Waste Heat Recovery
FPSO与上部模块介绍

FPSO与上部模块介绍1、什么是FPSO?FPSO(Floating Production Storage Offloading)浮式生产储油卸油船,主要与三个部分组成:上部模块、船舶系统、系泊立管系统。
2、FPSO特点1)适用环境范围广泛、应用前景好2)多功能集成,集中度高3)机动灵活、可重复利用3、FPSO类型1)永久式转塔系泊的船形FPSO-恶劣海况2)可解脱式转塔系泊的船形FPSO-恶劣海况3)永久式多点系泊系统的船形FPSO-温和海况,方向性强4)具有有限风标效应的船形多点系泊FPSO-很强方向性的温和海况5)多点系泊系统的圆筒形FPSO-新概念FPSO,中等海况4、海工上部模块介绍4.1、海工上部模块边界面划分从上游的SDV(Emergency Shutdown Valve)到模块的油、气、水出口一套顶部设备作为上部模块的边界面4.2、分类1)Process Modules●Separation Module-生产分离模块●Gas Compression Module-天然气压缩模块●TEG Gas Dehydration Module-三甘醇天然气脱水模块●Water Injection Module-注水模块●Chemical Injection Module-化学注入模块●Amine Gas Sweetening Module-天然气胺脱硫模块●CO2 Injection Module-二氧化碳注入系统●Inlet Manifold & pigging Module-井口管汇/刮管模块●KO D(Knock-off Drum) Module-火炬塔分离罐模块●Close/Open Drain Module-闭式/开式排放模块2)Utility Modules●Power Generation Module-发电模块●IGG module-惰气发生器模块●E-house Module-电控房模块●Heating Medium Module-伴热模块●Riser Pull-in Module-立管拖拽模块●Lay-down Area Module-物料起吊堆放模块●GTG Modu le-透平发动机模块●Living Quarter Module-生活区模块4.3、各模块功能1)Separation Module-生产分离模块●处理现场原井流体的脱气和稳定流体,分离油气水达到储存要求●测试井口生产数据●主要设备:Test Sep、Stabilization Sep、1st Stg Prod Sep、2nd Prod Sep、ElectrostaticCoalescer(静电聚结器)、Electrostatic Desalt Sep、Heat-Exchanger、Hydrocyclone(水力旋流器)2)Gas Compression Module-天然气压缩模块●压缩产生的气体满足于销售、重新注入或输入到TEG Dehydration Module●由气体发动机或电机驱动。
ORC低温余热发电系统行业市场现状分析及未来三到五年发展趋势报告

ORC低温余热发电系统行业市场现状分析及未来三到五年发展趋势报告As of now, the low-temperature waste heat power generation system using Organic Rankine Cycle (ORC) technology is gaining prominence in the industrial and commercial sectors due to its ability to efficiently convert low-temperature waste heat into electricity. This system has applications in various industries such as cement, steel, glass, and chemical manufacturing, as well as in geothermal and solar power plants.Market Status Analysis:The ORC low-temperature waste heat power generation system has witnessed substantial growth in recent years due to the increasing focus on sustainability and energy efficiency. The market has been primarily driven by stringent environmental regulations, rising energy costs, and a growing emphasis on reducing carbon emissions. In addition, technological advancements in ORC system components and the increasing number of waste heat recovery projects have further fueled market growth.The global market for ORC systems is segmented based on the capacity, application, and end-user industry. Europe and North America have been leading the market due to the presence of stringent environmental regulations and the early adoption of sustainable technologies. However, the Asia-Pacific region, particularly China and India, is expected to witness significant growth in the coming years owing to rapid industrialization and the increasing adoption of ORC technology.Future Development Trends:Looking ahead, the ORC low-temperature waste heat power generation system is poised for robust growth over the next three to five years. Several key trends are likely to shape the industry landscape:1. Technological Advancements: Continued research and development efforts are expected to lead to the development of advanced ORC systems with higher efficiency, improved heat exchangers, and enhanced system integration capabilities.2. Expansion into New Applications: The ORC technology isanticipated to expand into new industrial sectors, such as food processing, data centers, and waste incineration plants, offering opportunities for market growth.3. Government Support and Incentives: Increasing governmental support through favorable policies, incentives, and subsidies for waste heat recovery projects is likely to drive the adoption of ORC systems across various industries.4. Growing Demand for Sustainable Energy Solutions: The global shift towards sustainability and the increasing demand for clean energy are anticipated to drive the adoption of ORC systems as an environmentally-friendly power generation solution.5. Market Consolidation and Partnerships: The industry is expected to witness a trend of mergers, acquisitions, and strategic partnerships among key players to expand their product portfolios and geographical presence.市场现状分析:目前,采用有机朗肯循环(ORC)技术的低温余热发电系统在工业和商业领域越来越受到关注,因为它能够高效地将低温余热转化为电力。
火力发电厂燃煤发电机组烟气余热回收利用技术研究

Value Engineering———————————————————————作者简介:别倩雯(1989-),女,陕西西安人,硕士研究生,主要研究方向为环境方向,低碳能源及节能降碳。
0引言火力发电厂作为我国电力工业的重要组成部分,其燃煤发电机组在生产电能的同时,也产生了大量的余热资源。
但是,受常规发电技术的制约,大量的废热都是直接排入大气,既浪费了能源,又造成了环境污染。
因此,开展火力发电厂燃煤发电机组烟气余热回收利用技术研究,对于提高能源利用效率、促进可持续发展等方面具有重要的现实意义[1]。
然而,目前的研究还存在一些问题。
首先,烟气余热回收技术的研究还不够深入,尤其是在高温、高压、腐蚀等复杂工况下的研究还不够充分。
其次,现有的烟气余热回收技术在实际应用中还存在一些局限性,例如系统稳定性、材料腐蚀等问题。
因此,进一步深化对烟气余热回收技术的研究和改进,能够提高能源利用效率,降低环境污染。
1测定烟气余热资源特性参数烟气余热资源特性参数的测定是火力发电厂燃煤发电机组烟气余热回收利用技术研究的重要组成部分。
为了准确地了解和掌握烟气余热资源的特性,进行一系列详细的参数测定。
1.1烟气压力的测量烟气量是指每单位空间内的烟的垂向作用力。
滞止压强p ,它包含了烟气气压p λ、烟气静压力p j [2]。
在烟气流速小于60米/秒的情况下,压力计公式为:(1)若烟气在高速(,α当在此介质中得到声速)流时,压力计方程为:(2)式中:p 为以Pa 为单位的总烟压力;p j 代表以Pa 为单位的烟气静压;p λ表示以Pa 为单位的烟气空气动力学压力;W 指以米/秒为单位的烟气流动速度;k 是测量媒质的隔热系数,其中蒸气k 是1.3,空气及二原子气体k 是1.4,而对于单原子气体来说,则是1.67,介电气的系数是R ;T 是以K 为单位的被测量介质的绝对温度;ρ表示单位为kg/m 3的被测介质的密度:通常用于测量烟压的仪表采用皮管和压力表。
暖通空调英语术语

暖通空调术语guide [gaɪd] apparatus [ap·pa·ra·tus]导向器guide attachment[at'tach·ment]导向装置guide blade [bleɪd]导向叶片proportional [pro'por·tion·al ]成比例的,相称的proportional action [ac·tion || 'ækʃn]比例动作[作用]proportional amplifier [am·pli·fi·er || 'æmplɪfaɪə]比例放大器proportional bend [bend]比例区域[范围]proportional control 比例[调辐]控制proportional control factor [fac·tor || 'fæktə(r)]比例调节系数proportional controller 比例调节器proportional counter [count·er || 'kaʊntə]正比计数器,比例计算机proportionality [prə'pɑrʃn'ælətɪ]比例性proportionality range [reɪndʒ]比例范围proportional plus [plʌs] automatic[au·to·mat·ic] reset [‚rɪː'set] action[ac·tion]比例自动复位作用plus [plʌs]n. 正号, 附加额, 加号adj. 正的, 加的automatic[au·to·mat·ic] n. 自动机械; 自动变速器; 自动手枪adj. 自动装置的, 自动的; 必然的;习惯性的, 无意识的; 当然的reset [‚rɪː'set] v. 重新设定, 重新组合, 重新放置n. 重新设定, 重排, 重新组合action[ac·tion] n. 动作; 战斗; 作用proportional plus integral ['in·te·gral] action 比例加积分动作integral ['in·te·gral]n. 积分, 整数adj. 整体的, 积分的, 整数的proportional plus integral plus differential[dif·fer·en·tial] action 比例积分微分动作differential [dif·fer·en·tial ]n. 差别; 差动齿轮; 微分adj. 差别的, 微分的, 特定的proportional position [po·si·tion] action 比例位置动作position [po·si·tion] n. 