二次根式与勾股定理测试题(卷)(附答案)

合集下载

2022-2023学年人教版八年级数学下册阶段性(二次根式+勾股定理)综合练习题(附答案)

2022-2023学年人教版八年级数学下册阶段性(二次根式+勾股定理)综合练习题(附答案)

2022-2023学年人教版八年级数学下册阶段性(二次根式+勾股定理)综合练习题(附答案)一、选择题(共36分)1.下列式子不是二次根式的是()A.B.C.D.2.在下列长度的各组线段中,能构成直角三角形的是()A.3,5,9B.4,6,8C.1,,2D.3.的化简结果为()A.25B.5C.﹣5D.﹣254.下列根式中,不是最简二次根式的是()A.B.C.D.5.下列运算正确的是()A.B.C.D.6.下列二次根式中,与可以合并的是()A.B.C.D.7.计算3﹣2的结果是()A.B.2C.3D.68.如图所示:数轴上点A所表示的数为a,则a的值是()A.+1B.﹣+1C.D.﹣19.如图,一棵大树被大风刮断后,折断处离地面8m,树的顶端离树根6m,则这棵树在折断之前的高度是()A.18m B.10m C.14m D.24m10.把中根号外面的因式移到根号内的结果是()A.B.C.D.11.如图,矩形ABCD的对角线AC=10,边BC=8,则图中五个小矩形的周长之和为()A.14B.16C.20D.2812.已知,则的值为()A.B.±2C.±D.二、填空题(共18分)。

13.使有意义的x的取值范围是.14.已知Rt△ABC两直角边长为5,12,则斜边长为.15.计算:5÷×所得的结果是.16.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为9cm,则正方形A,B,C,D的面积之和为cm2.17.若y=,则x+y=.18.在直线l上依次摆放着七个正方形(如图),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=.三、解答题(共46分)19.计算:(1),(2).20.如图,已知在△ABC中,CD⊥AB于D,AC=12,BC=10,DB=6.(1)求CD的长.(2)求AB的长.21.在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)22.如图,在△ABD中,∠A是直角,AB=3,AD=4,BC=13,DC=12,求四边形ABCD 的面积.23.已知a、b、c满足.(1)求a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,请求出三角形的周长,若不能,请说明理由.24.小明在解决问题:已知a=,求2a2﹣8a+1的值,他是这样分析与解答的:∵a===2﹣,∴a﹣2=﹣,∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1.∴2a2﹣8a+1=2(a2﹣4a)+1=2(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:若a=,求4a2﹣8a﹣3的值.参考答案一、选择题(共36分)1.解:A、是二次根式,故本选项不符合题意;B、是二次根式,故本选项不符合题意;C、是二次根式,故本选项不符合题意;D、不是根式,故本选项符合题意.故选:D.2.解:A、∵3+5=8<9,∴不能组成三角形,故A不符合题意;B、∵42+62=52,82=64,∴42+62≠82,∴不能组成直角三角形,故B不符合题意;C、∵12+()2=4,22=4,∴12+()2=22,∴能组成直角三角形,故C符合题意;D、∵()2+()2=8,()2=6,∴()2+()2≠()2,∴不能组成直角三角形,故D不符合题意;故选:C.3.解:=5.故选:B.4.解:因为==2,因此不是最简二次根式.故选:B.5.解:A、与不能合并,所以A选项错误;B、原式=6×2=12,所以B选项错误;C、原式==2,所以C选项准确;D、原式=2,所以D选项错误.故选:C.6.解:A、==2,与不能合并,本选项不符合题意;B、=,与可以合并,本选项符合题意;C、==3,与不能合并,本选项不符合题意;D、==,与不能合并,本选项不符合题意;故选:B.7.解:原式=(3﹣2)=.故选:A.8.解:图中直角三角形的两直角边为1,2,∴斜边长为=,那么﹣1和A之间的距离为,那么a的值是:﹣1,故选:D.9.解:如图:∵BC=8米,AC=6米,∵∠C=90°,∴AB2=AC2+BC2,∴AB=10米,∴这棵树在折断之前的高度是18米.故选:A.10.解:根据被开方数非负数得,﹣>0,解得a<0,﹣a==.故选:A.11.解:∵矩形ABCD的对角线AC=10,BC=8,∴AB===6,由平移的性质可知:五个小长方形的周长和=2×(AB+BC)=2×14=28.故选:D.12.解:∵,∴(x+)2=7∴x2+=5(x﹣)2=x2+﹣2=5﹣2=3,x﹣=±.故选:C.二、填空题(共18分)。

