;b) 清洗排水管道,避免堵塞和积存污物。
五、常见故障与处理方法1. 设备无法启动:a) 检查电源接线是否松动或断开;b) 检查进水系统是否正常供水。
水处理手动操作作业指导书

水处理手动操作作业指导书1.目的正确操作,使水处理系统运行正常。
2.适用范围适用于公司水处理间水处理系统的手动操作。
3. 职责3.1 水处理员负责执行本文件。
3.2 工程外围领班负责监督执行本文件。
3.3 工程经理对本文件的有效性负责。
4. 定义无5.程序5.1 RO系统的手动运行5.1.1 检查电源和压缩空气源。
(压缩空气压力保证在 4-6kgf/cm2 )。
5.1.2 将主控柜上的手自动开关拨至手动。
5.1.3 打开总电源及其他相应的空气开关,接通控制电源。
5.1.4 按正常运行步骤打开各个设备的阀门,阀门的开度调试时已经调节好。
5.1.5 检查原水池液位在低液位以上。
5.1.6 分别将泵的选择开关拨至手动开,泵分别起动,相应的指示灯亮(泵的开启顺序必须按操作步骤进行)。
将泵的选择开关拨至手动关,泵分别停止。
注意:这时除了低液位外,各个水箱液位不参与控制。
5.1.7 具体操作步骤如下:以上准备工作完毕,确认无误后;先开浓水排放电阀和 RO 进水阀,起动FeCl3和NaOH 加药计量泵,再起动原水泵,低压冲洗1分钟。
关闭浓水排放电阀,起动 HCl加药计量泵和高压泵,打开产水排放排至产水合格闭产水排放阀,系统开始正常工作制水(注意:电机转向与泵上所示的箭头相同,相应的指示灯亮)。
5.1.8 检查纯水箱液位在低液位以上,起动送水泵和紫外线杀菌器,系统开始向使用点供水。
5.1.9 当发生泵过载报警时,系统会停止运行。
只有查明原因后,按下复位按钮后才能手动起动。
发生高、低压报警时,原水泵和高压泵将停止运行,只有查明原因后,按下复位按钮后才能手动起动。
5.1.10 此时 RO 系统的进水压力、浓水压力;产水流量、浓水流量;产水电导率等为 RO 装置的初始数据,必须妥善保存。
各个设备的压力、流量、电导率、温度等日常运行的数据,应该定时记录下来。
5.1.11 当纯水箱液位在低液位以上时,纯水泵无论何时可随时起停。
水处理设施运行操作手册

水处理设施运行操作手册第一章概述 (3)1.1 设施概述 (3)1.2 运行目的 (3)第二章设施组成与结构 (4)2.1 主要设施组成 (4)2.2 设备结构及功能 (4)2.3 辅助设施介绍 (5)第三章设备启动与调试 (5)3.1 设备启动流程 (5)3.1.1 准备工作 (5)3.1.2 启动步骤 (6)3.2 调试方法与步骤 (6)3.2.1 调试方法 (6)3.2.2 调试步骤 (6)3.3 常见问题及解决方案 (6)3.3.1 设备启动失败 (6)3.3.2 设备运行异常 (6)3.3.3 监测数据不准确 (7)3.3.4 报警系统不灵敏 (7)第四章运行操作与管理 (7)4.1 运行操作流程 (7)4.1.1 启动前准备 (7)4.1.2 启动操作 (7)4.1.3 停止操作 (7)4.2 运行参数监控 (8)4.2.1 水质参数监控 (8)4.2.2 设备运行参数监控 (8)4.3 设备维护保养 (8)4.3.1 定期检查 (8)4.3.2 清洗与保养 (8)4.3.3 故障处理 (9)第五章水质检测与控制 (9)5.1 水质检测标准 (9)5.2 检测方法与设备 (9)5.2.1 检测方法 (9)5.2.2 检测设备 (9)5.3 水质异常处理 (10)5.3.1 水质异常现象 (10)5.3.2 水质异常处理措施 (10)第六章安全生产与防护 (10)6.1 安全生产规章制度 (10)6.1.2 内容要求 (10)6.2 防护措施与应急预案 (11)6.2.1 防护措施 (11)6.2.2 应急预案 (11)6.3 安全教育与培训 (11)6.3.1 安全教育 (11)6.3.2 安全培训 (12)6.3.3 培训考核 (12)第七章节能与环保 (12)7.1 节能措施 (12)7.1.1 能源管理 (12)7.1.2 设备优化 (12)7.1.3 操作优化 (12)7.2 环保设施运行 (12)7.2.1 污染物排放控制 (12)7.2.2 废水处理设施 (13)7.2.3 废气处理设施 (13)7.3 资源循环利用 (13)7.3.1 水资源回收利用 (13)7.3.2 能源回收利用 (13)7.3.3 固废处理与资源化 (13)第八章故障处理与维修 (13)8.1 常见故障类型 (13)8.1.1 水处理设施常见故障分类 (13)8.1.2 设备故障 (14)8.1.3 管道故障 (14)8.1.4 电气故障 (14)8.1.5 控制系统故障 (14)8.1.6 水质异常 (14)8.2 故障诊断与处理 (14)8.2.1 故障诊断 (14)8.2.2 故障处理 (14)8.3 维修方法与步骤 (14)8.3.1 维修准备 (14)8.3.2 维修步骤 (15)8.3.3 维修注意事项 (15)第九章自动化控制系统 (15)9.1 控制系统原理 (15)9.1.1 系统概述 (15)9.1.2 控制原理 (15)9.2 系统操作与维护 (16)9.2.1 系统操作 (16)9.2.2 系统维护 (16)9.3.1 故障排除 (16)9.3.2 系统优化 (16)第十章技术管理与创新 (16)10.1 技术管理策略 (16)10.1.1 制定技术管理规划 (17)10.1.2 技术培训与人才引进 (17)10.1.3 技术监督与检查 (17)10.2 技术改进与创新 (17)10.2.1 持续优化工艺流程 (17)10.2.2 引进先进技术与设备 (17)10.2.3 跨界合作与产学研结合 (17)10.3 信息化管理与实践 (17)10.3.1 建立信息化管理平台 (17)10.3.2 推广智能化技术应用 (17)10.3.3 加强网络安全防护 (18)第一章概述1.1 设施概述水处理设施是现代化环境保护和资源循环利用的重要基础设施,其主要功能是对各类水体进行物理、化学及生物处理,以达到净化的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水处理单元一概述1 装置简介我司水处理主要由给水站和除盐水站两部分组成,提供主装置生产用水、循环冷却水站淡水侧补水和全厂消防用水。
给水站设有生产、生活、消防给水加压工段,提供主装置生产水、除盐水站用水和全厂消防用水。
原水水源有城市生活污水厂再生水和市政自来水,生产工艺由双膜系统和离子交换系统两部分组成,生产除盐水供主装置生产用水和循环冷却水淡水侧的补给水;站还包括主装置的蒸气冷凝液回收系统和供全厂采暖的热力站。
中水系统和自来水系统设计日生产一级除盐水各为9600 m3,除盐水装置总设计日生产纯水19200 m3。
蒸汽冷凝液回收水量最大为160m3/h,经过滤去除杂质及降温后进混床除盐后回收利用。
2 给水站工艺说明2.1 生产消防蓄水池和再生水池本装置水源由市政自来水公司供给,供水为两条DN700的管道。
厂区的生活设施用水是由市政自来水管网直接供给。
市政自来水主要用户包括消防供水,生产纯水,主装置、罐区生产用水、污水处理、海水泵设备密封、冷却用水、厂区生活、办公用水。
为了防止市政管网因事故突然停水而影响生产,本站设置了生产消防水池两座,再生水池一座。
生产消防水池每座有效容积为6000m3,再生水池有效容积2000 m3。
其中生产水的储备量约5000m3,该水量能提供5小时生产用水调节量。
为了保证消防给水量及减少火灾发生时对市政管网的用水负荷和防止市政管网因事故突然停水,本站设置了生产消防水池,作为发生火灾时的水源。
消防水的储量为8500 m3。
2.2 生产、消防给水加压系统生产用水系统设置三个供水系统:生产给水泵P-8104A/B/C(60m3/h*50m*1台、120m3/h*50m*2台)、自来水给水泵P-8105A/B/C(220m3/h*48m*3台)、中水给水系统P-8106A/B/C(330m3/h*50m*3台)。
消防给水加压系统设置消防水泵,提供消防用水;消防水泵包括3台电动消防泵P-8101A/B/C(1180m3/h*110m*3台)、2台柴油机消防泵(P-8102A/B(1180m3/h*110m*2台)、2台稳压消防泵P-8103A/B(60m3/h*135m*2台)、消防蓄水池及相关的仪表和自控系统组成。