位置, 方位, 地点; 姿势, 姿态; 恰当的位置; 地位v. 安置, 决定...的位置proportional regulator['reg·u·la·tor]比例调节器regulator ['reg·u·la·tor ]n. 调整者; 调节器; 管理者; 调节阀proportional temperature controller 比例温度控制器◇English ◇Chineseram[ræm] pump 柱塞泵random[rændəm]随机的,偶然的,不规则的random arrangement [ar'range·ment]无规则排列random check 抽查random noise[nɔɪz]无规噪声noise[nɔɪz]n. 喧闹声, 噪音, 噪声; 背景噪音, 妨碍通讯的任意电子信号(计算机, 电子学用语) v. 谣传; 喧闹random order [or·der ]任意次序random packing [pack·ing ]松散填料random process[pro·cess]随机过程process[pro·cess]n. 过程; 程序; 步骤; 工序; 动作程序; 进程, 改进; 唤到法院; 使用部分系统源的多重任务计算机上的程序运转(计算机用语)v. 加工; 用计算机处理; 处理, 办理; 对...起诉;列队行进random sampling ['sam·pling]任意取样sampling ['sam·pling] n. 采取样品; 抽样; 试验样品range 行,列;极限,范围,界限;距离,量[射]程range-changingtch 量程转换开关range controltch 量程转换开关range coverage 作用距离[范围]◇English ◇Chineserange of indication 指示范围range of load 负荷范围[极限]range of measurement['meas·ure·ment]测量范围measurement['meas·ure·ment]n. 测量法; 尺寸; 度量range of regulation [reg·u·la·tion]调节范围[幅度]regulation [reg·u·la·tion] n. 规章; 条例; 规则, 规定; 管理range of stability [sta·bil·i·ty]稳定范围[阶段]stability [sta·bil·i·ty] n. 稳定, 稳定性; 坚定; 安定; 恒心range of temperature 温度变化范围ranging 测距,距离调整ranging computer 测距计算机rapid[rap·id]快的,急速成的,高速的rapid air change 快速换气rapid condensation [con·den·sa·tion]快速冷凝◇English ◇Chineserapid cooling 快速冷却rapid current['kʌrənt]急流current['kʌrənt] n. 流动, 气流, 水流; 趋势, 潮流, 倾向; 电流adj. 现行的, 当前的; 流行的rapid dryer 快速干燥器rapid fastener['fas·ten·er]快速紧固装置fastener ['fas·ten·er || 'fæsnər /'fɑːsnə]n. 结扎者; 扣件; 紧固物; 纽扣rapid filtration 快滤rapid hardener 快速硬化器rapper['ræpə(r)]振动器,(取样用的)轻敲锤rare [rer /reə]稀少的,稀有的,稀薄的rare air 稀薄空气rare gas 稀有气体rarefy[rar·e·fy ]稀释;使稀薄,抽空rare metal 稀有金属rare-metal couple[cou·ple ]贵金属热电偶,稀有金属热电偶rate [reɪt]率,变化率;速度;等级,程度;比率,比值;流[耗]量;价值[格],评价,计[估]算rated 额定的,规定的,标称的rated capacity 额定容量[能力]rated conditions 额定工况[条件]rated consumption[kən'sʌmpʃn]额定耗量◇English ◇Chineserated current 额定电流rated energy [ 'enədʒɪ]额定功率,额定能量rated flow 额定流量rated horsepower 额定功率[马力]rated load 额定负荷rated load operation 额定负荷运行rated output 额定输出,标定功率rated output of boiler[ 'bɔɪlə]锅炉额定输出功率boiler[ 'bɔɪlə] n. 煮器; 锅炉; 汽锅rated power 额定功率rated pressure 额定压力rated speed 额定速率rated value 额定值rated of air circulation [cir·cu·la·tion ]换气次数,空气循环率circulation [cir·cu·la·tion ]◇English ◇Chineserate of consumption [kən'sʌmpʃn]消耗率rate of cooling 冷却速度rated of discharge 排出量,流量rated of discharge of ground water 地下水流量rated of drying 干燥速度rate of evaporation [e·vap·o·ra·tion]蒸发率,蒸发量,蒸气负荷rate of flow 流量,流速rate of flow of air 空气流量rate of heat exchange 换热率rate of heat flow 热流量,热流◇English ◇Chineserate of heat transfer [trans·fer ]传热量;热流transfer [trans·fer ]n. 迁移, 传递, 移动v. 转移, 调任, 调转; 转移, 换车, 转学rate of inflow 进水流量rate of instant oil discharge 瞬时排油率instant[in·stant || 'ɪnstənt]n. 立即, 瞬间adj. 立即的, 即时的rate of loading 负荷率;带负荷性能rate of revolution [rev·o·lu·tion ]转速rate of turn 转速rate of vaporization 蒸发速度rating [rat·ing ]额定值,额定功率,功率,出力,生产率;特性,参数,规格,等级,程度;率;产冷量[在一定时期内制冷装置所移去的热量]rating under working conditions 工作条件下的出力[在正常条件下,制冷或产热装置的转移的热量]ratio [ra·ti·o ]比,比值,比率;系数;传动化ratio control 比例调节[控制]◇English ◇Chineseratio controller 比例调节器ratio flow control 流量比例控制ratio gear [gɪr /gɪə]变速轮gear[gɪr /gɪə]n. 齿轮; 排档; 传动装置; 工具v. 以齿轮连起, 配搭活动, 开动; 连接上, 适合ratio meter[me·ter || 'mɪːtə(r)]比率计meter[me·ter || 'mɪːtə(r)]n. 韵律, 格律; 节拍#米, 公尺#计量器, 仪表; 计量官; 计量监督员v. 用仪表测量; 用邮资总付计数器在打戳; 计量供给rational[ra·tion·al || 'ræʃənl]合理性的,合法的;有理解能力的rationale [ra·tion·ale](基本)原理;原理的阐述rationality [ra·tion·al·i·ty || ‚ræʃə'nælətɪ]有理性,合理性rationalization[ra·tion·al·i·za·tion] proposal [pro·pos·al ]合理化建义ratio of compression 压缩比ratio of expansion [ex'pan·sion ]膨胀比ratio of run-off 径流系数ratio of slope[sləʊp]坡度slope[sləʊp]n. 斜坡, 倾斜, 斜面v. 倾斜, 逃走; 使倾斜; 掮; 使有坡度reach-in freezer 冻结柜,冷冻柜freezer [freez·er || 'frɪːzə(r)]n. 制冰淇淋的机器; 冷藏箱; 制冷工; 冰箱reach-in refrigerator [re'frig·er·a·tor]大型冷柜[专用销售,分配或贮藏,而不能进人的一种冷柜] react [re·act || rɪ'ækt]反应,感应,反作用;起反应,重作reaction [re·ac·tion || rɪ'ækʃn]反应,反作用,反馈reaction capacity 反应能力reaction coil [kɔɪl]反应盘管◇English ◇Chineseread-in 记录,写入readiness备用状态readiness ['read·i·ness || 'rɪːdɪnɪs]n. 准备就绪; 迅速, 敏捷; 愿意; 容易◇English ◇Chinesereading 读数,仪表读数reading device [de·vice || dɪ'vaɪs]读数装置reading error 读数误差,视差reading glass 读数放大镜reading line 刻[分]度线readjust [re·ad·just || ‚rɪːə'dʒʌst]重(新)调(整);校准readjustment 重(新)调(整),微调readout 读出(数据);数定显示装置;选择信息ready 现款;预备,使准备好;有准备的,现成的,现有的ready for operation 启动有准备的,运行有准备;准备运行ready for use 启动有准备;准备运行ready for work 工作有准备的;准备使用ready-made 现成的ready-packaged 快装的reagent 试剂real 实际的real fluid 实际流体◇English ◇Chinesereal gas 实际气体realignment 重新排列,改组;重新定线realm 区域,范围,领域real work 实际工作ream 铰孔,扩孔rear 后部,背面,后部的rear arch 后拱rear axle 后轴rear-fired boiler 后燃烧锅炉rear pass 后烟道rearrange 调整;重新安排[布置] rearrangement 调整,整顿;重新排列[布置] reason 理由,原因;推理reasonable 合理的,适当的reassembly 重新装配reaumur 列氏温度计reblading 重装叶片,修复叶片recalibration 重新校准[刻度]recapture 重新利用,恢复recarbonation 再碳化作用◇English ◇Chineserecast 另算;重作;重铸receiving basin 蓄水池receiving tank 贮槽recentralizing 恢复到中心位置;重定中心;再集中receptacle 插座[孔];容器reception of heat 吸热recessed radiator 壁龛内散热器,暗装散热器recharge well 回灌井reciprocal 倒数;相互的,相反的,住复的reciprocal action 反复作用reciprocal compressor 往复式压缩机reciprocal feed pump 往复式蒸汽机reciprocal grate 往复炉排reciprocal motion 住复式动作reciprocal proportion 反比例reciprocal steam engine 往复式蒸汽机reciprocate 往复(运动),互换reciprocating 往复的,来回的,互相的,交替的reciprocating ( grate ) bar 往复式炉排片reciprocating compressor 往复式压缩机◇English ◇Chinesereciprocating condensing unit 往复式冷冻机reciprocating packaged liquid chiller 往复式整体型冷水机组reciprocating piston pump 往复式活塞泵reciprocating pump 往复泵,活塞泵reciprocating refrigerator 往复式制冷机recirculate 再循环recirculated 再循环的recirculated air 再循环空气[由空调场所抽出,然后通过空调装置,再送回该场所的回流空气] recirculated air by pass 循环空气旁路recircilated air intake 循环空气入口recirculated cooling system 再循环冷却系统recirculating 再循环的,回路的recirculating air duct 再循环风道recirculating fan 再循环风机recirculating line 再循环管路recirculating pump 再循环泵recirculation 再循环recirculation cooling water 再循环冷却水recirculation ratio 再循环比recirculation water 再循环水◇English ◇Chinesereclaim 再生,回收;翻造,修复reclaimer 回收装置;再生装置reclamation 回收,再生,再利用recombination 再化[结]合,复合,恢复recommended level of illumination 推荐的照度标准reconnaissance 勘察,调查研究recording apparatus 记录仪器recording barometer 自记气压计recording card 记录卡片recording facility 记录装置recording liquid level gauge 自动液面计recording paper of sound level 噪声级测定纸recording pressure gauge 自记压力计recording