(完整版)二次根式勾股定理四边形与一次函数综合测试题(一)8.docx

(完整版)二次根式勾股定理四边形与一次函数综合测试题(一)8.docx

二次根式勾股定理四边形与一次函数综合测试题(一)一、选择题: ( 每题 3 分 , 共 36 分 )1、使代数式 有意义的 x 的取值范围是( )A .x ≥0B.C.x ≥0且D.一切实数2、下列等式一定成立的是()A . B.C .D .=93、若 与 |x ﹣ y ﹣3| 互为相反数,则 x+y 的值为( )A . 3B. 9C. 12 D. 274、若三角形三个内角的度数比为 1:2:3 ,则此三角形的三个内角的对边长度的比为()A.1:2:3B.3:2:1C.1: 3 : 2D.1:4:922( )5、若 △ ABC 的三边长分别为 m -1,2m, m +1(m>1) ,那么A. △ ABC 为直角三角形,且斜边长为 2B. △ ABC 为直角三角形,且斜边长为2mm -1C. △ ABC 为直角三角形,且斜边长为 2D. △ABC 不是直角三角形。

m +1 6、已知:如图在 △ABC ,△ ADE 中, ∠ BAC= ∠ DAE=90 °, AB=AC ,AD=AE ,点 C , D , E 三点在同一条直线上,连接 BD ,BE .以下四个结论: ① BD=CE ; ② BD ⊥ CE ; ③ ∠ACE+ ∠DBC=45 °;④ BE 2=2( AD 2+AB 2),其中结论正确的个数是( ) A . 1 B . 2 C . 3 D .4 7、菱形、矩形、正方形都具有的性质是( ) A .对角线相等且互相平分 ;B .对角线相等且互相垂直平分C .对角线互相平分D .四条边相等,四个角相等8、如图, E,F,G,H 分别是四边形 ABCD 的四边中点,要使四边形 EFGH 是菱形,四边形 ABCD 应具备的条件是( )A. 只有一组对边平行B. 对角线相等C. 对角线互相平分D. 对角线互相垂直。

9、如图,在 △ ABC 中, D,E,F 分别是三边中点,下列说法中,不正确的是()1B. 图中有三个平行四边形A.DE ∥ AC ,且 DE = AC21 C.若 S △DEF = 1 ,则 S △ ABC = 4 D. 若 △ DEF 的周长为 L ,则 △ ABC 的周长为L410、下列函数中, y 随 x 的增大而减少的函数是( )A . y=2x+8B . y= ﹣ 2+4xC .y= ﹣ 2x+8D . y=4x11、一条直线 y=kx+b ,其中 k+b= ﹣ 5、 kb=6 ,那么该直线经过()A .第二、四象限B .第一、二、三象限C .第一、三象限D .第二、三、四象限12、把直线 y= ﹣ x+3 向上平移 m 个单位后, 与直线 y=2x+4 的交点在第一象限, 则 m 的取值范围是 ()A . 1<m < 7B . 3< m < 4C .m > 1D . m < 4AAHDEGDFBFCBEC6 题图 8题图9题图二、填空题 : ( 每题 3 分 , 共 15 分 ) 13、计算:=_________ 。

