水中溶氧检测摘要本文综述了水体溶解氧的各种检测方法及原理,诸如

合集下载

溶解氧 测定方法

溶解氧 测定方法

溶解氧测定方法溶解氧(Dissolved Oxygen,简称DO)是指在水中溶解的氧气(O2),通常以毫克/升(mg/L)来表示。

溶解氧水质参数在环境科学、水体生态学和水污染治理等领域中具有重要的意义,对水体的生态系统和水生生物的生存和繁殖都有重要影响。

下面将介绍几种常用的溶解氧测定方法。

1. 基于氧电极测定法基于氧电极测定法是目前最常用的溶解氧测定方法,也被称为氧电极法或克拉尔克电极法。

该方法通过将氧气分子还原成氢氧根离子来测定溶解氧的浓度。

具体操作是将氧电极插入水样中,然后向电极中加入电流,电流的大小和水样中溶解氧浓度成反比关系。

2. 无偏随机点法无偏随机点法是一种基于观测点选择原则的间接测定方法。

该方法通过在水体中随机选择多个测点,然后利用溶解氧传感器在不同深度进行氧浓度测定。

通过分析不同深度的溶解氧变化情况,可以推断整个水体的溶解氧状况。

3. 活性炭吸附法活性炭吸附法是一种从水中吸附氧气的方法。

该方法基于活性炭对氧气有强烈的吸附作用,通过将一定量的活性炭置于水样中,在一定时间内让活性炭吸附水中的氧气。

然后将活性炭取出,并通过化学方法将吸附在活性炭上的氧气释放出来,进而测定溶解氧的浓度。

4. 溶解氧传感器法溶解氧传感器法是一种利用溶解氧传感器对水样中的溶解氧进行直接测量的方法。

该方法的优点是操作简单、快速、准确性高,适用于现场快速测定。

传感器可以根据溶解氧的浓度变化输出相应的电信号,从而实现对溶解氧浓度的测量。

5. 化学滴定法化学滴定法是一种通过溶解氧与化学氧化剂(例如亚硝酸盐或亚硝酸钠)反应来间接测定溶解氧浓度的方法。

该方法的原理是将不同浓度的化学氧化剂滴加到水样中,观察滴加到水样中的化学氧化剂消耗量,从而推断水样中的溶解氧浓度。

总结起来,溶解氧测定方法主要包括基于氧电极的测定法、无偏随机点法、活性炭吸附法、溶解氧传感器法和化学滴定法等。

不同的方法适用于不同的场景和需要,具体选择哪种方法取决于实际需求和测定环境的条件。

水中溶解氧的测定

水中溶解氧的测定

实验六水中溶解氧的测定一、实验目的1、了解测定溶解氧的意义和方法。

2、掌握碘量法测定溶解氧的操作技术。

二、实验原理:采用碘量法(即Winkler)测定水中的溶氧量。

往水中加入MnSO4溶液和KI—NaOH溶液,水样中的溶氧即被定量地转化为三价锰化合物的褐色沉淀。

Mn + 2OH-=====Mn(OH)2Mn(OH)2+O2===2MnO(OH)22MnO(OH)2+2I-+6H+====2Mn2++I2+6H2O2Na2S2O3+I2===Na2S4O6+2NaI以淀粉作指示剂,用Na2S2O3标准滴定上述反应生成的I2,并由此计算出水中的溶氧量。

三、实验仪器与试剂仪器:具塞碘量瓶(250mL或300mL),25mL滴定管,250mL锥形瓶。

试剂:1、浓硫酸H2S04(比重1.84)。

2.硫酸锰溶液:称取480g硫酸锰(MnS04·4H20或400gMnS04·2H20)溶于去离子水中,过滤并稀释至1000mL。

3.碱性碘化钾溶液:称取500gNaOH溶于300—400mL去离子水中,另称取150gKI(或135gNaI)溶于200mL去离子水中,待NaOH溶液冷却后,将两溶液合并混匀,用去离子水稀释至1000mL。

静置24h使Na2CO3下沉,倒出上层澄清液,贮于棕色瓶中。

用橡皮塞塞紧,避光保存。

4.1%淀粉溶液:称取1g可溶性淀粉,用少量水调成糊状,用刚煮沸的水冲稀至100mL。

冷却后,加入0.1g水杨酸或0.4gZnC12防腐。

5. 0.1000mol/L(1/6 K2Cr27)重铬酸钾标准溶液:称取于105一110℃烘干2h并冷却的K 2Cr274.9031g,溶于去离子水中,转移至1000mL容量瓶中,用水稀释至刻线,摇匀。