water-gauge 自记水位计recoverable 可回收的,可恢复的recoverable heat 可回收的热量recoverable oil 可回收的油recoverable waster heat 可回收的废热recovery plant 回收装置recovery rate 回收率◇English ◇Chineserecovery rate of water 用水回收率recovery waste heat 废热回收rectangular 矩形的rectangular air distributor 矩形空气分布器rectangular air duct 矩形风管rectangular air supply opening 矩形送风口rectangular condensate water tank 矩形冷凝水箱rectangular coordinates 直角坐标rectangular cowl 矩形伞形风帽rectangular cross-section 矩形断面rectangular duct 矩形风道seven public nuisances 七种公害[水质污染,空气污染,土壤污染、噪声,振动,地基沉陷,恶臭] sewage 污[下]水;污物sewage disposal 污水处理;污水排除sewage gas 沼气Sewage pipe 污水管Sewage pipe line 污水管线Sewage pump 污水泵Sewage treatment plant 污水处理厂Sewerage 下水道,排水设施◇English ◇ChineseShackle 钩环Shade 屏,板,盘,罩,阴影,遮阳物Shaded 遮挡的,阴影的Shaded effects 遮阳效果Shade-shed 凉棚Shading 屏蔽,隔离,遮挡Shading by horizontal baffles 水平遮阳板Shading by vertical baffles 垂直遮阳板Shading coefficient 遮阳系数[在透光面积上,设遮阳设备时所吸收和透过的太阳热与无遮阳设备时所吸收和透过的太阳热之比]Shading device 遮阳设备[室外或室内的设施,以减少进入建筑物的太阳辐射热]Shading of glass area 玻璃面的遮阳Shading screen 遮光屏Shadow 阴影,影子Shadow shield 遮光板Shaft 轴,竖井,通风井,烟囱Shaft bearing 轴承Shaft horsepower 轴马力,轴功率[在压缩机轴上测得的马力消耗]Shafting 轴系,传动轴Shaft packing 轴封填料Shaft pump 轴流泵◇English ◇ChineseShaft seal 轴封Shaft storage 搁架式贮藏Shake 摇动,抖动Shakedown run 试车,调动启动,试运转Shake-out 摇动,抖动Shakeproof 防振的,抗振的Shaker 振动器Shaking 摇[摆,振]动Shaking grate 振动炉排Shaking screen 振动筛Shallow 浅层,浅的,表面的Shank 柄,杆,柱体,轴Shape 造[成]型,形状[态]模型。
船舶发动机尾气处理技术

船舶发动机尾气处理技术一、引言船舶作为国际贸易和物流运输的重要工具,其发动机尾气排放对环境和人类健康产生了重要影响。
本文旨在探讨船舶发动机尾气处理技术的相关问题,包括技术的原理、发展现状及未来趋势等。
二、尾气排放的危害船舶发动机尾气排放中的二氧化硫、氮氧化物、颗粒物等物质对大气环境造成直接危害。
此外,尾气排放还会导致全球变暖和酸雨等问题,对生态系统和人类健康造成长期影响。
三、尾气处理技术的原理船舶发动机尾气处理技术主要包括以下几种:1. 选择性催化还原(SCR)技术通过将尿素溶液喷入尾气管道中,使尾气中的氮氧化物与尿素发生化学反应,生成无害的氮气和水。
SCR技术在降低氮氧化物排放上具有较高的效率和灵活性。
2. 污染物降解技术利用催化剂将有害物质转化为无害物质或减少其浓度,包括氧化还原催化剂、吸附剂、活性炭等。
3. 船舶选择性非催化还原(SNCR)技术这种技术主要通过将氨气或尿素溶液喷入高温燃烧尾气中,使氮氧化物与尿素发生还原反应,减少氮氧化物排放。
SNCR技术在船舶发动机尾气处理中有着广泛的应用。
4. 循环床反应器(CFB)技术CFB技术主要通过在高温下使颗粒物接触到催化剂,将颗粒物中的有害化合物还原为无害物质。
这种技术具有高效去除颗粒物的能力。
四、尾气处理技术的发展现状目前,船舶发动机尾气处理技术已经取得了一定的进展。
船舶企业为了符合国际海事组织的要求,纷纷着手研发和安装尾气处理装置,并对船舶进行改造。
一些国际航运公司也已经开始主动采取措施,减少尾气排放对环境的影响。
然而,尾气处理技术仍面临一些挑战。
首先,技术成本较高,需要增加船舶的投资和运营成本,对船东而言是一个经济负担。
其次,船舶尺寸和形式的不同,使得尾气处理技术在应用时需要根据具体情况进行适应和优化。
五、尾气处理技术的未来趋势为了解决尾气处理技术面临的挑战,未来的发展方向主要体现在以下几个方面:1. 技术成本降低随着技术的推广应用,尾气处理技术的成本将逐渐降低,从而减轻船东的经济负担。
暖通空调英语术语

暖通空调英语术语◇English ◇Chineseramification 分支[叉]ram pump 柱塞泵random 随机的,偶然的,不规那么的random arrangement 无规那么排列random check 抽查random inspection 抽查random noise 无规噪声random order 任意次序random packing 松散填料random process 随机过程random sampling 任意取样range 行,列;极限,范畴,界限;距离,量[射]程range ability 〔被调量的〕幅度变化范畴range-changingtch 量程转换开关range coal 块煤range controltch 量程转换开关range coverage 作用距离[范畴]rangefinder 测远器range of application 应用范畴range of hearing 可听范畴◇English ◇Chineserange of indication 指示范畴range of load 负荷范畴[极限]range of measurement 测量范畴range of regulation 调剂范畴[幅度]range of stability 稳固范畴[时期]range of temperature 温度变化范畴ranging 测距,距离调整ranging computer 测距运算机ranging rod 测量杆rangmuir equation 郎缪尔公式[吸附剂质量与被吸附物质量之间的理论关系公式]rank 等,级;排,列;分类,分等级rankine cycle 兰金循环rankine\'s constant pressure gas viscometer 兰金常压气体粘度计rankine temperature scale 兰氏温标[一种绝对温标,以水的三相温度定为491.68。
石灰窑工程技术常用词汇中英文对照表
石灰窑工程技术常用词汇中、英文对照(按汉语拼音字母顺序检字)A安全 (be) on the safe side; safety; security 安全系数 safety factor; margin; margin of safety; safety coefficient安全规程 safety regulations; safe-conduct; safe rules 安全措施safety measures; safety method; safeguard; safe practice; safety precautions; accident provision安全荷载 safe load; safety load安全操作 safe operation安装 instal; mount; erect安装工程 installation work; erection work安装尺寸 mounting dimensions安装示意图 scheme of installation安装位置 installation position; mounting position 安装说明书 installation instructions安装要求 erection requirements安装程序 erection sequenceB比容 specific volume饱和状态 saturation饱和点 saturation point保护层 inhibitory coating; protective layer; cover 保护措施 protection measures保险装置 safety device; safeguard; protector 保温材料 thermal insulation material薄膜电阻 film resistor备用电源 emergency power supply; reserve power supply; stand-by power source背面接线图 back connection diagram焙烧 burn; calcine; burning;calcination; roasting; baking比重 specific gravity; specific weight; proportion 变速电动机 adjustable-speed motor; variable-speed motor; change-speed motor变速比 gear ratio变阻器 rheostat; varistor; variohm变速电动机 adjustable-speed motor; variable-speed motor; change-speed motor标出尺寸 dimension标准仪表 standard instrument; master meter 标准设计 standard design; typical design 标准设备 standard equipment标准状态 normal conditions波纹管 bellows; corrugated tube不可燃的 non-combustible; non-ignitable; incombustible; noninflammable不安定的 instable; unstable; unsound; insecure 不完全燃烧 imperfect combustion步进式电动机 step-by-step motor; step-motor; stepping motor变压器 TransformersC材料 material; stuff; matter; data; information 材料力学 mechanics of materials; strength of materials 参数 parameter参照 refer; consult; reference; in the light of 槽钢 channel bar; channel steel; channel 操作 operation操作人员 operator; operating personnel 操作方式 the mode of operation操作技巧 operative skills操作步骤 sequence of operation; operation sequence 操作说明 operating instruction; service manual 操作原理 the principle operation; operating principle操作程序 operation sequence; sequence of operation 操纵室 control room测力传感器 load cell;load-cell测定值 measured value测量仪表 measuring instrument; instrumentation 测量范围 measuring range产品合格证 product inspection cerificate成本核算 cost keeping; cost accounting 程序设计 programming; program composition 传感器 transducer; sensor; pick-upD大气污染 atmospheric pollution; air pollution 单位成本 unit cost导出 derive from; induce导体 conductor导线 wire; conductor倒置式 inverted type低碳钢 low-carbon steel; mild steel 电气图 electrical drawing电压 voltage; tension; pressure 电阻率 specific resistance; resistivity 电容器 capacitor; condenser电解电容器 electrolytic capacitor电解质 electrolyteE额定容量 rated capacity二次two times;twice二氧化碳 carbon dioxideF发生故障 go out of order;go wrong with 发热值 caloric value;heat value方案 version;plan;case;alternative;scheme;project方案比较 scheme comparison方案设计 schematic design防水的 water-proof;waterproof;waterproofing 防尘 dust prevention;dust proof;antdusting;dust supperession废品率 the rate of spoiled products;scrap rate 分解 decompose;disassemble;analyse 风 wind风机 fan风压 blast pressure风量 air quantityG供风系统 air supply system工艺工程师 Technological Engineer固体燃料 