新人教版2013-2014学年度八年级下期半期考试题(二次根式勾股定理平行四边形)(经典较难)及参考答案

新人教版2013-2014学年度八年级下期半期考试题(二次根式勾股定理平行四边形)(经典较难)及参考答案

2013-2014学年度2015级八年级下期半期考试数 学 试 题考试时间:120分钟 试卷满分:150分(试题范围:二次根式、勾股定理、平行四边形)一、选择题(共12小题,每小题4分,共48分)下面每小题给出的四个选项中, 有且只有一个是正确的, 请把正确选项前的代号填在答卷指定位置.1、 下列计算正确的是( ) (A)235+=(B )236=·(C )84=(D )2(3)3-=- 2、在△ABC 中,AB=6,AC=8,BC=10,则△ABC 中BC 边上的高为( )A.6B. 8C.10D.4.83、下列根式中,是最简二次根式的是( )A. 0.2bB. 1212a b -C. 22x y -D. 25ab4、式子错误!未找到引用源。

错误!有意义的x 的取值范围是( )A.x ≥- 12错误!未找到引用源。

且x ≠1 B.x ≠1 C.x ≥-12D.x>-12 且x ≠1 5、四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A. AB ∥DC ,AD ∥BCB. AB=DC ,AD=BCC. AO=CO ,BO=DOD. AB ∥DC ,AD=BC6、如图,在直角三角形ABC 中,∠C=90°,AB=10,AC=8,点E 、F 分别为AC 和 AB 的中点,则EF=( )A.3B.4C.5D.67、已知xy >0,化简二次根式x - y x 2 的正确结果是( )8、如图,在□ ABCD 中,分别以AB 、AD 为边向外作等边△ABE 、△ADF, 延长CB 交AE 于点G(点G 在点A 、E 之间),连接CE 、CF 、EF,则以下四个结论一定正确的是( )①△CDF ≌△EBC;②∠CDF=∠EAF;③△ECF 是等边三角形;④CG ⊥AE.A.只有①②B.只有①②③C.只有③④D.①②③④9、下列命题是真命题的是( )A.实数a b ,在数轴上的对应点如图所示,化简2244a ab b a b -+++的结果为3b -. A.y B.-y C.-y D.--ya b 0B.已知y=2x -+2x -+5,则 x y =- 25. C.若2121m m m --+=,则m 的取值范围是1m ≥D.平行四边形既是中心对称图形,又是轴对称图形10、如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为( )A .2 3B .4 3C .4D .811、如图,正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于G ,下列结论:①BE=DF ,②∠DAF=15°,③AC 垂直平分EF ,④BE+DF=EF ,⑤S △CEF=2S △ABE .其中正确结论有( )个.A. 2B. 3C. 4D.512、矩形ABCD 中,AB=4,AD=3,P ,Q是对角线BD 上不重合的两点,点P 关于直线AD ,AB 的对称点分别是点E 、F ,点Q关于直线BC 、CD 的对称点分别是点G 、H .若由点E 、F 、G 、H 构成的四边形恰好为菱形,则PQ 的长为 .二、填空题(共6小题,每小题4分,共24分)下列不需要写出解答过程,请将结果直接填写在答卷指定的位置.13、 直接填写计算结果:(1)2818+-=_____;(2)133+=_____.14、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上异于A 和 D 的任意一点,且PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF= .15、如图把一张长方形纸片ABCD 折叠起来,使其对角顶点A 、C 重合,•若其长BC为a ,宽AB 为b ,则折叠后不重合部分的面积是 。

2023-2024学年北京市房山区八年级(上)期末数学试卷(含解析)

2023-2024学年北京市房山区八年级(上)期末数学试卷(含解析)

