不等式组的应用

合集下载

二元一次不等式组的解法与应用方法

二元一次不等式组的解法与应用方法

二元一次不等式组的解法与应用方法在数学中,不等式是一种比较两个量的大小关系的数学表达式。

而一次不等式则代表了两个一次函数的大小关系。

当我们将两个一次不等式置于同一个坐标系中时,就形成了二元一次不等式组。

解决二元一次不等式组的问题有助于我们理解不等式的性质,并且在实际生活和实际问题中有广泛的应用。

一、二元一次不等式组的解法解二元一次不等式组的关键步骤是先将其转化为线性表示形式,然后通过图形或代入法求解。

1. 转化为线性表示形式将二元一次不等式组转化为线性表示形式是为了将问题可视化。

例如,对于一元一次不等式组:a₁x + b₁y ≤ c₁,a₂x + b₂y ≥ c₂,我们可以通过引入一个新的变量z,将其转化为以下形式:a₁x + b₁y + z = c₁,a₂x + b₂y - z = c₂.这样,我们就可以在坐标系中绘制两个平面,并找到不等式组的解。

2. 通过图形求解绘制二元一次不等式组所对应的平面后,我们可以通过图形的交集或包含关系来找到其解。

交集部分表示满足两个不等式条件的解,而包含关系则表示同时满足两个不等式中任何一个条件的解。

3. 通过代入法求解代入法指的是将一个不等式中的变量表达式替换为另一个不等式中的变量表达式。

通过代入法,我们可以将一个变量的取值范围代入另一个不等式中,进而求解二元一次不等式组的解。

二、二元一次不等式组的应用方法解决二元一次不等式组不仅仅是让我们理解数学概念,还能在实际生活和实际问题中应用。

以下是一些常见的二元一次不等式组应用方法:1. 经济决策二元一次不等式组可以用来描述生产成本、销售额、利润等经济指标之间的关系。

通过解决二元一次不等式组,我们可以找到最优的经济决策方案,帮助企业提高效益。

2. 几何问题二元一次不等式组在几何问题中也有应用。

例如,当我们通过绘制二元一次不等式组对应的平面,可以确定两条直线之间的位置关系,进而解决直角三角形的问题、寻找垂直平分线等几何难题。

二元一次不等式组的解法与应用

二元一次不等式组的解法与应用

二元一次不等式组的解法与应用一、引言二元一次不等式组是数学中常见的问题之一,对于解不等式组以及应用于实际问题中具有重要的意义。

本文将介绍二元一次不等式组的解法,并探讨其在实际问题中的应用。

二、二元一次不等式组的解法要解决二元一次不等式组,我们可以通过图像法、代数法和线性规划法等多种方法。

接下来将详细介绍这些方法。

1. 图像法图像法是一种直观的解决二元一次不等式组的方法。

我们可以将每个不等式都转化为一个直线,并找出其解集的交集区域。

通过观察这个交集区域,我们可以得到不等式组的解。

2. 代数法代数法是一种基于代数运算的解决方法。

首先,我们需要将二元一次不等式组进行标准化,即将所有不等式移项并合并同类项。

然后,我们可以通过消元法或代入法来求解。

3. 线性规划法线性规划法是一种用于求解有约束条件的优化问题的方法,也可以应用于解决二元一次不等式组。

我们可以将不等式组转化为线性规划模型,并利用线性规划的理论和算法求解。

三、二元一次不等式组的应用二元一次不等式组在实际生活中有着广泛的应用。

以下是几个常见的例子。

1. 经济学中的应用在经济学中,我们经常会遇到一些涉及资源分配和约束条件的问题。

通过建立二元一次不等式组模型,可以帮助我们解决这些问题。

