离散数学第7章

合集下载

离散数学课件

离散数学课件

1 1 1 c a c b b d a c c b
0 ¬ 1
1 0
《离散数学》
page: 4
7.1 运算 7.1.2 运算 3)几个术语 ②运算封闭性
y z
y
z=x*y
x
x
2013年10月25日星期五
作为运算(函数)z自然应该在A中,但当 x,y取自A的子集B时,Z是否也在B中?
《离散数学》
page: 5
o a b zl c zl d zl o a b c d zr zr zr zr zr
zl zl
如,R上的普通除法中的0,普通乘法中的0,集合交, 并运算中的空集与全集 page: 19
2013年10月25日星期五
《离散数学》
7.1 运算 7.1.3 运算的特殊元素,逆元,消去律 ③零元 设o为S上的二元运算,若存在元素,∀x↔S,有 zlox=zl (xozr=zr) , 则称 zl(zr)为左(右)零元。 若运算o既有左零元zl,又有右零元zr,则其左右零元 必相等且惟一,此时称为运算o的零元z。
2013年10月25日星期五
《离散数学》
page: 10
7.1 运算 7.1.2 运算的性质 ③分配律 设о和*为S上的二元运算,若有∀x,y,z↔S,都有: x*(yоz)=(x*y)о(x*z) (左分配) (yоz)*x=(y*x)о(z*x) (右分配) 则称运算*对о是可分配的(*对о满足分配律) 。 如,R上普通乘对加,减法满足分配律,但加,减法对乘 除法不满足分配律。
2013年10月25日星期五
《离散数学》
page: 7
7.1 运算 7.1.2 运算的性质 ①交换律 设о为S上的二元运算,若有∀x,y↔S,都有 xoy=yox, 则称运算о是可交换的(运算满足交换律)。 如,R上普通的加,乘法满足交换律,而减,除法不 满足交换律。

离散数学7-树

离散数学7-树

(b)
(a)
V5
2
1
V7
8
9
V2
V4
2
3
V8
5
V1
V1
V4
V5
1
3
V7
V6
8
V4
2
V8
5
6
V1
1
V5
6
V7
V6
8
3
V8
5
6
V7
9
V3
(e)
V3
(f)
(g)
22
V2
V3
(h)
五.应用举例——求最小生成树
例3 用管梅谷算法求下图的最小生成树。
23
五.应用举例——求最小生成树
例3 用管梅谷算法求下图的最小生成树。
成圈。
首先证明T无简单回路。对n作归纳证明。
(i) n=1时,m=n-1=0,显然无简单回路;
(ii)假设顶点数为n-1时无简单回路,现考察顶点数是n的情况:此时至少有一
个顶点v其次数d(v)=1。因为若n个顶点的次数都大于等于2,则不少于n条边,但这与
m=n-1矛盾。
删去v及其关联边得到新图T’,根据归纳假设T’无简单回路,再加回v及其关联
边又得到图T,则T也无简单回路。
再由图的连通性可知,加入任何一边后就会形成圈,且只有一个圈,否则原图
中会含圈。
9
二. 基本定理——证明
证明(4):(3)(4),即证一个无圈图若加入任一边就形成圈,
则该图连通,且其任何一边都是桥。
若图不连通,则存在两个顶点vi和vj,在vi和vj之间没有路,若
加边(vi,vj)不会产生简单回路,但这与假设矛盾。由于T无简单回