2023-2024学年北京市房山区八年级(上)期末数学试卷一、选择题:本题共8小题,每小题2分,共16分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列式子为最简二次根式的是( )A. 3B. 4C. 8D. 122.下面的四个图案分别是“向左转弯”、“直行”、“直行和向右转弯”和“环岛行驶”的交通标志,其中可以看作是轴对称图形的是( )A. B. C. D.3.如果分式2x−3x+2的值为0,那么x的值是( )A. x=2B. x=−2C. x=23D. x=324.如图,数字代表所在正方形的面积,则A所代表的正方形的面积为( )A. 5B. 25C. 27D. 525.下列事件中,属于随机事件的是( )A. 用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形B. 用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形C. 如果一个三角形有两个角相等,那么两个角所对的边也相等D. 有两组对应边和一组对应角分别相等的两个三角形全等6.如图,把两根钢条的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),卡钳交叉点O为AA′,BB′的中点,只要量出A′B′的长度,就可以知道该零件内径AB的长度.依据是( )A. 两边和它们的夹角分别相等的两个三角形全等B. 两角和它们的夹边分别相等的两个三角形全等C. 三边分别相等的两个三角形全等D. 两点之间线段最短7.如图,有两个长度相同的滑梯靠在一面墙的两侧,已知左边滑梯的高度AC与右边滑梯水平方向的宽度DF相等,则这两个滑梯与墙面的夹角∠ACB与∠DEF的度数和为( )A. 60°B. 75°C. 90°D. 120°8.如图,在等边△ABC外作射线AD,使得AD和AC在直线AB的两侧,∠BAD=α(0°<α<180°),点B关于直线AD的对称点为P,连接PB,PC.则∠BPC的度数是( )C. 30°D. 30°+αA. 60°−αB. 45°−α2二、填空题:本题共8小题,每小题2分,共16分。

2018-2019学年初中数学二次根式、勾股定理、平行四边形一次函数和数据的分析中考模拟考试测试题

2018-2019学年初中数学二次根式、勾股定理、平行四边形一次函数和数据的分析中考模拟考试测试题
①求y关于n的函数关系式;
②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?
(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.
24.某初中在“读书共享月”活动中.学生都从家中带了图书到学校给大家共享阅读.经过抽样调查得知,初一人均带了2册;初二人均带了3.5册:初三人均带了2.5册.已知各年级学生人数的扇形统计图如图所示,其中初三共有210名学生.请根据以上信息解答下列问题:
(1)扇形统计图中,初三年级学生数所对应的圆心角为°;
28.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于 BF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.
(1)根据条件与作图信息知四边形ABEF是
A.非特殊的平行四边形
B.矩形
C.菱形
D.正方形
(2)设AE与BF相交于点O,四边形ABEF的周长为16,BF=4,求AE的长和∠C的度数.
22.随着”互联网+“时代的到来,利用网络呼叫专车的打车方式深受大众欢迎.据了解,在非高峰期时,某种专车所收取的费用y(元)与行驶里程x(km)的函数图象如图所示.请根据图象,回答下列问题:
(1)当x≥5时,求y与x之间的函数关系式;
(2)若王女士有一次在非高峰期乘坐这种专车外出,共付费47元,求王女士乘坐这种专车的行驶里程.
【详解】
∵EF∥BC,GH∥AB,
∴四边形HPFD、BEPG、AEPH、CFPG为平行四边形,
∴S△PEB=S△BGP,

人教版八年级下《二次根式》与《勾股定理》综合测试A卷(含答案)

人教版八年级下《二次根式》与《勾股定理》综合测试A卷(含答案)