比如,某企业要通过生产两种产品来最大化利润,但存在资源限制和市场需求的约束,我们可以将这些条件转化为不等式组,并求解最优解。

2. 几何学中的应用几何学中的一些问题也可以通过二元一次不等式组来解决。

比如,某个区域内有一定数量的点,我们想要找到一个点,使得它到这些点的总距离最小。

我们可以将该问题转化为不等式组,并利用解不等式组的方法求解最优解。

3. 生活中的实际问题除了学科领域,二元一次不等式组也经常出现在我们的日常生活中。

比如,我们需要在一定的时间和金钱限制下,找到合适的方式安排旅行行程,或者在购物时选择最优的价格和质量。

通过建立二元一次不等式组模型,我们可以帮助解决这些实际问题。

一元一次不等式(组)在生活中的应用

一元一次不等式(组)在生活中的应用

一元一次不等式(组)在生活中的应用
一元一次不等式(组)是小学数学中的一个重要内容,它在我们的日常生活中有很多应用。

以下是一些关于一元一次不等式(组)在生活中的应用:
购物打折:很多商场会举办打折活动,例如:打五折、打八折等。

我们可以用一元一次不等式来计算打折后商品的价格,帮助我们做出更明智的购物决策。

制定家庭预算:家庭预算可以帮助我们合理规划家庭收支,避免浪费。

在制定家庭预算时,我们可以使用一元一次不等式来计算各种开支和收入之间的关系,以及如何分配家庭预算。

健身计划:健身计划可以帮助我们制定科学合理的健身计划,达到健身的目的。

在健身计划中,我们可以用一元一次不等式来计算身体指标和目标之间的关系,例如:BMI指数和体重、身高之间的关系。

公交出行:公交车站的到达时间通常是不确定的,我们可以使用一元一次不等式来计算公交车的到达时间和出发时间之间的关系,以便更好地安排出行时间。

总之,一元一次不等式(组)在我们的日常生活中有很多应用。

它可以帮助我们计算各种事物之间的关系,从而更好地规划生活和工作。

不等式组的应用(分书)

不等式组的应用(分书)

1. 把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名
同学分5本,那么最后一人就分不到3本.这些书有多少本?共有多少人?
2.某校初二年级组织春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;问该校初二年级共有多少人参加春游?
3.若干名学生住宿舍,如果每间住4人,那么还有19人无房可住,如果每间住
6人,那么还有一间不空不满,试求学生人数和宿舍间数.
4.有若干个苹果分给几个孩子,若每人分3个则余8个;若每人5个,则最后一个孩子得到了苹果但不足5个,问共有几个孩子,有多少苹果?
5.将若干只鸡放入若干个笼,若每个笼放4只,则有一只鸡无笼可放;若每个笼放5只,则有一笼无鸡可放,那么至少有多少只鸡,多少个笼?
6. 某校初一初二两年级学生参加社会实践活动,原计划租用48座客车若干辆,但还有2人无座位坐。

现决定租用60座客车,则可比原计划租48
座客车少2辆,且所租60座客车中有一辆没有坐满,这辆车已坐的座位
超过36位,请你求出该校这两个年段学生的总数.
3.一艘轮船从某江上游的A地匀速行驶到下游的B地用了10小时,从B地匀速返回A地用了不到12小时,这段江水流速为3km/h,轮船在静水中的往返速度v不变,v满足什么条件?
4.老张和老李购买了相同数量的种兔,一年后,老张养兔数比买入种兔数增加了2只,老李养兔数比买入种兔数的2倍少1只,老张养兔数不超过老李养兔数的三分之二,一年前老张至少买了多少只种兔?。