6.硫代硫酸钠溶液:称取25g硫代硫酸钠(Na2S23·5H20),溶于1000mL煮沸放凉的去离子水中,加入0.4gNaOH或0.2gNa2C03。

溶解氧检测方法介绍

溶解氧检测方法介绍

溶解氧的检测方法介绍一、碘量法(GB7489-87)(Iodometric)碘量法(等效于国际标准ISO 5813-1983)是测定水中溶解氧的基准方法,使用化学检测方法,测量准确度高,是最早用于检测溶解氧的方法。

其原理是在水样中加入硫酸锰和碱性碘化钾,生成氢氧化锰沉淀。

此时氢氧化锰性质极不稳定,迅速与水中溶解氧化合生成锰酸锰:4MnSO4+8NaOH = 4Mn(OH)2↓+4Na2SO4 (1)2Mn(OH)2+O2 = 2H2MnO3↓ (2)2H2MnO3+2Mn(OH)3 = 2MnMnO3↓+4H2O (3)加入浓硫酸使已化合的溶解氧(以MnMnO3的形式存在)与溶液中所加入的碘化钾发生反应而析出碘:4KI+2H2SO4 = 4HI+2K2SO4 (4)2MnMnO3+4H2SO4+HI = 4MnSO4+2I2+6H2O (5)再以淀粉作指示剂,用硫代硫酸钠滴定释放出的碘,来计算溶解氧的含量[3],化学方程式为:2Na2S2O3+I2 = Na2S4O6+4NaI (6)设V为Na2S2O3溶液的用量(mL),M为Na2S2O3的浓度(mol/L),a为滴定时所取水样体积(mL),DO可按下式计算[2]:DO(mol/L)= (7)在没有干扰的情况下,此方法适用于各种溶解氧浓度大于0.2mg/L和小于氧的饱和度两倍(约20mg/L)的水样。