离散数学第七章图论习题课ppt课件

离散数学第七章图论习题课ppt课件
有环和平行边,u至多与其余n-1个结点中每一个 有一条边相连接,即deg(u)≤n-1,因此,⊿ (G) =maxdeg(u)≤n-1。
24
设G是一个n阶无向简单图,n是大于等于3的 奇数。证明图G与它的补图中度数为奇数的结 点个数相等。
证明: 因为G是n阶无向简单图,且n是大于等于3的奇数,
故无向图的结点数为奇数,则所对应的n阶完全图 中每个结点的度数为n-1即为偶数, 利用奇数+奇数=偶数,偶数+偶数=偶数,所以, 在G中结点度数为奇数的结点,在其补图中的度 数也应为奇数,故G和其补图的奇数结点个数也 是相同的。
25
P286 1、在无向图G中,从结点u到结点v有一条长度为 偶数的通路,从结点u到结点v又有一条长度为奇 数的通路,则在G中必有一条长度为奇数的回路。
(4) D中长度为4的回路有多少条? 答: 长度为4的回路为11条。
(5) D中长度4的通路有多少条?其中有几条是回路? 答:长度4的通路88条,其中22条为回路。
(6) 写出D的可达矩阵。 44的全1矩阵。
17
简单无向图 G 必有2结点同度数。
证: 令 G={v1,…,vn},
(2) n阶非连通的简单图的边数最多可为n-1阶连通图 加上一个孤立点,所以边数为(n-1)(n-2)/2,最少为0。
20
一个图如果同构于它的补图,则该图称为自补图。
1)一个图是自补图,其对应的完全图的边数必为偶数; 2)证明:若n阶无向简单图是自补图,则n=4k或n=4k+1
(k为正整数)。 解:
平面图的对偶图
无向树及其性质 根树及其应用
地图着色与平 面图着色
3
4
一、无向图与有向图

离散数学第七章群与环

离散数学第七章群与环
然而,在给出的运算下该集合是一个幺半群。 例7.16 在一般意义下的乘法运算下,所有非零实数组成的集合构成一个群。 a≠0的逆是1/a。
7.2 群
定义 7.9 若群G是有穷集,则称G是有限群,否则称为无限群。群G的基数 称为群G的阶。含有单位元的群称为平凡群。
7.2 群
例7.17 <Z,+>是无穷群,<S,⊙>,其中S={a,b,c},⊙的运算表如表7.3 可以验证,<S,⊙>是群,a为幺元,b和c互为逆元;又因为|G|=3,故<S, ⊙>是3阶群。 ⊙ a b c a a b c b b c a c c a b
半群 群 子群与群的陪集分解 循环群与置换群 环与域
7.3.1 子群的概念
子群就是群的子代数。 定义 7.13 给定群G,H是G的子集,使得 (1)G的单位元eH , (2)如果a和bH ,那么abH , (3)如果aH ,那么 H。
则称H为G的一个子群,(1)和(3)说明H是G的子幺半群。如果
PART 01 PART 02 PART 03 PART 04 PART 05
半群 群 子群与群的陪集分解 循环群与置换群 环与域
7.4 循环群与置换群
定义7.15 设<G,>是群,若a∈G,对x∈G,k∈Z,有x= ,则称<G, >是循环群,记作G=<a>,称a是群<G,>的生成元。
例 7.11 给定<Z,+>和<Q,*>,其中Z和Q分别为整数集和有理数集,+和*
分别是一般意义下的加法和乘法。可知<Z,+>是群,0是幺元,每个元素
i∈Z的逆元为-1;<Q,*>不是群,1是幺元,0无逆元。但<Q-{0},*>是群。

第7章 图论 [离散数学离散数学(第四版)清华出版社]

第7章 图论 [离散数学离散数学(第四版)清华出版社]

6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
21
例:
a j i h c g d
1(a)
无 向 图
b
f
e

2(b)
7(j) 8(g) 9(d) 10(i)
6(e)
3(c) 4(h)
5(f)
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
22
例:
1(b)
有向图
第四部分:图论(授课教师:向胜军)
6
[定义] 相邻和关联
在无向图G中,若e=(a, b)∈E,则称a与 b彼此相邻(adjacent),或边e关联 (incident) 或联结(connect) a, b。a, b称为边e的端点或 结束顶点(endpoint)。 在有向图D中,若e=<a, b>∈E,即箭头 由a到b,称a邻接到b,或a关联或联结b。a 称为e的始点(initial vertex),b称为e的终点 (terminal/end vertex)。
证明思路:将图中顶点的度分类,再利用定理1。
6/27/2013 6:02 PM 第四部分:图论(授课教师:向胜军) 9
[定理3] 设有向图D=<V, E>有n个顶点,m 条边,则G中所有顶点的入度之和等于所 有顶点的出度之和,也等于m。
即:
d ( v i ) d ( v i ) m.
i 1 i 1
n
n
证明思路:利用数学归纳法。
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
10
一些特殊的简单图:
(1) 无向完全图Kn(Complete Graphs)