消防管网设计维持压力为 1.10 Mpa。
2.3 生产水系统供水流程说明及控制方案2.3.1 主装置生产给水泵(P8104A/B/C)当生产消防储水池的水位下降到设定值,浮球阀打开,城市自来水连续不断地向水池补水,当生产消防储水池的水位上升到设定值,浮球阀关闭,自来水停止补水。
主装置生产给水泵由管网压力控制,其工作原理:当压力低于管网压力时,启动第一台生产水泵向生产水管网供水,供水压力为0.5Mpa,当系统管网压力升高到设定的最高压力(0.8Mpa)时,泄压阀自动打开,超压部分回流至生产消防储水池进行泄压,生产水泵P8104平时连续运行一台P8104A(60m3/h),主装置停车需大量用水或运行的水泵故障时,管网压力低于设定值时,系统自动启动备用泵或人工手动启动备用泵。
2.3.2 除盐水站原水供水泵(P-8105A/B/C、P-8106A/B/C)自来水供水泵(P-8105A/B/C):启动自来水给水泵向除盐水站供给自来水,供水压力为0.48MPa,当某一台运行水泵发生故障时,其备用水泵自动启动运行。
现场/DCS系统启停泵。
中水供水泵(P-8106A/B/C):启动中水给水泵向除盐水站供给再生水,供水泵带变频。
根据超滤系统投用数量进行启停,并根据画面设定的变频值实现自动调频。
可现场/DCS系统启停泵。
2.3.3 消防系统流程说明及管网压力控制方案消防泵组主要为厂区的消火栓、消防水炮、消防喷淋系统、水幕及泡沫消防供水。
消防系统采用独立高压消防给水系统,平时消防水系统由两台稳压泵(稳压泵设计一用一备,投自动时无法两台同时运行)维持管网压力1.1Mpa,当消防管网压力低于 1.1Mpa时自动启动一泵稳压泵P-8103A/B,当消防管网压力高于1.15Mpa时,自动停止稳压泵P-8103A/B。
当某装置发生火灾,投用室、室外消防用水设施,室外专用消防水管网压力开始下降,当管网压力下降至设定压力(1.05Mpa)时,自动启动第一台电动消防泵P-8101A,当管网压力继续下降到设定压力(1.0 Mpa)时自动启动第二台消防泵P-8101B,当管网压力继续下降至设定压力(0.95 Mpa)时启动第三台消防泵P-8101C;如此时厂区停电或电动消防泵组出现故障,造成消防管线压力继续下降至设定压力(0.90 Mpa)时,启动柴油泵P8102A;如继续下降至设定压力(0.85Mpa)时启动第二台柴油消防泵P8102B。
系统运行时DCS系统及现场控制系统对消防泵组运行参数进行监控,若出现故障自动进行声光报警。
消防时生产消防蓄水水位开始下降,当降到设定水位,进水管线上浮球阀自动开启,向蓄水池补充自来水。
电动消防主泵P-8101A/B/C,现场有就地操作柱,可现场启停;DCS画面可选择“自动”和“手动”两种状态,在“自动”状态时,消防泵组根据管网设定值启动,在“手动”状态时,消防泵组可DCS人工启动,消防泵采用双电源供电。
当消防管网超过设定压力时,系统将自动打开泄压阀向生产消防水池泄压。
火灾被扑灭后,由人工关闭消防水泵。
3 除盐水站工艺说明3.1 自来水系统自来水供水→PCFM变孔隙纤维过滤器→活性炭过滤器→阳离子交换器→除碳器→中间水池→中间水泵→阴离子交换器→混合离子交换器(出水达到一级除盐水水质标准,可直接旁路到除盐水箱)。
自来水由自来水给水泵P-8105A/B/C送入纤维过滤器F-8121A/B去除悬浮物、部分有机物后进入活性碳过滤器F-8122A/B/C进行除臭、除味、脱色及去除余氯等氧化性物质。
当运行时间或进出水压差达到设定值时,按自动或手动反洗程序进行反洗,反洗水来自反洗水池中的自来水。
活性碳过滤器出水进入阳离子树脂交换器去除阳离子,当出口钠表值达到设定值后手动或自动跳入再生程序再生,再生剂为HCl,再生液流入废水池。
阳床出水进入脱气塔顶部,经布水器均匀喷淋,风机由塔底向上鼓风,水、风逆向接触,脱去水中CO2,脱气后水收集在中间水池中,再由水泵送入阴离子树脂交换床,去除阴离子。
当阴床出口电导>10us/cm或出口SiO2分析仪超过设定值时,手动或自动跳入再生程序进行再生,经加热的再生剂(NaOH)由射流器供给,再生废液流入废水池,由泵送污水处理场排放。