当水中可能含有亚硝酸盐、铁离子、游离氯时,可能会对测定产生干扰,此时应采用碘量法的修正法。

具体作法是在加硫酸锰和碱性碘化钾溶液固定水样的时候,加入NaN3溶液,或配成碱性碘化钾-叠氮化钠溶液加于水样中,Fe3+较高时,加入KF络合掩敝。

碘量法适用于水源水,地面水等清洁水。

碘量法是一种传统的溶解氧测量方法,测量准确度高且准确性好,其测量不确定度为0.19mg/L[4]。

但该法是一种纯化学检测方法,耗时长,程序繁琐,无法满足在线测量的要求[5]。

同时易氧化的有机物,如丹宁酸、腐植酸和木质素等会对测定产生干扰。

溶解氧的测量原理简介

溶解氧的测量原理简介

溶解氧的测量原理简介溶解在水中的分子态氧称为溶解氧。

天然水的溶解氧含量取决于水体和大气中氧的平衡。

肯定水中溶解氧的含量与空气中氧的分压、水温、水深、水中各种盐类和藻类的含量、光照强度等条件有关。

清洁地表水中的溶解氧一般接近饱和。

藻类的生长可能导致溶解氧过饱和,当水体被有机和无机还原性物质污染时,溶解氧削减。

氧在水中的溶解度不大,且是一个动态值,但它起着举足轻重的作用。

在渔业中,当水中溶解氧含量低于34mg/L时,很多鱼会因缺氧而死亡。

在工业中,一些生产过程需要测量溶液或反应物中的溶解氧含量。

一些科学讨论和试验还需要测定水中溶解氧的含量。

此外,溶解氧在水产养殖、农业、废水生化处理、水体自净、科学等其他领域也是紧要的影响因素。

除上述因素外,水中溶解氧的含量也是衡量水体污染程度和生态环境质量的紧要指标之一。

它与环保中常常检测到的数据BOD和COD紧密相关。

当水体受到严重污染时,溶解氧含量会大大降低。

近年来,沿海地区频繁发生的赤潮现象就是一个例子。

水中的溶解氧仍以分子态形式存在,而溶解氧的测定,从方法上来说一般分为以下两类:化学法和仪器法。

化学法重要为滴定法以及目视比色法,而仪器法则包括光学分析法、色谱分析法和电化学分析法等。

测定溶解氧的化学方法重要是将溶解氧与各种还原性物质发生化学反应,然后通过还原性物质的量得出溶解氧的含量。

化学法需要经过溶解氧的固定、滴定、指示剂的选择和干扰的排出,故操作多而杂,时间长。

当然,借助设备的改进,其结果依旧是比较精准的,一般用于结果比较和标准分析。

很多化学方法是在碘量法的基础上改进而来的,一般都属于容量法。

比色法是利用氧浓度与显色浓度的成正比关系而粗略地判定出氧浓度。

仪器是利用各种仪器测定溶解氧在化学反应过程中或其生成物的各种物理信号,然后将这些信号变化成电信号,或者直接测定溶解氧在电极反应中的电信号,电信号再经放大处理或数模转换,然后才将结果输出到仪器表头,从而可以直接测出溶解氧的含量。

海水中溶解氧的测定

海水中溶解氧的测定

海水中溶解氧的测定__摘要溶解氧是海洋调查中化学要素部分的重要项目之一。

本文综述了几种测定溶解氧的方法的原理和优缺点,为今后的研究提供参考。

关键词:海水溶解氧测定方法综述AbstractDissolved oxygen is part of one of the important projects of chemical elements in Marine investigation. This paper reviews the principle, advantages and disadvantages of various methods for the determination of dissolved oxygen, so as to provide reference for future research.Keywords: seawater dissolved oxygen; determination; method; Review1、引言海水中的溶解氧和海中动植物生长有密切关系,它的分布特征又是海水运动的一个重要的间接标志。

因此,溶解氧的含量及其分布变化与温度、盐度和密度一样,是海洋水文特征之一。

研究溶解氧可以知道大洋各深度上生物生存条件;了解大洋环流;含氧量特征是从表面下沉的海水的“年龄”的鲜明标志;确定各深度海水与表层水之间的关系。

目前,测定溶解氧的最常用方法有碘量法和分光光度法,另外,为了弥补常用方法在测定过程中出现的误差,其它一些更快捷更标准的溶解氧测定法也逐渐被采用,如氧化电极法、荧光淬灭法等。

2、碘量法在装好的待测试样中迅速加入固定剂MnS04和碱性KI溶液,此时溶液中形成Mn(OH)2白色沉淀,水样中的氧将继续把Mn(OH)2氧化为Mn(OH)3棕色沉淀或MnO(OH)2。

然后加入酸,则Mn(OH)3氧化碘化钾,生成碘单质,再用Na2S2O3标准溶液滴定碘。

水中溶解氧的测定原理

水中溶解氧的测定原理

硫酸
水样酸化
氧化还原 性物质
KMnO4
草酸钾
还原过量 的KMnO4


6、体积校正问题

工业分析中可以忽略.加入试剂,样品会由瓶中溢出,但由于损失量

很小,而且在只吸取一部分溶液滴定的情况下,影响很小。一般工
业分析中,可不必进行样品体积的校正,计算中可忽略此影响
7、勿使水中含氧量有所变更
要求取样时,切勿与空气接触。
现场加入MnSO4及碱性KI溶液
水中溶解氧测定 水中溶解氧测定

2Na2S2O3 + I2 = Na2S4O6 + 2NaI


Na2S2O3滴定溶液至呈淡黄色,

I I - MnO(OH)2
2
然后以淀粉作指示剂,硫代硫酸钠继续滴定释放
出的碘,直到蓝色褪去为止。
计算公式为:
C ——硫代硫酸钠溶液的浓度,mol/L; VNa2S2O3——滴定时消耗硫代硫酸钠溶液的体积,L V ——水样的体积,mL
溶解氧氧化铁而腐蚀金属,因此在工业分析中也是一个很重要的指标。
测定原理
碘量法测定水中的溶解氧
MnSO4
Mn(OH)2 溶解氧
MnO(OH)2
碱性溶液
MnSO4 + 2NaOH = Mn(OH)2↓+ Na2SO4 2Mn(OH)2 + O2 = 2MnO(OH)2 ↓
测定原理
Na2S2O3
MnO(OH)2 +2KI+2H2SO4 =MnSO4 +I2 +K2SO4 +3H2O
好后放置暗处7天后标定