solid fuel概算 budgetary estimate; rough estimate 过烧 overburning感应调压器 induction lightning stroke 工艺设备 process unit; processing equipment 工艺过程 technological process; manufacturing process 工艺流程图 process flow diagram; process flowsheet 鼓风机 blower; blow fan; blast fan; fan 故障报告 Trouble reportH回火 temper;tempering;drawing 回转窑 kiln of gyratory挥发 volatilize;volatilize;evaporate火焰 flame;blaze烘干 oven dryJ节能 energy saving技术 Technique技术控制 Technical control技术鉴定 Technical Evaluation技术备忘录 Technical Memorandum技术报告 Technical Report机械性能 mechanical properties; physical properties 检修 overhaul技术人员 technician; technical personnel技术条件specification; technical conditions; technical requirements技术操作规程 instructions of technical加料 feed;charge加燃料 fuel;mend the fire;topping-up 机器折旧 depreciation of machinery 极配 grade; grading; gradation 极性 polar极值 extremum; extreme技术资料 technical data; technical document 技术说明书 Technical instruction技术手册 Technical Manual技能 skill; know-how; workmanship 继电器 relay寄存器 register基本原理 fundamental rules; fundamental; basic principle 基准 reference; datum; standard; criterion 基准点 reference point; datum point 基础资料 basic data集中控制 central control; central-station control 集成电路 integrated circuit建筑规范 building specification; building code; building standard减速器 speed reducer; gear reducer 简明扼要 concise and tu the point 降低生产成本 reduce costs of production 校核 verify; check结构力学 structural mechanics结构特点 design features接线图 wiring diagram; cinnection diagram静电感应 static induction聚乙烯 polythene; polyethylene聚合物 polymer聚苯乙烯 polystyrene; styrene resin 聚氯乙烯 polyvinyl chloride绝热层 heat insulating layer交货时间 time of Delivery焦尔 joule焦炭 Coke结焦 clinkeringK贝肯巴赫 Karl-Becenbach控制门 control gate控制开关 control switch控制电源 control power supply控制台 control desk控制系统 control system控制室 control room控制程序 control program; control sequence 控制器 controller; governor控制箱 control boxL冷却 cool;chill;cooling;quenching;refrigerating 冷却系统 cooling system炉压控制 furnace pressure control 冷弯 cold bending理论力学 theoretical mechanics联锁系统图 interlock system diagram 联锁信号 interlocking signal裂纹 cracking; flaw; crack; fracture; crackle 临时加固 be temporarily stiffened 六角螺母 hexagon nut流速 flow velocity流量 flow rate重量流量 weight flow质量流量 mass flow体积流量 volume flow流量计 flowmeter; flow meter; flow gauge 流程图 flow diagram; flow chart; flowscheme 炉型 furnace profile硫化物 sulfide硫酸盐 sulfate; sulphate逻辑电路 logical circuit; logic circuit 螺母 nut螺丝 screw螺钉 screw螺栓 bolt螺旋给料机 screw feeder; worm feeder 螺旋运输机 screw conveyor; worm conveyorM密度 density麦尔兹 MAERZ模拟图 mimic display diagrame密封 seal;seal up;sealing up目录 contents; list; table; inventoryN浓度 concentrated;thick;dense;strong耐火材料 refractory material; refractory 耐火度 refractoriness耐磨材料 anti-frication metal能量手衡 persistence of energy; conservation of energyO总运转费用(总操作费用) Total operating Expense总需氧量 Total Oxygen demandP平均温度 Temperature,Mean排烟系统 fume exhaust system排出故障 remedy the trouble; trouble shooting排出障碍 clear away obstacles配电室 switch room配电箱 distribution cubicle 配线图 allocation plan膨胀系数 expansion coefficientQ气体燃料 gas fuel气缸 cylinder; air cylinder 气态 gaseous state起始位置 initial position强制循环 forced circulation清晰度 resolution; distinctnessR燃耗 burning-out燃料系统 fuel system燃料 fuel material燃料Combustible①易燃的,可燃的②可燃物,燃烧 Combustion燃烧温度 Combustion temperature 燃烧过程 Combustion process热工仪表 heat engineering instrument 热工测量 thermal measurement热电偶 thermocouple热膨胀 thermal expansion; thermal dilatation 热膨胀系数 thermal expansion factor 热效率 heat efficiency热平衡 heat balance人工焊接 manual welding人员配备 personnel arrangement; personnel organization 熔断器 fuse; cartridge fuse 润滑油 lubrication oil润滑脂 lubricating grease软件 Software软件成本 Software cost软件灵活性 Software flexibility 软件冗余(法) Software redundancy软件可靠性 Software reliabilityS石灰 Lime石灰石 Lime-ston设备 Equipment;plant;appliance;device;unit;installation 设备表 Tabel of Equipment设计范围 scope of design设计图纸 design drawings设计说明 design specification设计说明书 design specification渗透性 permeability生产率 furnace production rate 生产成本 production cost生产条件 condition of production 生产流process flow;production flow; production process 生产能力 productivity; capacity 实际尺寸 practical applications 施工进度表 work-schedule施工技术 construction technique 施工图 working drawing施工图目录 list of working drawing 施工要求 constructing requirement 施工验收技术规范 technical code for work and acceptance 湿度控制 humidity control数字控制 digital control三相 Three phase时间/质量/成本 T/Q/C time/Quality/Cost 技术质量鉴定 TQE technical Quality Evaluation 烧失量 loss on ignition;ignition loss 竖窑 shaft kiln;vertical kiln 送风 air-supply;air supply送气 air-in;air-feedT天然气 natural gas吨 ton探测器 detector; finder; prober; feeler;sensor 统计图 statistical chart图纸目录 list of drawings; drawing list 脱硫 desulfurizeW无焰燃烧 flameless combustion完全燃烧 complete combustion不完全燃烧 incomplete combustion万用电表 multimeter; avometer温差电偶仪表 thermocouple instrument 温度继电器 temperature relay蜗轮减速器 worm reducer温度 temperature温度范围 temperature range温度曲线 curve of temperatureX型号 type箱式加热用电阻炉 box type resistance furnace 橡皮垫圈 rubber washer橡胶垫圈 rubber gasket消烟除尘 eliminate smoke and dust 信号发生器 signal generator; signal oscillator 信号灯 signal lamp; signal light 信号继电器 signal relay性能说明书 statement of performanceY有焰燃烧 flame combustion液体燃料 liquid fuel原料 raw material烟囱 chimney;stack;smokestack;stovepipe烟道 flue烟煤 bituminous coal;soft coal;bitumite 亚硫酸钠 sodium sulfite压力 intensity of pressure绝对压力 absolute pressure表压力 gauge pressure压力传感器 pressure transducer氧化 oxidation氧化钙 calcium oxide仪表误差 instrument error仪表盘 instrument board验收标准 acceptance standard;acceptance level 照明线路 lighting line照明配电板 lighting panel扬尘 kick up dust余热利用 waste-heat recovery; waste heat utilization 预热 preheat;warm-up; preheating;preliminary heating 预热段 preheat sectionZ振动器 vibrator指示灯 indicator lamp装配图 assembly drawing总线路图 complete schematic diagram 总压力 Total pressure。
Chemical Engineering English-part 3
3.2.2 Plate heat exchanger板式换热器
Another type of heat exchanger is the plate heat exchanger. One is composed of multiple, thin, slightly-separated plates that have very large surface areas and fluid flow passages for heat transfer. This stacked-plate arrangement can be more effective, in a given space, than the shell and tube heat exchanger. Advances in gasket垫 片 and brazing焊接 technology have made the plate-type heat exchanger increasingly practical.