阴床出水电导≤2 us/cm时,流入除盐水箱;出水电导>2us/cm时进入混合离子交换器;出水电导>10us/cm时, 进行再生操作。
3.1.1 PCFM变孔隙纤维过滤器(F-8121A/B)用微细且多束的柔软纤维丝,施以回转机具或压榨包等去压榨,使其孔隙变小,水中的悬浮物均被挡住留在过滤纤维丝外,经过滤后得到清洁的处理水。
当过滤器被截留的悬浮污物(杂质)增多,处理水量下降,运行时间达到设定值时,自动进入反冲洗过程,让过滤器的压榨机具放松,使过滤纤维的孔隙在舒的状态下,用压缩空气和处理水反冲洗,将污物通过排放管排除,然后又自动进入过滤程序,从而实现去污存清的原理,运行、反洗过程示意图如下:纤维束滤料本系统配置2台流量Q=200 m3/h、DN1700mm*H4200mm钢制喷环氧树脂,部不锈钢元件材质为SS304的纤维过滤器。
3.1.2 活性炭过滤器(F-8122A/B/C)本系统配置3台 Q=160 m3/h、DN3200mm*H2000mm的碳钢衬胶活性炭过滤器。
为了防止离子交换系统进水水质的意外恶化有效去除水中的有机物,延长树脂的使用寿命,在机械过滤器后设活性炭过滤器,活性炭过滤器装填高效净水炭,主要去除水中的有机杂质,进一步降低原水的浊度,保证进水水质符合离子交换系统的要求。
过滤器筒体上部设有进水装置,下部设有排水装置,运行时,水经上部进入,流经滤层,从底部流出。
活性炭过滤器应定期进行反洗,以除去积附在表面的悬浮物等物质。
反洗时,水从底部进入,自上部排出。
活性炭过滤器主要是通过吸附和过滤的作用去除污染物。
它能有效去除部分有机物、游离氯、少量的油及进一步降低水中有机物含量,也能去除水中异味、色度。
活性碳过滤器出水余氯≤0.1ppm,SDI≤4。
进水水质要求:进水浊度≤2NTU,进水余氯≤1mg/L;出水水质要求:出水COD Mn<2.0mg/L,出水余氯<0.1mg/L;主要运行机理:a. 吸附的机理溶质从水中移向固体颗粒表面,发生吸附,是水、溶质和固体颗粒三者相互作用的结果。
引起吸附的主要原因在于溶质对水的疏水特性和溶质对固体颗粒的高度亲合力。
溶质的溶解程度是确定第一种原因的重要因素。
溶质的溶解度越大,则向表面运动的可能性越小。
相反,溶质的憎水性越大,向吸附界面移动的可能性越大。
吸附作用的第二种原因主要由溶质与吸附剂之间的静电引力、德华引力或键力所引起。
与此相对应,可将吸附分为三种基本类型:交换吸附、物理吸附、化学吸附。
在实际的吸附过程中,上述几类吸附往往同时存在,难于区分。
b. 影响吸附的因素影响吸附的因素是多方面的,吸附剂结构、吸附剂性质、吸附过程的操作条件等都影响吸附效果。
(1).吸附剂的性质由于吸附现象发生在吸附剂的表面上,所以吸附剂的比表面积越大,吸附能力就越强,吸附容量也就越大,因此比表面积是吸附作用的基础,在能满足吸附质分子扩散的条件下,吸附剂比表面积越大越好。
例如,粉状活性炭比粒状活性炭性能好,主要原因就在于它的比表面积比粒状活性炭的大。
吸附剂的种类不同,吸附效果就不同。
一般来说,极性分子型吸附剂易吸附极性分子型吸附质,非极性分子型吸附剂易吸附非极性的吸附质。
另外,吸附剂的颗粒大小、孔隙结构及表面化学性质对吸附也有很大影响。
(2).吸附质的性质某种吸附剂对不同的吸附质的吸附能力是不同的。
吸附质在水中的溶解度对吸附有较大影响。
一般吸附质的溶解度越低,越容易被吸附,而不易被解吸。
通常有机物在水中的溶解度是随着链长的增长而减小的,而活性炭的吸附容量却随着有机物在水中溶解度的减少而增加,因此活性炭在原水中对有机物的吸附容量随着同系物分子量的增大而增加。
如活性炭从水中吸附有机酸的吸附容量的次序是:甲酸<乙酸<丙酸<丁酸。
吸附质分子大小和不饱和度对吸附也有影响。
用活性炭处理原水时,对大分子有机化合物的吸附效果较小分子的有机化合物好。
吸附质的浓度对吸附也有影响。
当原水中吸附质的浓度很低时,随着浓度的增大,吸附量也增大,但浓度增大到一定程度后,再增加浓度,吸附量所有增加,但很慢,这说明吸附剂表面已大部分被吸附质所占据。
当全部吸附剂表面被吸附质所占据时,吸附量就达到了极限状态,以后吸附量就不在随吸附质浓度的提高而增加了。