4. 氧化性物质 如Fe3+、Cl2等,与I-作用时结果偏高。

水中溶解氧的测定实验报告

水中溶解氧的测定实验报告

溶解氧的测定实验报告易倩一、实验目的1.理解碘量法测定水中溶解氧的原理:2.学会溶解氧采样瓶的使用方法:3.掌握碘量法测定水中溶解氧的操作技术要点。

二、实验原理溶于水中的氧称为溶解氧,当水受到还原性物质污染时,溶解氧即下降,而有藻类繁殖时,溶解氧呈过饱和,因此,水中溶解氧的变化情况在一定程度上反映了水体受污染的程度。

碘量法测定溶解氧的原理:在水中加入硫酸锰及碱性碘化钾溶液,生成氢氧化锰沉淀。

此时氢氧化锰性质极不稳定,迅速与水中溶解氧化合生成锰酸锰:MnSO4+2aOH=Mn(OH)2↓(白色)++Na2SO42Mn(OH)2+O2=2MnO(OH)2(棕色)H2MnO3十Mn(OH)2=MnMnO3↓(棕色沉淀)+2H2O加入浓硫酸使棕色沉淀(MnMn02)与溶液中所加入的碘化钾发生反应,而析出碘,溶解氧越多,析出的碘也越多,溶液的颜色也就越深2KI+H2SO4=2HI+K2SO4MnMnO3+2H2SO4+2HI=2MnSO4+I2+3H2OI2+2Na2S2O3=2NaI+Na2S4O6用移液管取一定量的反应完毕的水样,以淀粉做指示剂,用标准溶液滴定,计算出水样中溶解氧的含量。

三、仪器1.250ml—300ml溶解氧瓶2.50ml酸式滴定管。

3.250ml锥形瓶4.移液管5.250ml碘量瓶6.洗耳球四、试剂l、硫酸锰溶液。

溶解480g分析纯硫酸锰(MnS04· H20)溶于蒸馏水中,过滤后稀释成1000ml.此溶液加至酸化过的碘化钾溶液中,遇淀粉不得产生蓝色。

2、碱性碘化钾溶液。

取500g氢氧化钠溶解于300—400ml蒸馏水中(如氢氧化钠溶液表面吸收二氧化碳生成了碳酸钠,此时如有沉淀生成,可过滤除去)。

另取得气150g碘化钾溶解于200ml蒸馏水中,待氢氧化钠冷却后,将两溶液合并,混匀,用水稀释至1000ml。

如有沉淀,则放置过夜后,倾出上层清液,贮于棕色瓶中,用橡皮塞塞紧,闭光保存。

水中溶解氧的测定方法解读

水中溶解氧的测定方法解读

应及时更换。
11
国家职业教育水环境监测与治理专业教学资源库
水环境监测
谢 谢!
12
化碘离子而释放出与溶解氧量相当的游离碘。以淀粉为指示剂,用硫
代硫酸钠标准溶液滴定释放出的碘,可计算出溶解氧含量。
3
国家职业教育水环境监测与治理专业教学资源库
水中溶解氧的测定方法
2.碘量法测定水溶解氧
(2)反应式:
• MnSO4+2NaOH=Na2SO4+Mn(OH)2↓ • 2Mn(OH)2+O2=2MnO(OH)2↓(棕色沉淀)
• MnO(OH)2+2H2SO4=Mn(SO4)2+3H2O
• Mn(SO4)2+2KI=MnSO4+K2SO4+I2
• 2Na2S2O3+I2=Na2S4O6+2NaI
4
国家职业教育水环境监测与治理专业教学资源库
水中溶解氧的测定方法
(3)结果计算:
式中: • M——硫代硫酸钠标准溶液浓度,mol/L; • V——滴定消耗硫代硫酸钠标准溶液体积,mL; • V水——水样体积,mL; • 8——1/2氧的摩尔质量,g /mol。
国家职业教育水环境监测与治理专业教学资源库
水环境ቤተ መጻሕፍቲ ባይዱ测
水中溶解氧的测定方法
王 虎 副教授
1
国家职业教育水环境监测与治理专业教学资源库
水中溶解氧的测定方法
1.水中溶解氧
• 溶解氧(dissolved oxygen,DO)是指溶解在水中的分子态氧,一 般用1升水中氧的毫克数(mg/L)或饱和百分数(x%)表示。 • DO是与大气压、空气氧分压、水温和水质显著相关的水质指标, 可衡量水质优劣和水体自净能力。
(2)溶解氧仪操作要点:
①用无氧水样校正零点; ②用化学法校准仪器刻度值; ③将探头浸入水样测定DO值 ; ④温度补偿校正。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水中溶氧检测摘要:本文综述了水体溶解氧的各种检测方法及原理,诸如碘量法、电流测定法(Clark 溶氧电极)、电导测定法、荧光淬灭法等,比较各种方法的优缺点,对荧光淬灭法的应用前景进行了初步探讨。