There are several thermal design features that are to be taken into account when designing the tubes in the shell and tube heat exchangers. These include:
3.2.1.5 Tube corrugation 波纹管 This type of tubes, mainly used for the inner tubes, increases the turbulence of the fluids and the effect is very important in the heat transfer giving a better performance.
荷兰杜克燃烧器和烧氨炉
SRU BURNER AND SCO 荷兰杜克硫回收燃烧器和烧氨炉
Duiker Combustion Engineers B.V. 荷兰杜克燃烧工程公司
Slide nr. : 1/33 2015
李伟强 13911772951 2015
Duiker
Combustion Engineers
荷兰杜克(Duiker)全球和国内业绩最多的硫回收燃烧器厂商 13911772951
Duiker
Combustion Engineers
杜克烧氨炉(SCO)
Ammonia Destruction with SRU 制硫炉燃烧器烧氨机理
Recommended max. NH3 concentration推荐最高烧氨浓度: 30%
Over 200 burners have been installed, world-wide, with a wide range of ammonia concentrations/提供200多个烧氨烧嘴,业绩最多
Keep the record for Higher concentrate Nh3 deconstruction/保持最高烧氨 记录
Proper design设计正确
Turn-down操作调节比大
Ignition and Flame safeguarding高效点火及火焰监控
Duiker
Slide nr. : 5/33 2015
Combustion Engineers
LMV Burner principle/LMV燃烧器原理
2 NH3 + 3/2 O2 = N2 + 3 H2O (1)氨的燃烧分解
吸收式热泵在农村地区余热资源回收中的应用
吸收式热泵在农村地区余热资源回收中的应用摘要:在我国农村可以使用吸收式热泵将各种余热资源回收利用。介绍了吸收式热泵的原理,讨论了吸收式热泵在农村地区余热资源回收利用的方式,为农村余热资源的回收利用指出了研究方向。关键词:吸收式热泵;农村;余热;回收利用Application of Absorption Heat Pump in Waste Heat Resource Recycling in Rural AreasAbstract: In rural areas, all kinds of waste heat resources could be recycled by absorption heat pump. The principle of the absorption heat pump was introduced. The mode of absorption heat pump in rural areas was discussed, and the prospects of waste heat recovery in rural areas was also proposed.Key words: absorption heat pump; rural areas; waste heat; recycling utilization在我国农村有些地区主要以柴禾为生活燃料,而这些燃料的利用率比较低,一般都只有10%左右。即使采用节能灶,利用率也不到30%。吸收式热泵以消耗热能为补偿,实现从低温热源向高温热源的泵热过程[1]。与压缩式热泵相比,它突出的优点在于可以直接利用各种热能来驱动,除可以利用燃料燃烧的高势能外,还可以利用自然界中大量存在的低势能,如太阳能、地热、工业废水与乏汽中的余热等。因此利用低级能源驱动的吸收式热泵,不仅具有节能作用,而且能减少温室气体的排放。随着现代农业的高速发展,能源的需求量越来越大。而农村地区很多场合所需要的低温(50~130℃)热能,却是以高热值的一次能源转换获得的,与此同时,大量农业生产中的余热被丢弃,导致能源利用率很低。所以,针对我国农村地区的吸收式热泵节能及应用研究,具有较高的经济效益和环保效益。1吸收式热泵的工作原理吸收循环按用途不同可以分为制冷、热泵、热变换器三类,其中后两者都可以称为吸收式热泵。其理论循环如图1所示。通常所说吸收式热泵(Absorption heat pumps,简称AHP)指的是第一类吸收式热泵,利用高温热能驱动,回收低温热量,提高能源利用率;第二类吸收式热泵又称吸收式热变换器(Absorption heat transformer,简称AHT),AHT利用中低温废热驱动,将部分废热能量转移到更高温位加以利用。无论是哪一类吸收式热泵,其节能的方法都是充分利用了低级能源,从而减少了高级能源的消耗。因此,利用吸收式热泵回收余热等低级能源,可提高一次能源利用率,同时还可以减少因燃料燃烧产生SO2、NO2、烟尘等所造成的环境污染。吸收式热泵的工作原理与制冷机相同,都是按照逆卡诺循环工作的,所不同的只是工作温度范围不一样。热泵在工作时,它本身消耗一部分能量,把环境介质中储存的能量加以挖掘,通过传热工质循环系统提高温度进行利用,而整个热泵装置所消耗的功仅为输出功中的一小部分,因此,采用热泵技术可以节约大量高品位能源。水从高处流向低处,热由高温物体传递到低温物体,这是自然规律。然而,在现实生活中,为了农业灌溉、生活用水等的需要,人们利用水泵将水从低处送到高处。同样,在能源日益紧张的今天,为了回收通常排到大气中的低温热气、排到河川中的低温热水等中的热量,热泵被用来将低温物体中的热能传送至高温物体,然后高温物体来加热水或采暖,使热量得到充分利用。所以热泵实质上是一种热量提升装置,热泵的作用是从周围环境中吸取热量,并把它传递给被加热的对象(温度较高的物体),其供暖利用过程如图2所示(图2中1、2、3为循环水泵)。2农村地区吸收式热泵的主要应用2.1水空调的应用空调器的作用已为人们认识和接受,但其昂贵的价格和巨大的耗电量令广大工薪阶层和普通老百姓可望而不可及。电风扇只用于夏季但不能调节温度,暖气片只用于冬季但制热效果不理想,而水空调是制冷又制热的理想空调。水空调是利用家庭做饭时炉灶的余热,将升温的热水经过水管送进空调器内蒸发器中,同时空调器内的风机将室内冷空气吸入蒸发器内,利用热力学原理,二者发生能量交换。水将携带的热量经管壁传给翅片并被冷空气吸收,吸热后冷空气温度升高,并由风机吹入室内;放热后的水温度降低并经回水管道重新流回炉内加热。如此往复循环,室内冷空气不断吸收水放出的热量而温度升高,从而实现制热的目的[2]。整个过程因其设计制造带有自循环功能,无需任何辅助动力,自然重力循环,此项功能彻底克服了其他空调依靠泵才能实现循环的弊端。夏季水空调充分利用不超过17℃的地表水,作为冷源形成良性循环。经表冷器(蒸发器)进行能量交换,可以在炎热高温时吹出20℃左右的冷风,冷热交换使室内温度控制在25℃左右,既无任何污染,又极大地节约了电能,耗电量是一般空调(氟利昂)的1/10[3]。这项技术的应用有很大的前景,在我国农村,灶炉的使用燃料大多效率低,所以热泵可以大幅度地提高燃料的利用率,同时农村用水也多是地下水,这都为热泵的利用提供了良好的环境。2.2沼气中的利用沼气是一种可再生能源,在农村,它的原料来源很广,农业的废弃物、秸秆、生活垃圾等都是其发酵的原料。沼气是一种优质的气体燃料,据试验测定,1 m3沼气完全燃烧可产生约23MJ的热量,即使按60%的热效率计算,也相当于0.6~0.7 kg汽油或4 kg木材燃烧产生的热值。一口10 m3的沼气池,一年可产沼气400 m3,造价仅1 000余元,而其产生的热值相当于节省了1 000~2 000 kg的煤,或节电2 000 kW·h[4]左右。沼气与液化石油气或煤气的数据比较见表1。沼气的比价最低,热值仅次于液化石油气,原料成本也最低。所以,如果将农村沼气作为热源驱动吸收式热泵,就可充分发挥两者的节能、环保和经济上的优势,产生较高的经济和环保效益。虽然吸收式热泵与其他供热方式相比,初期投资成本较高,但热效率及一次能源利用率也高于其他供热方式。例如,热泵用于供热的能量约为燃料能量的1.3倍,与燃煤和燃气锅炉相比,供热的一次能源利用率可分别提高110%和75%以上[5],所以其综合经济效益较高。而且,在我国以煤为主的能源结构和供电效率不高的特定条件下,用沼气作燃料驱动的吸收式热泵的温室气体排放最低,有利于环境保护。近年来国家为了建设生态化农村,投资建设了很多沼气池。因此,可考虑在条件较好的地区建立一定规模的集中式沼气站,以沼气为燃料驱动较大型吸收式热泵,不仅可解决农村土特产品加工过程中的加热干燥问题,而且有利于改善食品加工中的卫生条件,保证食品的品质,同时又减少了温室气体的排放。据统计,如以沼气为能源并结合各领域的节能技术推广应用于农村地区,农村生产和生活中CO2和SO2排放量每年可分别减少1.823×1010 kg和7.130×107 kg,有利于促进农村生态环境的改善。2.3热泵热水器的应用目前市场上热泵热水器种类很多,主要有太阳能助推型、水源和空气源3种系列。太阳能助推式热泵是热泵与太阳能技术结合使用的一种热泵技术;水源热泵是利用一定温度的水源(20℃以上)作为热源,以制冷剂为媒介,将水源中的热量吸收后经压缩机压缩制热,通过热交换器与冷水交换热量以达到取暖和制取热水的目的,水源热泵必须有一定温度和流量的水源;空气源热泵以水源热泵类似方法从空气中获得热量来加热水[6]。3种热泵中,空气源热泵受到的条件限制最小,发展空间最大,因此这里着重对空气源热泵热水器进行分析讨论,其工作流程如图3所示。热泵热水器由压缩机、热交换器、轴流风扇、保温水箱、水泵、储液罐、过滤器、电子膨胀阀和电子自动控制器等组成。接通电源后,轴流风扇开始运转,室外空气通过蒸发器进行热交换,温度降低后的空气被风扇排出系统,同时,蒸发器内部的工质吸热汽化被吸入压缩机,压缩机将这种低压工质气体压缩成高温、高压气体送入冷凝器,被水泵强制循环的水也通过冷凝器,被工质加热后送去供用户使用,而工质被冷却成液体,该液体经膨胀阀节流降温后再次流入蒸发器,如此反复循环工作,空气中的热能被不断“泵”送到水中,使保温水箱里的水温逐渐升高,最后达到55℃左右,正好适合人们洗浴,这就是空气源热泵热水器的基本工作原理[7]。热泵热水器有许多优点:①高效节能。其输出能量与输入电能之比即能效比(COP)一般在2.00~6.00之间,平均可达到3.00以上,而普通电热水锅炉的COP不大于0.95,燃气、燃油锅炉的COP一般只有0.60~0.80,燃煤锅炉的COP更低,一般只有0.30~0.70;②环保无污染。通过吸收环境中的热量来制取热水,所以与传统型的煤、油、气等燃烧加热制取热水方式相比,无任何燃烧外排物,制冷剂对臭氧层零污染,是一种低能耗的环保产品;③运行安全可靠。整个系统的运行无传统热水器(燃油、燃气、燃煤)中可能存在的易燃、易爆、中毒、腐蚀、短路、触电等危险,热水通过高温冷媒与水进行热交换得到,电与水在物理上分离,是一种完全可靠的热水系统;④使用寿命长,维护费用低。使用寿命可长达15年以上,设备性能稳定,运行安全可靠,并可实现无人操作(全自动化智能程序控制);⑤可一年四季全天候运行。该机组热源来源广泛,包括阳光、雨水、空气、地下水和土壤等,无论白天、黑夜、室内、室外、地下室,不管晴天、阴天、刮风下雨或下雪都能照常工作。这样简单的操作对农村用户有着重要的意义[8]。3小结热泵是回收利用低温热能的有效手段之一,吸收式热泵对能源的合理利用和余热的回收效果显著,从节能和环境保护的角度,开发和推广吸收式热泵十分必要。吸收式热泵在农村地区的节能应用,特别是对农村余热资源的回收利用还有很大的潜力,有待充分的挖掘,一般农业上热能利用率为40%左右,可回收利用的余热资源约为余热资源的60%左右,因此吸收式热泵在我国农村地区未来推广应用的市场前景十分广阔。参考文献:[1] 郁永章. 热泵原理与应用[M]. 北京:机械工业出版社,1989.[2] 方贵银. 空气——水热泵系统的节能分析[J]. 安徽工学院学报,1995,14(3):37-40.[3] 韩厚德,卢士勋. 地下冷源在制冷空调工程中的应用研究[J]. 制冷学报,1997(2):17-21.[4] 崔文富. 直燃型溴化锂吸收式制冷工程设计[M]. 北京:中国建筑工业出版社,2000.[5] 王其荣. 发展沼气是可持续发展的有效途径[J]. 技术经济, 2002(3):10-12.[6] 荆有印,王保生,刘同欣,等. 热泵循环的分析与研究[J]. 暖通空调,2005,35(1):47-48.[7] 王越. 机械驱动式分离型热管-热环的研究[D]. 天津:天津轻工业学院,2000.[8] 孙立香. 双源供暖系统的研究[D]. 北京:华北电力大学,2001.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8. WASTE HEAT RECOVERY8.1 IntroductionWaste heat is heat, which is generated in a process by way of fuel combustion or chemical reaction, and then “dumped” into the environment even though it could still be reused for some useful and economic purpose. The essential quality of heat is not the amount but rather its “value”. The strategy of how to recover this heat depends in part on the temperature of the waste heat gases and the economics involved.Large quantity of hot flue gases is generated from Boilers, Kilns, Ovens and Furnaces. If some of this waste heat could be recovered, a considerable amount of primary fuel could be saved. The energy lost in waste gases cannot be fully recovered. However, much of the heat could be recovered and loss minimized by adopting following measures as outlined in this chapter.Heat Losses –QualityDepending upon the type of process, waste heat can be rejected at virtually any temperature from that of chilled cooling water to high temperature waste gases from an industrial furnace or kiln. Usually higher the temperature, higher the quality and more cost effective is the heat recovery. In any study of waste heat recovery, it is absolutely necessary that there should be some use for the recovered heat. Typical examples of use would be preheating of combustion air, space heating, or pre-heating boiler feed water or process water. With high temperature heat recovery, a cascade system of waste heat recovery may be practiced to ensure that the maximum amount of heat is recovered at the highest potential. An example of this technique of waste heat recovery would be where the high temperature stage was used for air pre-heating and the low temperature stage used for process feed water heating or steam raising.Heat Losses – QuantityIn any heat recovery situation it is essential to know the amount of heat recoverable and also how it can be used. An example of the availability of waste heat is given below:• Heat recovery from heat treatment furnaceIn a heat treatment furnace, the exhaust gases are leaving the furnace at 900o C at the rate of 2100 m3/hour. The total heat recoverable at 180o C final exhaust can be calculated asQ = V x ρ x C p x ∆TQ is the heat content in kCalV is the flowrate of the substance in m3/hrρ is density of the flue gas in kg/m 3C p is the specific heat of the substance in kCal/kg o C ∆T is the temperature difference in o CCp (Specific heat of flue gas) = 0.24 kCal/kg/o CHeat available (Q) = 2100 x 1.19 x 0.24 x (900-180) = 4,31,827 kCal/hrBy installing a recuperator, this heat can be recovered to pre-heat the combustion air. The fuel savings would be 33% (@ 1% fuel reduction for every 22o C reduction in temperature of flue gas.8.2 Classification and ApplicationIn considering the potential for heat recovery, it is useful to note all the possibilities, and grade the waste heat in terms of potential value as shown in the following Table 8.1TABLE 8.1 WASTE SOURCE AND QUALITYS.No. SourceQuality1. Heat in flue gases. The higher the temperature, the greater thepotential value for heat recovery2. Heat in vapour streams. As above but when condensed, latent heat alsorecoverable.3 Convective and radiant heat lost from exterior ofequipmentLow grade – if collected may be used for spaceheating or air preheats. 