不等式(组)与平面区域的应用

不等式(组)与平面区域的应用

对未来研究的展望
随着数学和其他学科的发展,不等式(组)与平面区域的应用将会得到更深入的研究和 探讨。
未来研究可以进一步探索不等式(组)的优化问题,以及如何利用不等式(组)来解决更 复杂的问题。
此外,还可以研究不等式(组)在其他领域的应用,例如在生物学、环境科学等领域, 以更好地服务于实际问题。
THANKS
交通规划问题中的不等式与平面区域应用
总结词
交通规划问题中,不等式与平面区域的应用主要涉及 如何优化交通网络布局、提高运输效率、缓解交通拥 堵等问题。
详细描述
在城市交通规划中,规划师利用不等式模型来确定最佳 的道路网络布局和交通信号控制方案。通过优化交通流 量的分配,降低拥堵程度和提高运输效率。在物流运输 中,物流企业利用不等式模型来优化运输路线和车辆调 度计划。通过减少运输时间和成本,提高物流效率和客 户满意度。在公共交通系统中,公交公司利用不等式模 型来合理安排公交线路和班次。通过优化公共交通资源 配置,提高公共交通的覆盖范围和服务质量。
不等式(组)与平面 区域的应用
目录
• 引言 • 不等式与平面区域的基本概念 • 不等式(组)在平面区域中的应用 • 实际问题的应用案例 • 结论
01
引言
主题简介
主题概述
不等式(组)与平面区域的应用主要研究如何利用不等式(组)来 确定平面区域,以及这些区域在实际问题中的应用。
主题背景
不等式是数学中一个重要的概念,它可以用来描述各种实际 问题中的限制条件。平面区域则可以用来表示这些限制条件 下的可行解的集合。因此,研究不等式(组)与平面区域的应用 对于解决实际问题具有重要意义。
感谢观看
二次函数的图像
二次函数的图像是一个开 口的抛物线,其顶点为极 值点。

不等式组_精品文档

不等式组_精品文档

不等式组1. 引言不等式组是数学中一个重要的概念,它由一组不等式组成。

不等式是数学中用于描述数值之间大小关系的工具,而不等式组则可以用于描述多个数值之间的复杂关系。

本文将介绍不等式组的定义、解法以及其在应用中的一些常见场景。

2. 不等式组的定义不等式组是由多个不等式组成的集合,每个不等式可以是大于(>)、小于(<)、大于等于(≥)或小于等于(≤)等符号连接的数学表达式。

一个不等式组的一般形式可表示为:{不等式1,不等式2,...不等式n}其中,每个不等式可以包含一或多个变量,表示了变量之间的大小关系,或者变量与常数之间的关系。

3. 不等式组的解法不等式组的解是使得每个不等式都成立的变量的取值范围。

要解决一个不等式组,可以通过以下步骤进行:- 确定每个不等式中的变量个数和类型。

- 找到每个不等式中变量的取值范围。

可以通过移项、合并同类项、因式分解等方法将不等式转化为形式更简单的不等式。

- 根据不等式符号的特性进行取值范围的确定。

例如,对于大于(>)或小于(<)的不等式,变量的取值范围应排除等号右侧的值;对于大于等于(≥)或小于等于(≤)的不等式,变量的取值范围应包括等号右侧的值。

- 根据每个不等式的取值范围求解整个不等式组的解。

可以通过求交集或并集的方式得到最终的解集。

4. 不等式组的表示方法不等式组可以用不等式图形表示法、解集表示法或区间表示法来表示,具体的表示方式取决于问题的要求和解的形式。

不等式图形表示法是通过绘制每个不等式的图形并表示它们的交集或并集来表示不等式组。

解集表示法是通过写出每个不等式的解集并表示它们的交集或并集来表示不等式组。

区间表示法是用数轴上的区间表示不等式组的解集。

5. 不等式组的应用不等式组在实际问题中具有广泛的应用。

以下是一些常见的应用场景:- 经济领域:不等式组可以用于描述供需关系、利润最大化问题等经济学中的问题。

- 工程领域:不等式组可以用于描述工程中的约束条件,如最大承载能力、最短路径等。

不等式(组)应用题类型及解答(包含各种题型)

不等式(组)应用题类型及解答(包含各种题型)

一元一次不等式(组)应用题类型及解答1.分配问题1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。

3、把若干颗花生分给若干只猴子.如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。

问猴子有多少只,有多少颗?4、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

问这些书有多少本?学生有多少人?5、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数.6、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?7、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。

请问:有多少辆汽车?8、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。

(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二、比较问题1、某校王校长暑假将带领该校市级三好学生去北京旅游。

甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元)①学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式)②当学生数是多少时,两家旅行社的收费一样? ③就学生数x讨论哪家旅行社更优惠。

③就学生数x讨论哪家旅行社更优惠。

2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。

考点07 一元一次不等式(组)及其应用-备战2023届中考数学一轮复习考点梳理(解析版)