关键词:溶解氧、荧光淬灭、环境监测引言随着当今世界工业、农业的迅猛发展,大量的工业废水、农田排水向江河湖海排放,同时,我国城市生活污水大约有80%未经处理直接排放,小城镇及广大农村生活污水大多处于无序排放状态[1],使得许多地方的水质日益恶化,水污染和水资源短缺日益严重,所以迫切需要对污水进行及时监控和有效处理。

其中,水中溶解氧含量是进行水质监测时的一项重要指标。

溶解氧(Dissolved Oxygen)是指溶解于水中分子状态的氧,即水中的O2,用DO表示。

溶解氧是水生生物生存不可缺少的条件。

溶解氧的一个来源是水中溶解氧未饱和时,大气中的氧气向水体渗入;另一个来源是水中植物通过光合作用释放出的氧。

溶解氧随着温度、气压、盐分的变化而变化,一般说来,温度越高,溶解的盐分越大,水中的溶解氧越低;气压越高,水中的溶解氧越高。

溶解氧除了被通常水中硫化物、亚硝酸根、亚铁离子等还原性物质所消耗外,也被水中微生物的呼吸作用以及水中有机物质被好氧微生物的氧化分解所消耗。

所以说溶解氧是水体的资本,是水体自净能力的表示。

天然水中溶解氧近于饱和值(9ppm),藻类繁殖旺盛时,溶解氧含量下降。

水体受有机物及还原性物质污染可使溶解氧降低,对于水产养殖业来说,水体溶解氧对水中生物如鱼类的生存有着至关重要的影响,当溶解氧低于4mg/L时,就会引起鱼类窒息死亡,对于人类来说,健康的饮用水中溶解氧含量不得小于6mg/L。

当溶解氧(DO)消耗速率大于氧气向水体中溶入的速率时,溶解氧的含量可趋近于0,此时厌氧菌得以繁殖,使水体恶化,所以溶解氧大小能够反映出水体受到的污染,特别是有机物污染的程度,它是水体污染程度的重要指标,也是衡量水质的综合指标[2]。

因此,水体溶解氧含量的测量,对于环境监测以及水产养殖业的发展都具有重要意义。

1.水体溶解氧的各种检测方法及原理1.1 碘量法(GB7489-87)(Iodometric)碘量法(等效于国际标准ISO 5813-1983)是测定水中溶解氧的基准方法,使用化学检测方法,测量准确度高,是最早用于检测溶解氧的方法。

其原理是在水样中加入硫酸锰和碱性碘化钾,生成氢氧化锰沉淀。

此时氢氧化锰性质极不稳定,迅速与水中溶解氧化合生成锰酸锰:4MnSO4+8NaOH = 4Mn(OH)2↓+4Na2SO4(1) 2Mn(OH)2+O2 = 2H2MnO3↓(2) 2H2MnO3+2Mn(OH)3 = 2MnMnO3↓+4H2O(3) 加入浓硫酸使已化合的溶解氧(以MnMnO3的形式存在)与溶液中所加入的碘化钾发生反应而析出碘:4KI+2H2SO4 = 4HI+2K2SO4(4) 2MnMnO3+4H2SO4+HI = 4MnSO4+2I2+6H2O(5) 再以淀粉作指示剂,用硫代硫酸钠滴定释放出的碘,来计算溶解氧的含量[3],化学方程式为:2Na2S2O3+I2 = Na2S4O6+4NaI(6) 设V为Na2S2O3溶液的用量(mL),M为Na2S2O3的浓度(mol/L),a为滴定时所取水样体积(mL),DO可按下式计算[2]:DO(mol/L)=(7) 在没有干扰的情况下,此方法适用于各种溶解氧浓度大于0.2mg/L和小于氧的饱和度两倍(约20mg/L)的水样。