4. Heat losses in cooling water. Low grade – useful gains if heat is exchangedwith incoming fresh water.5. Heat losses in providing chilled water or in the disposal of chilled water.a)High grade if it can be utilized to reduce demand for refrigeration.b) Low grade if refrigeration unit used as a form of heat pump.6. Heat stored in products leaving the processQuality depends upon temperature.7. Heat in gaseous and liquid effluents leaving process. Poor if heavily contaminated and thus requiringalloy heat exchanger.High Temperature Heat RecoveryThe following Table 8.2 gives temperatures of waste gases from industrial process equipment in the high temperature range. All of these results from direct fuel fired processes.Medium Temperature Heat RecoveryThe following Table 8.3 gives the temperatures of waste gases from process equipment in the medium temperature range. Most of the waste heat in this temperature range comes from the exhaust of directly fired process units.TABLE 8.2 TYPICAL WASTE HEAT TEMPERATURE AT HIGHTEMPERATURE RANGE FROM VARIOUS SOURCES Types of Device Temperature, o CNickel refining furnace 1370 –1650Aluminium refining furnace 650-760Zinc refining furnace 760-1100Copper refining furnace 760- 815Steel heating furnaces 925-1050Copper reverberatory furnace 900-1100Open hearth furnace 650-700Cement kiln (Dry process) 620- 730Glass melting furnace 1000-1550Hydrogen plants 650-1000Solid waste incinerators 650-1000Fume incinerators 650-1450TABLE 8.3 TYPICAL WASTE HEAT TEMPERATURE AT MEDIUM TEMPERATURE RANGE FROM VARIOUS SOURCESType of Device Temperature, o CSteam boiler exhausts 230-480Gas turbine exhausts 370-540Reciprocating engine exhausts 315-600Reciprocating engine exhausts (turbo charged) 230- 370Heat treating furnaces 425 - 650Drying and baking ovens 230 - 600Catalytic crackers 425 - 650Annealing furnace cooling systems 425 - 650Low Temperature Heat RecoveryThe following Table 8.4lists some heat sources in the low temperature range. In this range it is usually not practical to extract work from the source, though steam production may not be completely excluded if there is a need for low-pressure steam. Low temperature waste heat may be useful in a supplementary way for preheating purposes.TABLE 8.4TYPICAL WASTE HEAT TEMPERATURE AT LOWTEMPERATURE RANGE FROM VARIOUS SOURCESo CSource Temperature, Process steam condensate 55-88Cooling water from:Furnace doors 32-55Bearings 32-88Welding machines 32-88Injection molding machines 32-88Annealing furnaces 66-230Forming dies 27-88Air compressors 27-50Pumps 27-88Internal combustion engines 66-120Air conditioning and refrigeration condensers 32–43Liquid still condensers 32-88Drying, baking and curing ovens 93-230Hot processed liquids 32-232Hot processed solids 93-2328.3 Benefits of Waste Heat RecoveryBenefits of ‘waste heat recovery’ can be broadly classified in two categories:Direct Benefits:Recovery of waste heat has a direct effect on the efficiency of the process. This isreflected by reduction in the utility consumption & costs, and process cost.Indirect Benefits:a) Reduction in pollution: A number of toxic combustible wastes such as carbonmonoxide gas, sour gas, carbon black off gases, oil sludge, Acrylonitrile and otherplastic chemicals etc, releasing to atmosphere if/when burnt in the incineratorsserves dual purpose i.e. recovers heat and reduces the environmental pollutionlevels.b) Reduction in equipment sizes: Waste heat recovery reduces the fuelconsumption, which leads to reduction in the flue gas produced. This results inreduction in equipment sizes of all flue gas handling equipments such as fans,stacks, ducts, burners, etc.c) Reduction in auxiliary energy consumption: Reduction in equipment sizesgives additional benefits in the form of reduction in auxiliary energy consumptionlike electricity for fans, pumps etc..8.4 Development of a Waste Heat Recovery SystemUnderstanding the processUnderstanding the process is essential for development of Waste Heat Recovery system. This can be accomplished by reviewing the process flow sheets, layout diagrams, piping isometrics, electrical and instrumentation cable ducting etc. Detail review of these documents will help in identifying:a) Sources and uses of waste heatb) Upset conditions occurring in the plant due to heat recovery c) Availability of spaced) Any other constraint, such as dew point occurring in an equipments etc.After identifying source of waste heat and the possible use of it, the next step is to select suitable heat recovery system and equipments to recover and utilise the same.Economic Evaluation of Waste Heat Recovery SystemIt is necessary to evaluate the selected waste heat recovery system on the basis of financial analysis such as investment, depreciation, payback period, rate of return etc. In addition the advice of experienced consultants and suppliers must be obtained for rational decision.Next section gives a brief description of common heat recovery devices available commercially and its typical industrial applications.8.5 Commercial Waste Heat Recovery DevicesRecuperatorsFigure 8.1 Waste Heat Recovery using Recuperator In a recuperator, heat exchange takes place between the flue gases and the air through metallic or ceramic walls. Duct or tubes carry the air for combustion to be pre-heated, the other side contains the waste heat stream. A recuperator for recovering waste heat from flue gases is shown in Figure 8.1.The simplest configuration for a recuperator is the metallic radiation recuperator, which consists of two concentric lengths of metal tubing as shown in Figure 8.2.The inner tube carries the hot exhaust gases while the external annulus carries the combustion air from the atmosphere to the air inlets of the furnace burners. The hot gases are cooled by the incoming combustion air which now carries additional energy into the combustion chamber. This is energy which does not have to be supplied by the fuel;consequently, less fuel is burned for a given furnace loading. The saving in fuel alsomeans aFigure 8.2 Metallic Radiation Recuperator decrease in combustion air and therefore stack losses are decreased not only by lowering the stack gas temperatures but also by discharging smaller quantities of exhaust gas. The radiation recuperator gets its name from the fact that a substantial portion of the heat transfer from the hot gases to the surface of the inner tube takes place by radiative heat transfer. The cold air in the annuals, however, is almost transparent to infrared radiation so that only convection heat transfer takes place to the incoming air. As shown in the diagram, the two gas flows are usually parallel, although the configuration would be simpler and the heat transfer more efficient if the flows were opposed in direction (or counterflow). The reason for the use of parallel flow is that recuperators frequently serve the additional function of cooling theduct carrying away the exhaust gases andconsequently extending its service life.A second common configuration forrecuperators is called the tube type or convective recuperator. As seen in thefigure 8.3, the hot gases are carried through a number of parallel small diameter tubes, while the incoming air to be heated enters a shellsurrounding the tubes and passes overthe hot tubes one or more times in a direction normal to their axes.Figure 8.3 Convective Recuperator If the tubes are baffled to allow the gas to pass over them twice, the heat exchanger is termed a two-pass recuperator; if two baffles are used, a three-pass recuperator, etc. Although baffling increases both the cost of the exchanger and the pressure drop in the combustion