《二次根式》和《勾股定理》综合测试A一、选择(每小题3分,共36分)1.使有意义的x的取值范围是()A. x≥1B. x≥0C. x>1D. x≠12.下列二次根式中能与合并的二次根式是()A. B. C. D.3.以下列各组数为边长的三角形是直角三角形的是()A. 1、2、3B. 9、12、15C. 1、1、D. 6、7、84.如果,那么x取值范围是()A. x≤2B. x<2C. x≥2D. x>25.若是正整数,最小的整数n是()A. 6B. 3C. 48D. 26.下列运算和化简,不正确的是()A. =0.5B.C.D.7.计算﹣的结果正确的是()A. B. C. D. 08.如图,已知两正方形的面积分别是25和169,则字母B所代表的正方形的面积是()A. 12B. 13C. 144D. 1949.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m,若公园到超市的距离为500m,则公园在医院的()A. 北偏东75°的方向上B. 北偏东65°的方向上C. 北偏东55°的方向上D. 无法确定10.设,则代数式a2+2a﹣10的值为()A. B. C. ﹣3 D. ﹣411.如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A. 8米B. 10米C. 12米D. 14米12.如图:一个长、宽、高分别为4cm、3cm、12cm的长方体盒子能容下的最长木棒长为()A. 11cmB. 12cmC. 13cmD. 14cm二、填空(每小题3分,共18分)13.要使式子在实数范围内有意义,则x的取值范围是.14.化简:= .15.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.16.计算:(+)2﹣= .17.有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为.18.如图所示,在高为3m,斜坡长为5m的楼梯表面铺地毯,至少需要地毯米.三、解答(8个小题,共66分)19.(6分)计算:(1);(2)﹣6+2.20.(8分)图①和图②均是边长为1的正方形网络,按要求用实线画出顶点在格点上的图形.(1)在图①中画出一个等腰三角形ABC,使其腰长是;(2)在图②中画出一个正方形ABCD,使其面积是5.21.(8分)计算:5+﹣×+÷.22.(8分)已知:如图,在△ABC,BC=2,S△ABC=3,∠ABC=135°,求AC、AB的长.23.(8分)某居民小区有一块长方形绿地,先进行如下改造:将长方形的长减少米,宽增加米,得到一块正方形绿地,它的面积是原长方形绿地的2倍,求改造后的正方形绿地的边长是多少米?(结果精确到1米)24.(9分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.25.(9分)阅读下列解题过程:,,请回答下列回题:(1)观察上面的解答过程,请直接写出= ;(2)根据上面的解法,请化简:.26.(10分)已知:如图,有一块Rt△ABC的绿地,量得两直角边AC=8m,BC=6m.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8m为直角边长的直角三角形,求扩充后等腰△ABD的周长.(1)在图1中,当AB=AD=10m时,△ABD的周长为;(2)在图2中,当BA=BD=10m时,△ABD的周长为;(3)在图3中,当DA=DB时,求△ABD的周长.参考答案一、1. A 2.C 3.B 4.A 5.B 6.D 7.A 8.C 9.B 10.D 11.B 12.C二、13. x>3 14.-1 15.76 16.5 17.或3 18.7三、19. 解:(1)原式=3×5÷=15÷=15.(2)原式=2=220.解:(1)、(2)如图所示:21.解:原式=+﹣+3÷=2﹣1+3=2+2.22.解:如图,过点A作AD⊥BC交CB的延长线于D,在△ABC中,∵S△ABC=3,BC=2,∴AD===3,∵∠ABC=135°,∴∠ABD=180°﹣135°=45°,∴AB=AD=3,BD=AD=3,在Rt△ADC中,CD=2+3=5,由勾股定理得,AC===.23.解:设改造后正方形绿地的边长为a米,则改造前长方形绿地的长为(a+)米,宽为(a﹣)米,由题意得,a2=2(a+)(a﹣),整理,得a2=68,a=2(取正).答:改造后正方形绿地的边长为2米.24.解:如图,连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.25.解:(1)=﹣;(2)+++…++,=﹣1+﹣+﹣+…+﹣+﹣,=﹣1,=10﹣1,=9.26.解:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,∴DC==6(m),则△ABD的周长为:10+10+6+6=32(m).故答案为:32m;(2)如图2,当BA=BD=10m时,则DC=BD﹣BC=10﹣6=4(m),故AD==4(m),则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;故答案为:(20+4)m;(3)如图3,∵DA=DB,∴设DC=xm,则AD=(6+x)m,∴DC2+AC2=AD2,即x2+82=(6+x)2,解得;x=,∵AC=8m,BC=6m,∴AB=10m,∴△ABD的周长为:AD+BD+AB=2(+6)+10=(m).。

人教版八年级下册数学辅导第3次(二次根式与勾股定理综合)

人教版八年级下册数学辅导第3次(二次根式与勾股定理综合)