离散数学(第二版)第7章格和布尔代数和

离散数学(第二版)第7章格和布尔代数和
第七章 格和布尔代数
离散数学(第二版)第7章格和布尔代 数和
第七章 格和布尔代数
7.1 格 与 子 格
本章将讨论另外两种代数系统——格与布尔代数, 它 们与群、 环、 域的基本不同之处是: 格与布尔代数的基集 都是一个偏序集。 这一序关系的建立及其与代数运算之间 的关系是介绍的要点。 格是具有两个二元运算的代数系统, 它是一个特殊的偏序集, 而布尔代数则是一个 特殊的格。
于是, 我们有下列对偶原理。
第七章 格和布尔代数
定理7.1.2 如果命题P在任意格〈L, 〉上成立, 则
将L中符号∨, ∧,
∧, ∨,
P*在任意格〈L, 〉上也成立, 这里P*称为P的对偶式。
在上述对偶原理中, “如果命题P在任意格〈L, 〉
上成立”的含义是指当命题P中的变量取值于L中, 且上确
界运算为∨, 下确界运算为∧, 则P对于它们也成立。
第七章 格和布尔代数
再设a=a∧b, 则a∨b=(a∧b)∨b=b(由吸收律), 即
a∨b=b。
最后, 设b=a∨b, 则由a a∨b可得a b。
因此, (1)中3个命题的等价性得证。
(2) 因为 a a∨b, a a∨c, 故a (a∨b)∧(a∨c)。 又
因为
b∧c b a∨b b∧c c a∨c
条件是b a, 则〈L, 也是偏序集。 我们把偏序集〈L, 和〈L, 称为是相互对偶的。 并且它们所对应的哈
斯图是互为颠倒的。 关于格我们有同样的性质。 定理7.1.1 若〈L, 是一个格, 则〈L, 也是一
个格, 且它的并、 交运算∨r, ∧r对任意a, b∈L满足 a∨rb=a∧b,a∧rb=a∨b
证明 先证幂等性成立。 由吸收律知 a∧a=a∧(a∨(a∧b))=a a∨a=a∨(a∧(a∨b))=a

离散数学第七章二元关系

离散数学第七章二元关系

19
证明
(2) 任取<x,y>, <x,y>∈(FG)1 <y,x>∈FG t (<y,t>∈F∧<t,x>∈G) t (<x,t>∈G1∧<t,y>∈F1) <x,y>∈G1 F1 所以 (F G)1 = G1 F1
20
关系运算的性质
定理7.3 设R为A上的关系, 则 RIA= IAR=R <x,y> <x,y>∈RIA t (<x,t>∈R∧<t,y>∈IA) t (<x,t>∈R∧t=y∧y∈A) <x,y>∈R
例如 A = P(B) = {,{a},{b},{a,b}}, 则 A上的包含关系是 R = {<,>,<,{a}>,<,{b}>,<,{a,b}>,<{a},{a}>, <{a},{a,b}>,<{b},{b}>,<{b},{a,b}>,<{a,b},{a,b}>} 类似的还可以定义: 大于等于关系, 小于关系, 大于关系, 真包含关系等.
注意: 关系矩阵适合表示从A到B的关系或A上的关系(A,B为有 穷集) 关系图适合表示有穷集A上的关系
11
实例
例4 A={1,2,3,4}, R={<1,1>,<1,2>,<2,3>,<2,4>,<4,2>}, R的关系矩阵MR和关系图GR如下:
1 1 0 0 0 0 1 1 MR 0 0 0 0 0 1 0 0
10
关系的表示