考点07 一元一次不等式(组)及其应用-备战2023届中考数学一轮复习考点梳理(解析版)

考点07 一元一次不等式(组)及其应用中考数学中,一元一次不等式(组)的解法及应用时有考察,其中,不等式基本性质和一元一次不等式(组)解法的考察通常是以选择题或填空题的形式出题,还通常难度不大。

而对其简单应用,常会和其他考点(如二元一次方程组、二次函数等)结合考察,此时难度上升,需要小心应对。

对于一元一次不等式中含参数问题,虽然难度系数上升,但是考察几率并不大,复习的时候只需要兼顾即可!一、不等式的基本性质二、一元一次不等式(组)的解法三、求不等式(组)中参数的值或范围四、不等式(组)的应用考向一:不等式的基本性质【易错警示】1.若a >b ,则下列不等式中,错误的是( )A .3a >3bB .﹣<﹣C .4a ﹣3>4b ﹣3D .ac 2>bc 2【分析】根据不等式的性质进行一一判断.【解答】解:A 、在不等式a >b 的两边同时乘以3,不等式仍成立,即3a >3b ,故本选项正确;B 、在不等式a >b 的两边同时除以﹣3,不等号方向改变,即﹣<﹣,故本选项正确;C 、在不等式a >b 的两边同时先乘以4、再减去3,不等式仍成立,4a ﹣3>4b ﹣3,故本选项正确;D 、当c =0时,该不等式不成立,故本选项错误.故选:D .2.已知x <y ,下列式子不成立的是( )A .x +1<y +1B .x <y +100C .﹣2022x <﹣2022yD .【分析】根据不等式的性质判断即可.【解答】解:A 、在不等式x =y 的两边同时加上1得x +1<y +1,原变形成立,故此选项不符合题意;B 、在不等式x <y 的两边同时加上100得x +100<y +100,原变形成立,故此选项不符合题意;C 、在不等式x <y的两边同时乘以﹣2022得﹣2022x >﹣2022y ,原变形不成立,故此选项符合题意;D 、在不等式x <y 的两边同时除以2022得x <y ,原变形成立,故此选项不符合题意;故选:C .3.若x>y,且(a+3)x<(a+3)y,求a的取值范围 a<﹣3 .【分析】根据题意,在不等式x>y的两边同时乘以(a+3)后不等号改变方向,根据不等式的性质3,得出a+3<0,解此不等式即可求解.【解答】解:∵x>y,且(a+3)x<(a+3)y,∴a+3<0,则a<﹣3.故答案为:a<﹣3.4.已知3x﹣y=1,且x≤3,则y的取值范围是 y≤8 .【分析】根据3x﹣y=1求出x=,根据x≤3得出≤3,再根据不等式的性质求出不等式的解集即可.【解答】解:∵3x﹣y=1,∴3x=1+y,∴x=,∵x≤3,∴≤3,∴1+y≤9,∴y≤8,即y的取值范围是y≤8,故答案为:y≤8.5.已知a,b,c为三个非负实数,且满足,若W=3a+2b+5c,则W的最大值为 130 .【分析】将方程组两个方程相加,得到3a+5c=130﹣4b,整体替换可得W=130﹣2b,再由b的取值范围即可求解.【解答】解:,①+②,得3a+4b+5c=130,可得出a=10﹣,c=20﹣,∵a,b,c为三个非负实数,∴a =10﹣≥0,c =20﹣≥0,∴0≤b ≤20,∴W =3a +2b +5c =2b +130﹣4b =130﹣2b ,∴当b =0时,W =130﹣2b 的最大值为130,故答案为:130.考向二:一元一次不等式(组)的解法1. 一元一次不等式的解法2. 一元一次不等式(组)的解法①按照一元一次不等式的解法解出每个不等式的解集②依据数轴取各不等式解集的公共部分一元一次不等式组解法及解集的四种情况无解大大小小则无解1.不等式3(2﹣x)>x+2的解在数轴上表示正确的是( )A.B.C.D.【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【解答】解:∵3(2﹣x)>x+2,∴6﹣3x>x+2,﹣3x﹣x>2﹣6,﹣4x>﹣4,x<1,故选:C.2.