二次根式与勾股定理题型拓展练习例1、在Rt △ABC ,∠C=90°则: ⑴已知a=b=5,求c 2。

⑵已知a=1,c=2, 求b 2。

⑶已知c=17,b=8, 求a 。

⑷已知a :b=3:4,c=25, 求 b 。

⑸已知b=15,∠A=30°,求a ,c 。

练习:1、在Rt △ABC ,∠C=90°,a=8,b=15,则c= 。

2、在Rt △ABC ,∠B=90°,a=3,b=4,则c= 。

3、在Rt △ABC ,∠C=90°,c=25,a :b=3:4,则a= ,b= 。

4、一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。

5、已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 。

6、已知等边三角形的边长为2cm ,则它的高为 ,面积为 。

例2、已知:如图,等边△ABC 的边长是6cm 。

⑴求等边△ABC 的高。

⑵求S △ABC 。

练习、如图,在矩形ABCD 中,AB =5cm ,在边CD 上适当选定一点E ,沿直线AE 把△ADE 折叠,使点D 恰好落在边BC 上一点F 处,且△ABF 的面积是30cm 2.求此时AD 的长.例题3、一个直角三角形的周长为9,斜边为4,求这个三角形的面积。

练习:1、直角三角形两直角边长分别为5和12,则它斜边上的高为_______.2、直角三角形的三边长为连续偶数,则这三个数分别为__________.3、如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是_________(3题图) (第4题图) (第5题图) (第6题图)4、如图,在△ABC 中,CE 是AB 边上的中线,CD ⊥AB 于D,且AB=5,BC=4,AC=6,则DE 的长为_______.5、如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是__________6、(2009年湖南长沙)如图,等腰ABC △中,AB AC =,AD 是底边上的高,若5cm 6cm AB BC ==,,则AD = cm .例题3、判断由线段abc 组成的三角形是不是直角直角三角形:(1)a=15,b=8,c=17 (2)a=13,b=14,c=15 (3)三边长之比为 3∶4∶5;练习: 1、试判断下列三角形是否是直角三角形:⑴a=9,b=41,c=40; ⑵a=15,b=16,c=6;(3)a=5k ,b=12k ,c=13k (k >0)。

勾股定理及二次根式综合复习(含答案)

勾股定理及二次根式综合复习(含答案)

勾股定理及⼆次根式综合复习(含答案)勾股定理及⼆次根式复习⼀、知识梳理:(⼀)勾股定理:1、勾股定理定义:如果直⾓三⾓形的两直⾓边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直⾓三⾓形两直⾓边的平⽅和等于斜边的平⽅勾:直⾓三⾓形较短的直⾓边股:直⾓三⾓形较长的直⾓边弦:斜边勾股定理的逆定理:如果三⾓形的三边长a ,b ,c 有下⾯关系:a 2+b 2=c 2,那么这个三⾓形是直⾓三⾓形。

2. 勾股数:满⾜a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。

) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15;5,12,13 3. 判断直⾓三⾓形:如果三⾓形的三边长a 、b 、c 满⾜a 2+b 2=c 2 ,那么这个三⾓形是直⾓三⾓形。

(经典直⾓三⾓形:勾三、股四、弦五)其他⽅法:(1)有⼀个⾓为90°的三⾓形是直⾓三⾓形;(2)有两个⾓互余的三⾓形是直⾓三⾓形。

⽤它判断三⾓形是否为直⾓三⾓形的⼀般步骤是:(1)确定最⼤边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直⾓的三⾓形;若a 2+b 2<c 2,则此三⾓形为钝⾓三⾓形(其中c 为最⼤边);若a 2+b 2>c 2,则此三⾓形为锐⾓三⾓形(其中c 为最⼤边)4.注意:(1)直⾓三⾓形斜边上的中线等于斜边的⼀半(2)在直⾓三⾓形中,如果⼀个锐⾓等于30°,那么它所对的直⾓边等于斜边的⼀半。