当水中可能含有亚硝酸盐、铁离子、游离氯时,可能会对测定产生干扰,此时应采用碘量法的修正法。

具体作法是在加硫酸锰和碱性碘化钾溶液固定水样的时候,加入NaN3溶液,或配成碱性碘化钾-叠氮化钠溶液加于水样中,Fe3+较高时,加入KF络合掩敝。

碘量法适用于水源水,地面水等清洁水。

碘量法是一种传统的溶解氧测量方法,测量准确度高且准确性好,其测量不确定度为0.19mg/L[4]。

但该法是一种纯化学检测方法,耗时长,程序繁琐,无法满足在线测量的要求[5]。

同时易氧化的有机物,如丹宁酸、腐植酸和木质素等会对测定产生干扰。

可氧化的硫的化合物,如硫化物硫脲,也如同易于消耗氧的呼吸系统那样产生干扰。

当含有这类物质时,宜采用电化学探头法[6],包括下面将要介绍的电流测定法以及电导测定法等。

1.2 电流测定法(Clark溶氧电极)当需要测量受污染的地面水和工业废水时必须用修正的碘量法或电流测定法。

电流测定法根据分子氧透过薄膜的扩散速率来测定水中溶解氧(DO)的含量。

溶氧电极的薄膜只能透过气体,透过气体中的氧气扩散到电解液中,立即在阴极(正极)上发生还原反应:O2+2H2O+4e à 4OH- (8) 在阳极(负极),如银-氯化银电极上发生氧化反应:4Ag+4Cl- à 4AgCl+4e (9) (8)式和(9)式产生的电流与氧气的浓度成正比,通过测定此电流就可以得到溶解氧(DO)的浓度。

电流测定法的测量速度比碘量法要快,操作简便,干扰少(不受水样色度、浊度及化学滴定法中干扰物质的影响),而且能够现场自动连续检测,但是由于它的透氧膜和电极比较容易老化,当水样中含藻类、硫化物、碳酸盐、油类等物质时,会使透氧膜堵塞或损坏,需要注意保护和及时更换,又由于它是依靠电极本身在氧的作用下发生氧化还原反应来测定氧浓度的特性,测定过程中需要消耗氧气,所以在测量过程中样品要不停地搅拌,一般速度要求至少为0.3m/s,且需要定期更换电解液,致使它的测量精度和响应时间都受到扩散因素的限制。

目前市场上的仪器大多都是属于Clark电极类型,每隔一段时间要活化,透氧膜也要经常更换。

张葭冬[7]对膜电极的精密度作了研究,用膜电极法测量溶解氧的标准偏差为0.41mg/L,变异系数5.37%,碘量法测量溶解氧的标准偏差为0.3mg/L,变异系数为4.81%。

同碘量法做对比实验时,每个样品测定值绝对误差小于0.21mg/L,相对误差不超过2.77%,两种方法相对误差在-2.52%~2.77%之间。

代表产品有美国YSI公司的系列便携式溶解氧测量仪,如YSI58型溶解氧测量仪,该仪器可高质量地完成实验室和野外环境的测试工件,操作简便携带方便。

测量范围为0~20mg/L,精度为±0.03mg/L。

1.3 荧光猝灭法荧光猝灭法的测定是基于氧分子对荧光物质的猝灭效应原理,根据试样溶液所发生的荧光的强度来测定试样溶液中荧光物质的含量。

通过利用光纤传感器来实现光信号的传输,由于光纤传感器具有体积小、重量轻、电绝缘性好、无电火花、安全、抗电磁干扰、灵敏度高、便于利用现有光通信技术组成遥测网络等优点,对传统的传感器能起到扩展、提高的作用,在很多情况下能完成传统的传感器很难甚至不能完成的任务,因此非常适合于荧光的传输与检测。