离散数学第7章群、环和域

离散数学第7章群、环和域
所以,(x∗y)∗z=x∗(y∗z),故<R,*>是一个半群。 7.1.2 独异点 定义7.1.3 设G,*是半群,如果运算*的单位元eG,
则称半群G,*为含幺半群或独异点。
第7章 群、环和域
若G,*为独异点,且*是可交换的,则称G,*为可换 的独异点。
例如,设A是任一集合,P (A)是A的幂集合。集合并运算 ∪在P (A)上是封闭的,并运算∪的单位元P (A),所以半 群<P (A),∪>是独异点;交运算∩在P (A)上也是封闭的,交运 算∩的单位元AP (A),所以半群<P (A),∩>也是独异点。显
第7章 群、环和域
⑴ (a–1)–1=a ⑵ a*b有逆元,且(a*b)–1=b–1*a–1 证明:⑴ 因a*a–1=a–1*a =e,故(a–1)–1=a ⑵ 因(a*b)*(b–1* a–1)=(a*(b*b–1)*a–1
=a*e*a–1=a*a–1=e 又
(b–1* a–1)*(a*b)=(b–1*a–1)*(a*b) =b–1*(a–1*a)*b=b–1*e*b=b–1*b=e
第7章 群、环和域
返回总目录
第7章 群、环和域
第7章 群、环和域
7.1半群和独异点
7.1.1广群和半群 代数系统<S,*>又称为广群。 定义7.1.1 设<S,*>是代数系统,*是S上的二元运算,如 果*满足结合律,则称代数系统<S,*>为半群。
例如,代数系统<I,+>、R,·、<P(a),∪>、<P(a),∩>、
则称该群为阿贝尔(Abel)群,或称可交换群。 整数加法群I,+中的加法运算是可交换的,所以,整
数加法群是阿贝尔群,群R-0,·中的乘法运算也是可交 换的,所以,R-0,·也是阿贝尔群。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设 V v1,v1,L ,vn为图 G 的顶点集,称 d(v1), d(v2),L , d(vn) 为G 的度数序列。
2、握手定理。
定理1: 设图 G V , E 为无向图或有向图,
V v1,v1,L ,vn,E m ( m为边数),
n