在平面直角坐标系中,点A(a,2)在第二象限内,则a的取值可以是( )A.1B.﹣C.0D.4或﹣4【分析】根据第二象限内点的坐标特点列出关于a的不等式,求出a的取值范围即可.【解答】解:∵点A(a,2)是第二象限内的点,∴a<0,四个选项中符合题意的数是,故选:B.3.关于x的方程ax=2x﹣7的解为负数,则a的取值范围是 a>2 .【分析】先解方程得到x=,根据题意得到<0,所以2﹣a<0,然后解不等式即可.【解答】解:解方程ax=2x﹣7的得x=,∵方程ax=2x﹣7的解为负数,∴<0,∴2﹣a<0,解得a>2,即a的取值范围为a>2.故答案为:a>2.4.已知x>2是关于x的不等式x﹣3m+1>0的解集,那么m的值为 1 .【分析】先把m看作常数,求出不等式的解集,再根据不等式解集为x>2,建立关于m的方程,求解即可.【解答】解:x﹣3m+1>0x>3m﹣1,∵x>2 是关于x的不等式x﹣3m+1>0 的解集,∴3m﹣1=2,解得:m=1,故答案为:1.5.若关于的不等式﹣ax>bx﹣b(ab≠0)的解集为x>,则关于x的不等式3bx<ax﹣b的解集是 x>﹣1 .【分析】根据已知不等式的解集,即可确定的值以及a+b的符号,进而求得a=2b,进一步求得b<0,从而解不等式即可.【解答】解:移项,得:(a+b)x<b,根据题意得:a+b<0且=,即3b=a+b,则a=2b,又a+b<0,即3b<0,则b<0,则关于x的不等式3bx<ax﹣b化为:3bx<2bx﹣b,解得x>﹣1.故答案为:x>﹣1.6.解下列不等式,并将解集在数轴上表示出来.(1)﹣x+19≥2(x+5);(2).【分析】(1)先去括号,再移项、合并同类项,把x的系数化为1,再把不等式的解集在数轴上表示出来即可;(2)不等式两边都乘12去分母后,去括号,移项合并,将x系数化为1,求出解集,表示在数轴上即可.【解答】解:(1)﹣x+19≥2(x+5),去括号,得)﹣x+19≥2x+10,移项,得﹣x﹣2x≥10﹣19,合并同类项,得﹣3x≥﹣9,系数化为1,得x≤3.将解集在数轴上表示为:(2),去分母,得3(x+4)﹣12<4(4x﹣13),去括号,得3x+12﹣12<16x﹣52,移项,得3x﹣16x<﹣52﹣12+12,合并同类项,得﹣13x<﹣52,系数化为1,得x>4.解集在数轴上表示为:7.关于x的方程5x﹣2k=6+4k﹣x的解是负数,求字母k的值.【分析】解方程得出x=k+1,根据方程的解为负数得出关于k的不等式,解之可得.【解答】解:解方程5x﹣2k=6+4k﹣x得x=k+1,∵方程的解是负数,∴k+1<0,∴k<﹣1.8.不等式组的解集在数轴上表示为( )A.B.C.D.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解答】解:,解不等式①,得:x≥1,解不等式②,得:x≥2,故原不等式组的解集是x≥2,其解集在数轴上表示如下:,故选:C.9.对于任意实数x,我们用{x}表示不小于x的最小整数.如:{2.7}=3,{2022}=2022,{﹣3.14}=﹣3,若{2x+3}=﹣2,则x的取值范围是( )A.B.C.D.【分析】根据{x}表示不小于x的最小整数,可得﹣3<2x+3≤﹣2,然后进行计算即可解答.【解答】解:∵{2x+3}=﹣2,∴﹣3<2x+3≤﹣2,∴﹣6<2x≤﹣5,∴﹣3<x≤﹣,故选:D.10.不等式组的解集是 x<3 .【分析】先求出每个一元一次不等式的解集,再求出它们的公共部分即为不等式组的解集.【解答】解:,解①得:x≤8,解②得:x<3,∴不等式组的解集为x<3.故答案为:x<3.11.解不等式(组),并把解集在数轴上表示出来:(1)2(x﹣1)+2<3x;(2).