从80年代初起,人们已开始了探索应用于氧探头的荧光指示剂的工作。

早期曾采用四烷基氨基乙烯为化学发光剂,但由于其在应用中对氧气的响应在12小时内逐渐衰减而很快被淘汰。

芘、芘丁酸、氟蒽等是一类很好的氧指示剂〔8〕,如1984年Wolfbeis等报告了一种对氧气快速响应的荧光传感器,就是以芘丁酸为指示剂,固定于多孔玻璃。

这种传感器的优点是响应速度快(可低于50ms),并有很好的稳定性。

1989年,Philip等〔9〕将香豆素1、香豆素103、香豆素153三种荧光指示剂分别固定于有机高聚物XAD-4、XAD-8及硅胶三种支持基体中进行实验。

从灵敏度、发射强度和稳定性几个方面进行比较,得出了香豆素102固定于XAD-4支持基体中是作为一种灵敏可逆的光纤氧传感器的中介的最佳选择的结论。

使用这种荧光指示剂的光纤氧传感器的应用范围相当广泛。

后来过渡金属(Ru、Os、Re、Rh和Ir)的有机化合物以其特殊的性能受到关注,对光和热以及强酸强碱或有机溶剂等都非常稳定。

一般选用金属钌铬合物作为荧光指示剂即分子探针。

金属钌铬合物的荧光强度与氧分压存在一一对应的关系,激发态寿命长,不耗氧,自身的化学成份很稳定,在水中基本不溶解。

钌铬合物的基态至激发态的金属配体电荷转移(MLCT)过程中,激发态的性质与配体结构有密切关系,通常随着配体共轭体系的增大,荧光强度增强,荧光寿命增大,例如在荧光指示剂中把苯基插入到钌的配位空轨道上,从而增强络合物的刚性,在这样的刚性结构介质中,钌的荧光寿命延长,而氧分子与钌络合物分子之间的碰撞猝灭机率提高,从而可增强氧传感膜对氧的灵敏度。

目前的研究中,钌化合物的配体一般局限于2,2’-联吡啶、1,10-邻菲洛啉及其衍生物。

Brian[10]在实验中比较了在不同pH值介质条件下制得的Ru(bpy)2+3与Ru(ph2phen)2+3两种不同涂料的传感器性能,结果显示在pH =7时Ru(ph2phen)2+3显示了更高的灵敏度。

为延长敏感膜在水溶液中的工作寿命,较长时间保持其灵敏性,吕太平〔11〕等合成Ru(Ⅱ)与4,7-二苯基-1,10-邻菲洛啉的亲脂性衍生物生成的新的荧光试剂配合物Ru(I)[4,7-双(4’-丙苯基)-1,10-邻菲洛啉]2(ClO4)2和Ru(Ⅱ)[4,7-双(4’-庚苯基)-1,10-邻菲洛啉]3(ClO4)2。

Kerry[12]等合成Ru(Ⅱ)[5-丙烯酰胺基-1,10-邻菲洛啉]3(ClO4)2。

实验均发现随着配体碳链的增长,荧光试剂的憎水性增大,流失现象减少,可延长膜的使用寿命。

Ignacy[13]等研究还发现极化后的[Ru(dpp)3Cl2]氧传感膜对氧具有更高的灵敏度。

吸附在硅胶60上的钌(Ⅱ)络合物在蓝光的激发下发出既强烈又稳定的粉红色荧光,该荧光可以有效地被分子氧淬灭。

其检测原理是根据Stern-Vlomer 的猝灭方程[14]:F0/F=1+Ksv[Q],其中F0为无氧水的荧光强度,F为待检测水样的荧光强度,Ksv为方程常数,[Q]为溶解氧浓度,根据实际测得的荧光强度F0、F及已知的Ksv,可计算出溶解氧的浓度[Q]。

实验证明这种检测方法克服了碘量法和电流测定法的不足,具有很好的光化学稳定性、重现性,无延迟,精度高,寿命长,可对水中溶解氧进行实时在线监测。

其测量范围一般为0~20mg/L,精度一般≤1%,响应时间≤60s。

1.4 其他检测方法电导测定法:用导电的金属铊或其他化合物与水中溶解氧(DO)反应生成能导电的铊离子。

通过测定水样中电导率的增量,就能求得溶解氧(DO)的浓度。

实验表明,每增加0.035S/cm 的电导率相当于1mg/L的溶解氧(DO)。

此方法是测定溶解氧(DO)最灵敏的方法之一,可连续监测。

阳极溶出伏安法:同样利用金属铊与溶解氧(DO)定量反应生成亚铊离子:4Tl+O2+2H2Oà4Tl++4OH- (10) 然后用溶出法测定Tl+离子的浓度,从而间接求得溶解氧(DO)的浓度。

相关文档
最新文档