d (vi ) 2m
i 1
n
2、握手定理 d (vi ) 2m i 1
E (v1,v2),(v2,v2),(v2, v3),(v1, v3),(v1, v3),(v1, v4)
图形表示如右:
e2
v1
v5
e1
e6
v2 e4 e5
v4
e3
v3
例1、(2) 有向图 D V , E ,V v1,v2,v3,v4,v5
E v1, v2 , v3, v2 , v3, v2 , v3, v4 , v2, v4 , v4, v5 , v5, v4 , v5, v5
对有向图相应地还有 (D) , (D) ,
(G) , (G) 。
如例1的(2)中,
d (v2 ) d (v2 ) d (v2 )
13 4 d (v1) d (v1) d (v1)
10 1
d (v5 ) d (v5 ) d (v5 ) 2 2 4
(D) 4, (D) 1 。
如例1的(1)中,
v1
v5
e1与 v1, v2 关联的次数均为1, e1
e6
e2 与 v2 关联的次数为2, e2 v2 e4 e5
v4
边 e1, e4 , e5 , e6都是相邻的, v5 为孤立点,v4 为悬挂点,
e3 v3
e6 为悬挂边,e2 为环,e4 , e5 为平行边,重数2,
G 为多重图。
推论:任何图中,度为奇数的顶点个数为偶数。
定理2: 设D V , E 为有向图,
V v1,v1,L ,vn ,E m,则
n
n
d (vi ) d (vi ) m 。
i 1
i 1
例2、(1) (3,3, 2,3) ,(5, 2,3,1, 4)能成为图的度数
序列吗?为什么?
(2) 已知图G 中有10条边,4个3度顶点,其余顶 点的度数均小于3,问 G中至少有多少个顶点?
为什么?
三、子图,补图。
1、子图定义: 设G V , E ,G' V ', E ' 是两个图,若V ' V ,且 E ' E ,则称 G ' 是 G 的子图,G是 G ' 的母图,记作 G ' G 。 真子图—— G ' G且 G ' G (即V ' V 或
E ' E )。 生成子图—— G ' G 且 V ' V 。
孤立点——无边关联的点。
环——一条边关联的两个顶点重合,称此边 为环 (即两顶点重合的边)。
3、相关概念。 (2) 悬挂点——只有一条边与其关联的点,所
对应的边叫悬挂边。 (3) 平行边——关联于同一对顶点的若干条边
称为平行边。平行边的条数称为重数。 多重图——含有平行边的图。 简单图——不含平行边和环的图。
3、相关概念。
(2)
0 vi与ek不关联
无向图关联的次数 1 vi与ek关联1次
2 vi与ek关联2次(ek为环)
1 vi为ek的始点
有向图关联的次数 0 vi与ek不关联
(无环)
1 vi为ek的终点
3、相关概念。 (2)
相邻 点边的的相相邻邻————两两点边间有有公边共,端称点此,两称点此相两邻边相邻
图无 有向 向图 图GD
V,E V,E
V 记为V (G), E记为E(G) V 记为V (D), E记为E(D)
2、图的表示法。 有向图,无向图的顶点都用小圆圈表示。
无向边 (a,b) ——连接顶点 a, b 的线段。
有向边 a,b ——以 a 为始点,以 b 为终点的有向线段。
例1、(1) 无向图G V , E ,V v1,v2,v3,v4,v5
图论简介
图论是一个古老的数学分支,它起源于游戏 难题的研究。图论的内容十分丰富,应用得相当 广泛,许多学科,诸如运筹学、信息论、控制论、 网络理论、博弈论、化学、生物学、物理学、社 会科学、语言学、计算机科学等,都以图作为工 具来解决实际问题和理论问题。随着计算机科学 的发展,图论在以上各学科中的作用越来越大, 同时图论本身也得到了充分的发展。本课程在第 七,八,九各章中介绍与计算机科学关系密切的 图论的内容。
补图的概念, 5、图的同构的定义。
一、图的概念。 1、定义。
无序积 A& B (a,b) a A b B
无向图 G V , E E V &V , E 中元素为无向边,简称边。
有向图 D V , E E V V , E 中元素为有向边,简称边。
一、图的概念。
1、定义。
无序积 A& B (a,b) a A b B
4、完全图
设G V , E 为 n 阶无向简单图,若G 中每个 顶点都与其余 n 1个顶点相邻,则称G为n 阶
无向完全图,记作 Kn 。
若有向图D 的任一对顶点 u, v(u v),既有有向 边 u, v 又有有向边 v,u ,则称D 为有向完全图。
例如:
K4
K5
二、顶点的度数,握手定理。 1、顶点的度数 (简称度)。
无向图G V , E ,vi 的度数记 d (vi ),指与vi
相关联的边的条数。
有向图G V , E ,vi 的度数
d (vi ) d (vi ) d (vi )
二、顶点的度数,握手定理。 1、顶点的度数 (简称度)。
最大度 (G) maxd(v) v V 最小度 (G) mind(v) v V
图形表示如右:
3、相关概念。
(1) 有限图—— V , E都是有限集的图。 n 阶图—— V n 的图。
零图—— E 的图。特别,若又有 V 1 ,
称平凡图。
(2) 关联 (边与点关系)——设边 ek (vi , v j ) (或 vi , v j ),则称 ek 与 vi (或 v j)关联。
第七章 图的基本概念
第一节 无向图及有向图
内容:有向图,无向图的基本概念。 重点:1、有向图,无向图的定义,
2、图中顶点,边,关联与相邻,顶点 度数等基本概念,
3、各顶点度数与边数的关系
n
d (有向图,无向图的基本概念。 重点:4、简单图,完全图,子图,
相关文档
最新文档