(3)在直⾓三⾓形中,如果⼀条直⾓边等于斜边的⼀半,那么这条直⾓边所对的⾓等于30°。

5. 勾股定理的作⽤:(1)已知直⾓三⾓形的两边求第三边;(2)已知直⾓三⾓形的⼀边,求另两边的关系;(3)⽤于证明线段平⽅关系的问题;(4)利⽤勾股定理,作出长为n 的线段. (⼆)⼆次根式:1.⼆次根式的概念:形如a (a≥0)的式⼦叫做⼆次根式(⼆次根式中,被开⽅数⼀定是⾮负数,否则就没有意义,并且根式a ≥0)2.最简⼆次根式:同时满⾜:①被开⽅数的因数是整数,因式是整式(分母中不含根号);②被开⽅数中不含能开得尽⽅的因数或因式.这样的⼆次根式叫做最简⼆次根式. 3. 同类⼆次根式:⼏个⼆次根式化成最简⼆次根式后,如果被开⽅数相同,这⼏个⼆次根式就叫同类⼆次根式. 4.⼆次根式的性质:①a a ≥≥00()②()a a a 20=≥()③a aa aaa a200==>=-<||()()()④ab a b a b=?≥≥(,)00⑤babaa b=>≥(,)005.分母有理化及有理化因式:把分母中的根号化去,叫做分母有理化;两个含有⼆次根式的代数式相乘,?若它们的积不含⼆次根式,则称这两个代数式互为有理化因式.6.⼆次根式的运算(1)因式的外移和内移:如果被开⽅数中有的因式能够开得尽⽅,那么,就可以⽤它的算术根代替⽽移到根号外⾯;如果被开⽅数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外⾯,反之也可以将根号外⾯的正因式平⽅后移到根号⾥⾯.(2)⼆次根式的加减法:先把⼆次根式化成最简⼆次根式再合并同类⼆次根式.(3)⼆次根式的乘除法:⼆次根式相乘(除),将被开⽅数相乘(除),所得的积(商)仍作积(商)的被开⽅数并将运算结果化为最简⼆次根式.(4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适⽤于⼆次根式的运算.7.使分母不带根号(分母有理化)常⽤⽅法:①化去分母中的根号关键是确定与分母相乘后,其结果不再含根号的因式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式及勾股定理习题
满分: 时间:
一、选择题(每题3分,共30分) 1.2x )
A .0x ≥ B.x <0 C.x ≠0 D.x ≤0 2.2(3)- )
A .-3 B.3 C.-9 D.9 3下列运算正确的是( )
2323+=3a-a=3 C. 2
3
3= D. ()3
25a a =
4.23 )
A 5 326 D. 235.下列根式中,最简二次根式是( ) A 41
2
C.2x 2 6. 2合并的是( )
A 5 326 D. 237.下列计算正确的是( )
①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-;
A .1个
B .2个
C .3个
D .4个 8. 一直角三角形的两直角边长分别为3和4.则第三边的长为( ) A 57 C. 57 5 9.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为( )
A .4 B. 6 C. 16 D. 55 10. 一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为( ) A .10米 B. 15米 C.25米 D. 30米
二、填空题(每题4分,共24分)
11.二次根式1x -在实数范围内有意义,则x 的取值范围
是 。

12.已知221y x x =-+-+,则y x = 。

13. 把下列二次根式化成最简二次根式
1
25
= 0.01= 14. 如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0)、(0,8).以点A 为圆心,以AB 长为半径画弧,交x 正半轴于点C ,
则点C 的坐标为 。

15. 能够成为直角三角形三条边长的正整数,称为勾股 数.请你写出一组勾股数: 。

16. 若三角形三条边长a 、b 、c 满足2
a 512c 130
b -+-+-=(),则△ABC
是 三角形。

三、解答题(17-19题每题6分,20-22题每题7分,23-25题每题9分) 17.计算
()()
1114
61223÷-⨯ ()112325628
+-
18.化简:(
)
()
2
93618321223
+--+
-+
-。

19. 如图所示,在平行四边形ABCD 中,BE 、CF 平分∠B 、∠C ,交AD 于E 、F 两点,求证:AF=DE .
20.已知()1
011,,2014d=1-2321a b c -⎛⎫
===- ⎪-⎝⎭
π,,
(1)化简这四个数;
(2)选其中两个数,通过适当运算后使得结果为2.请列式并写出运算过程.
21. 如图,面积为48cm 2
的正方形四个角是面积为3cm 2
的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体的底面边长和高分别是
多少?(精确到0.1cm ,3≈1.732)
22. 如图所示,一架长为2.5米的梯子AB ,斜靠在竖直的墙上,这时梯子的底端距离底AO 为0.7米,求梯子顶端离地OB 多少米?如果梯子顶端B 沿墙下滑0.4m ,那么梯子底端将向左滑动多少m ?
23. 如图,△ABC 是边长为2的等边三角形,将△ABC 沿直线BC 向右平移,使点B 与点
C 重合,得到△DCE ,连接B
D ,交AC 于点F .
(1)猜想AC 与BD 的位置关系,并证明你的结论; (2)求线段BD 的长.
24. 阅读下列解题过程:在进行含根号的式子的运算时,我们有时会碰上如
2
5+3
一类的式子,其实我们可以将其进一步化简,如:(
)
(
)(
)()()()2
2
25-3
25-32
===
5-35+3
5+3
5-
35-3⨯