air path, it increases the effectiveness of heat exchange. Shell and tube type recuperators are generally more compact and have a higher effectiveness than radiation recuperators, because of the larger heat transfer area made possible through the use of multiple tubes and multiple passes of the gases.Radiation/Convective Hybrid Recuperator:For maximum effectiveness of heat transfer, combinations of radiation and convective designs are used, with the high-temperature radiation recuperator being first followed by convection type.These are more expensive than simple metallic radiation recuperators, but are less bulky.A Convective/radiative Hybrid recuperator is shown in Figure 8.4Figure 8.4 Convective Radiative RecuperatorCeramic RecuperatorThe principal limitation on the heat recovery of metal recuperators is the reduced life of the liner at inlet temperatures exceeding 1100o C. In order to overcome the temperature limitations of metal recuperators, ceramic tube recuperators have been developed whose materials allow operation on the gas side to 1550o C and on the preheated air side to 815o C on a more or less practical basis. Early ceramic recuperators were built of tile and joined with furnace cement, and thermal cycling caused cracking of joints and rapid deterioration of the tubes. Later developments introduced various kinds of short silicon carbide tubes which can be joined by flexible seals located in the air headers.Earlier designs had experienced leakage rates from 8 to 60 percent. The new designs are reported to last two years with air preheat temperatures as high as 700o C, with much lower leakage rates.RegeneratorThe Regeneration which is preferablefor large capacities has been verywidely used in glass and steel meltingfurnaces. Important relations existbetween the size of the regenerator,time between reversals, thickness ofbrick, conductivity of brick and heatstorage ratio of the brick.In a regenerator, the time between thereversals is an important aspect. Longperiods would mean higher thermalstorage and hence higher cost. Alsolong periods of reversal result in loweraverage temperature of preheat and consequently reduce fuel economy. (Refer Figure 8.5).Accumulation of dust and slagging on the surfaces reduce efficiency of the heat transfer as the furnace becomes old. Heat losses from the walls of the regenerator and air in leaks during the gas period and out-leaks during air period also reduces the heat transfer.Heat WheelsFigure 8.6 Heat WheelA heat wheel is finding increasing applications in low to medium temperature waste heat recovery systems. Figure 8.6 is a sketch illustrating the application of a heat wheel.It is a sizable porous disk, fabricated with material having a fairly high heat capacity, which rotates between two side-by-side ducts: one a cold gas duct, the other a hot gas duct. The axis of the disk is located parallel to, and on the partition between, the two ducts. As the disk slowly rotates, sensible heat (moisture that contains latent heat) is transferred to the disk by the hot air and, as the disk rotates, from the disk to the cold air. The overall efficiency of sensible heat transfer for this kind of regenerator can be as high as 85 percent. Heat wheels have been built as large as 21 metres in diameter with air capacities up to 1130 m3 / min.A variation of the Heat Wheel is the rotary regenerator where the matrix is in a cylinder rotating across the waste gas and air streams. The heat or energy recovery wheel is a rotary gas heat regenerator, which can transfer heat from exhaust to incoming gases.Its main area of application is where heat exchange between large masses of air having small temperature differences is required. Heating and ventilation systems and recovery of heat from dryer exhaust air are typical applications.Case ExampleA rotary heat regenerator was installed on a two colour printing press to recover some of the heat, which had been previously dissipated to the atmosphere, and used for dryingstage of the process. The outlet exhaust temperature before heat recovery was often in excess of 100o C. After heat recovery the temperature was 35o C. Percentage heat recovery was 55% and payback on the investment was estimated to be about 18 months. Cross contamination of the fresh air from the solvent in the exhaust gases was at a very acceptable level.Case ExampleA ceramic firm installed a heat wheel on the preheating zone of a tunnel kiln where 7500 m3/hour of hot gas at 300o C was being rejected to the atmosphere. The result was that the flue gas temperature was reduced to 150o C and the fresh air drawn from the top of the kiln was preheated to 155o C. The burner previously used for providing the preheated air was no longer required. The capital cost of the equipment was recovered in less than 12 months.Heat PipeA heat pipe can transfer up to 100 times more thermal energy than copper, the best known conductor. In other words, heat pipe is a thermal energy absorbing and transferring system and have no moving parts and hence require minimum maintenance.Figure 8.7 Heat PipeThe Heat Pipe comprises of three elements – a sealed container, a capillary wick structure and a working fluid. The capillary wick structure is integrally fabricated into the interior surface of the container tube and sealed under vacuum. Thermal energy applied to the external surface of the heat pipe is in equilibrium with its own vapour as the container tube is sealed under vacuum. Thermal energy applied to the external surface of the heat pipe causes the working fluid near the surface to evaporate instantaneously. Vapour thus formed absorbs the latent heat of vapourisation and this part of the heat pipe becomes an evaporator region. The vapour then travels to the other end the pipe where the thermal energy is removed causing the vapour to condense into liquid again, thereby giving upthe latent heat of the condensation. This part of the heat pipe works as the condenser region. The condensed liquid then flows back to the evaporated region. A figure of Heat pipe is shown in Figure 8.7Performance and AdvantageThe heat pipe exchanger (HPHE) is a lightweight compact heat recovery system. It virtually does not need mechanical maintenance, as there are no moving parts to wear out. It does not need input power for its operation and is free from cooling water and lubrication systems. It also lowers the fan horsepower requirement and increases the overall thermal efficiency of the system. The heat pipe heat recovery systems are capable of operating at 315o C. with 60% to 80% heat recovery capability.Typical ApplicationThe heat pipes are used in following industrial applications:a. Process to Space Heating: The heat pipe heat exchanger transfers the thermal energyfrom process exhaust for building heating. The preheated air can be blended if required. The requirement of additional heating equipment to deliver heated make up air is drastically reduced or eliminated.b. Process to Process: The heat pipe heat exchangers recover waste thermal energyfrom the process exhaust and transfer this energy to the incoming process air. The incoming air thus become warm and can be used for the same process/other processes and reduces process energy consumption.c. HVAC Applications:Cooling: Heat pipe heat exchangers precools the building make up air in summer and thus reduces the total tons of refrigeration, apart from the operational saving of the cooling system. Thermal energy is supply recovered from the cool exhaust and transferred to the hot supply make up air.Heating: The above process is reversed during winter to preheat the make up air. The other applications in industries are:• Preheating of boiler combustion air• Recovery of Waste heat from furnaces• Reheating of fresh air for hot air driers• Recovery of waste heat from catalytic deodorizing equipment• Reuse of Furnace waste heat as heat source for other oven• Cooling of closed rooms with outside air• Preheating of boiler feed water with waste heat recovery from flue gases in the heat pipe economizers.