【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)∵2(x﹣1)+2<3x,∴2x﹣2+2<3x,∴2x﹣3x<2﹣2,∴﹣x<0,则x>0,将解集表示在数轴上如下:(2)解不等式3x﹣(x﹣2)≥6,得:x≥2,解不等式x+1>,得:x<4,则不等式组的解集为2≤x<4,将不等式组的解集表示在数轴上如下:考向三:求不等式组中参数的值或范围方法步骤总结:①解出不等式(组)的解集——用含参数的表达式表示;②根据题目要求,借助数轴,确定参数表达式的范围,必在两个相邻整数之间;③由空心、实心判断参数两边边界哪边可以取“=”,哪边不能取“=”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答:大约需要188天到563天,小颖的头发才能 生长到16cm到28cm.
第1页/共11页
2、甲以5km/h的速度进行锻炼,2h后,乙骑
自行车从同地出发沿同一条路追赶甲,
根据他们两人的约定,乙最快不早于1h追
上甲,最慢不晚于1h15min追上甲,
乙骑车的速度应当控制在什么范围?
解:设乙骑车的速度为xkm/h,
第7页/共11页
阿姨,我要买一 盒饼干和一袋牛 奶(递上10元钱)
小朋友,本来你用10元 钱买一盒饼干是有多 的,但是再买一袋牛奶 就不够了!今天是儿童 节,我给你买的饼干打 9折,两样东西请拿好!
还有找你的8角钱.
根据对话的内容,试求出饼 干和牛奶的标价各是多少元?
第8页/共11页
一盒饼 干的标 价可是 整数哦!
1、已知利民服装厂现有A种布料70米,B种布 料52米,现计划用这两种布料生产M,N两种 型号的时装共80套,已知做一套M型号时装 需A种布料0.6米,B种布料0.9米,做一套N 型号时装需用A种布料1.1米, B种布料0.4 米,若设生产N型号的时装套数为x,用这
批布料生产这两种型号的时装有几种方案?
1h15mi这54 x个≥不2×等5式+ 组54,×得5
13≤x≤15
答:乙骑车的速度应当控制在13km/h到15km/h 这个范围内
第2页/共11页
3、一堆玩具分给若干个小朋友,若每人分2件, 则剩余3件;若前面每人分3件,则最后一 个人得到的玩具数不足3件.求小朋友的 人数与玩具数.
是0.8万元;甲种货物35吨和乙种货物15吨
可装满一节A型车厢,甲种货物25吨和乙种 货物35吨可装满一节B型车厢,按此要求安 排A、B两种车厢的节数,共有哪几种方案?
请你设计出来; 并说明哪种方案的运费最少.
第10页/共11页
谢谢大家观赏!
第11页/共11页
解:设有x个小朋友, 则有(2x+3)件玩具
(2x+3)-3(x-1) ≥1
(2x+3)-3(x-1) <3 解这个不等式组,得
3<x≤5 ∵x是整数 ∴x=4 , 5 答:小朋友4人时,有11件玩具;
小朋友5人时,有13件玩具;
第3页/共11页
第4页/共11页
第5页/共11页
第6页/共11页
1、一个人的头发大约有10万根到20万根, 每根头发每天大约生长0.32mm,小颖的头发 现在大约有10cm长,则大约经过多长时间, 她的头发才能生长到16cm到28cm?
解:设大约经过x天, 根据题意,得 0.32x+100≥160 0.32x+100≤280
解这个不等式组,得
187.5≤x≤562.5
解:设生产N型号的时装套数为x时, 则生产M型号的时装套数为(80-x),
根据题意,得
0.6(80 x) 1.1x 70 0.9(80 x) 0.4x 52
第9页/共11页
2、火车站有某公司待运的甲种货物1530吨,
乙种货1150吨,现计划用50节A、B两种型

的车厢将这批货物运至北京,已知每节A型 车厢的运费是0.5万元,每节B节车厢的运费
相关文档
最新文档