,以上这种化简的步骤叫
做分母有理化.请回答下列问题: (1)观察上面的解题过程,请化简3
5+2

2
)利用上面提
供的信息求
1111
++++2+13+24+32015+2014
=-1+2-2+3-3+4++-2014+2015=2015-1
⋅⋅⋅⋅⋅⋅解:原式() 的值。

25.如图,有一块塑料矩形模板ABCD,长为10cm ,宽为4cm ,将你手中足够大的直角三角板PHF 的直角顶点P 落在AD 边上(不与A 、D 重合),在AD 上适当移动P .
(1)能否使两边分别通过点B 与点C ?若能,请求出这时AP ;若不能,请说明理由;
(2)再次移动位置,使P 在AD 上移动,边PH 始终通过点B ,另一直角边PF 与DC 延线交于点Q ,与BC 交于点E ,能否使CE=2 ?若能,请求出这时AP ;若不能,请说明理由.
二次根式及勾股定理答案
一、选择题(每题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案 A
B
C
C
D
B
A
D
C
B
二、填空题(每题4分,共24分)
11. X ≥1 12. 2 13. 1
5
0.1
14. (4,0) 15. 3,4,5 16. 直角 三角形。

三、解答题(17-19题每题6分,20-22题每题7分,23-25题每题9分) 17.计算
()
112325
628
53=42+
2-222
=52
+-解:原式
18.
()()
()
()
02
936
183212
23
3
=32-2-1+2+1+1-223
=2-1+2+1+2-1
23
=2-1
2
+--+-+-解:原式
19. 证明:
()(11161223
411
123264
=
3
⨯⨯解:原式
20.
(2)
()
1
01a-c=-20143 =3-1
=2-⎛⎫
- ⎪⎝⎭
解:π 21. 解:
22.
()()222222221 2.50.7t =90=-= 2.5-0.7=2.4
2=-=2.4-0.4=2
==2.5
t =90=-= 2.5-2=1.5
=-=1.5-0.7=0.8
AB OA R AOB O OB AB OA OD OB BD CD AB R COD O OC CD OD AC OC OA ==∠︒∆∠︒解:依题意得,,,在△中,,在中,,
23.
2222(2)1
=4=2=-=4-2=23
AC DE BD AC BED BE DE BD BE DE ∵由()知, ∥,⊥, ∴△是直角三角形, ∵,,

24. (
)
(
)(
)()()()2
2
352
352315252
52
5252⨯
-⨯
-===
-++-
-解:()
1111
++++2+13+24+32015+2014
=-1+2-2+3-3+4++-2014+2015=2015-1
⋅⋅⋅⋅⋅⋅解:原式()
25.
F
x=10-x
==90
t
t
AP PD
ABCD
A D
APB
PB
PDC
PC
∠∠︒


25解:(1)能
设为,则,
∵四边形是矩形,

在R中,
在R
中,
t=90
x=8x=2
=8=2
R PHF BPC
BC
AP AP B C
∆∠︒
又∵中,,

解得或,
即当或
时,两边分别通过点或点。

(2)
=x=10-x
=8-x
1=
t=90
t=90
E E
F AD D
AP PD
ABCD
PF
BP
R PFE PEF
PE
R PBE BPE
BE
∆∠︒
∆∠︒
解:能
过作⊥于点,
设,,
∵四边形是菱形,
∴,
由()知
在中,,
在中,,
x=4
=4=2.
AP CE
解得,
即当时,。

相关文档
最新文档