• Drying, curing and baking ovens• Waste steam reclamation• Brick kilns (secondary recovery)• Reverberatory furnaces (secondary recovery)•Heating, ventilating and air-conditioning systemsCase ExampleSavings in Hospital Cooling SystemsVolume 140 m 3/min ExhaustRecovered heat 28225 kCal/hrPlant capacity reduction 9.33 Tons of RefrigerationElectricity cost (operation) Rs. 268/Million kCal (based on 0.8 kW/TR) Plant capacity reduction cost (Capital) Rs.12,000/TRCapital cost savings Rs. 1,12,000/-Payback period 16570 hoursEconomiserIn case of boiler system, economizercan be provided to utilize the flue gasheat for pre-heating the boiler feedwater. On the other hand, in an airpre-heater, the waste heat is used toheat combustion air. In both the cases,there is a corresponding reduction inthe fuel requirements of the boiler. Aeconomizer is shown in Figure 8.8.Figure 8.8 Economiser For every 220 C reduction in fluegas temperature by passing throughan economiser or a pre-heater, there is1% saving of fuel in the boiler. Inother words, for every 60 C rise in feed water temperature through aneconomiser, or 200C rise in combustion air temperature through an air pre-heater, there is 1% saving of fuel in the boiler.Shell and Tube Heat Exchanger:When the medium containing waste heat is a liquid or a vapor which heats another liquid, then the shell and tube heat exchanger must be used since both paths must be sealed to contain the pressures of their respective fluids. The shell contains the tube bundle, and usually internal baffles, to direct the fluid in the shell over the tubes in multiple passes. The shell is inherently weaker than the tubes so that the higher-pressure fluid is circulated in the tubes while the lower pressure fluid flows through the shell. When a vapor contains the waste heat, it usually condenses, giving up its latent heat to the liquid being heated. In this application, the vapor is almost invariably contained within the shell. If the reverse is attempted, the condensation of vapors within small diameter parallel tubes causes flow instabilities. Tube and shell heat exchangers are available in a wide range of standard sizes with many combinations of materials for the tubes and shells. A shell and tube heat exchanger is illustrated in Figure 8.9.Figure 8.10 Plate Heat ExchangerTypical applications of shell and tube heat exchangers include heating liquids with the heat contained by condensates from refrigeration and air-conditioning systems; condensate from process steam; coolants from furnace doors, grates, and pipe supports; coolants from engines, air compressors, bearings, and lubricants; and the condensates from distillation processes.Figure 8.9 Shell & Tube Heat ExchangerPlate heat exchangerThe cost of heat exchange surfacesis a major cost factor when thetemperature differences are notlarge. One way of meeting thisproblem is the plate type heatexchanger, which consists of aseries of separate parallel platesforming thin flow pass. Each plateis separated from the next bygaskets and the hot stream passesin parallel through alternativeplates whilst the liquid to be heatedpasses in parallel between the hotplates. To improve heat transferthe plates are corrugated.Hot liquid passing through a bottomport in the head is permitted to pass upwardsbetween every second plate while cold liquid at the top of the head is permitted to pass downwards between the odd plates. When the directions of hot & cold fluids are opposite, the arrangement is described as counter current. A plate heat exchanger is shown in Figure 8.10.Typical industrial applications are:u Pasteurisation section in milk packaging plant.u Evaporation plants in food industry.Run Around Coil ExchangerIt is quite similar in principle to the heat pipe exchanger. The heat from hot fluid is transferred to the colder fluid via an intermediate fluid known as the Heat Transfer Fluid. One coil of this closed loop is installed in the hot stream while the other is in the cold stream. Circulation of this fluid is maintained by means of la circulating pump.It is more useful when the hot land cold fluids are located far away from each other and are not easily accessible.Typical industrial applications are heat recovery from ventilation, air conditioning and low temperature heat recovery.Waste Heat BoilersWaste heat boilers are ordinarily water tube boilers in which the hot exhaust gases from gas turbines, incinerators, etc., pass over a number of parallel tubes containing water. The water is vaporized in the tubes and collected in a steam drum from which it is drawn off for use as heating or processing steam.Because the exhaust gases are usually in the medium temperature range and in order to conserve space, a more compact boiler can be produced if the water tubes are finned in order to increase the effective heat transfer area on the gas side. The Figure 8.11 shows a mud drum, a set of tubes over which the hot gases make a double pass, and a steam drum which collects the steam generated above the water surface. The pressure at which the steam is generated and the rate of steam production depends on the temperature of waste heat. The pressure of a pure vapor in the presence of its liquid is a function of the temperature of the liquid from which it is evaporated. The steam tables tabulate this relationship between saturation pressure and temperature. If the waste heat in the exhaust gases is insufficient for generating the required amount of process steam, auxiliary burners which burn fuel in the waste heat boiler or an after-burner in the exhaust gases flue are added. Waste heat boilers are built in capacities from 25 m3 almost 30,000 m3 / min. of exhaust gas.Figure 8.11 Two-Pass Water Tube Waste Heat Recovery BoilerTypical applications of waste heat boilers are to recover energy from the exhausts of gas turbines, reciprocating engines, incinerators, and furnaces.Case ExampleGases leaving a carbon black plant rich in carbon monoxide which are vented to the atmosphere.Equipment Suggested Carbon monoxide incinerator along with wasteheat boiler and steam turbineEstimated equipment cost Rs.350 LakhsNew boiler efficiency 80%Savings by way of power generated ~Rs.160 Lakhs /annumIndirect benefits Reduction in pollution levelsHeat Pumps:In the various commercial options previously discussed, we find waste heat being transferred from a hot fluid to a fluid at a lower temperature. Heat must flow spontaneously “downhill”, that is from a system at high temperature to one at a lower temperature. When energy is repeatedly transferred or transformed, it becomes less and less available for use. Eventually that energy has such low intensity (resides in a mediumat such low temperature) that it is no longer available at all to perform a useful function.It has been taken as a general rule of thumb in industrial operations that fluids with temperatures less than 120o C (or, better, 150o C to provide a safe margin), as limit for waste heat recovery because of the risk of condensation of corrosive liquids. However, as fuel costs continue to rise, even such waste heat can be used economically for space heating and other low temperature applications. It is possible to reverse the direction of spontaneous energy flow by the use of a thermodynamic system known as a heat pump. The majority of heat pumps work on the principle of the vapour compression cycle. In this cycle, the circulating substance is physically separated from the source (waste heat, with a temperature of T in) and user (heat to be used in the process, T out) streams, and isre-used in a cyclical fashion, therefore called 'closed cycle'. In the heat pump, the following processes take place:1. In the evaporator the heat is extracted from the heat source to boil the circulatingsubstance;2. The circulating substance is compressed by the compressor, raising its pressureand temperature; The low temperature vapor is compressed by a compressor,which requires external work. The work done on the vapor raises its pressure and temperature to a level where its energy becomes available for use3. The heat is delivered to the condenser;4. The pressure of the circulating substance (working fluid) is reduced back to theevaporator condition in the throttling valve, where the cycle repeats.The heat pump was developed as a space heating system where low temperature energy from the ambient air, water, or earth is raised to heating system temperatures by doing compression work with an electric motor-driven compressor. The arrangement of a heat pump is shown in figure 8.12.Figure 8.12 Heat pump。