CMOS模拟集成电路实训2016-Bandgap
模拟集成电路设计实习讲义_SCUT_ICC

模拟集成电路设计实习培训内容介绍培训目的经过本培训,学员将会学到在模拟集成电路设计过程中的绝大部分环节。
1.学会使用数模混合集成电路设计EDA工具进行简单的模拟集成电路设计的流程,包括Cadence的Virtuoso原理图输入、版图设计,Cadence的Spectre电路仿真,及Mentor Graphics 的Calibre版图规则检查(DRC)、电路图版图一致性检查(LVS)。
2.学会使用三大常用的仿真方式(DC,AC,以及Transient)来对电路进行性能的验证与设计参数的调整培训内容本培训首先设计一个运算放大器,在该放大器中采用了一个理想的电流源做偏置。
接着设计一个带隙基准源(Bandgap reference)来提供这个运算放大器中用到的电流源,然后对整个电路进行仿真验证。
整个电路Lab_top电原理图以及仿真激励如下图所示。
最后,参加培训的学员要求对所设计的Bandgap reference进行版图设计以及DRC、LVS检查,时间充裕的学员进一步设计运算放大器的版图及对其进行DRC/LVS的检查。
图1-0 Lab_top 原理图上图中的运算放大器(opam)电路如下图所示,值得注意的是,该运算放大器需要一个current sink做偏置,该current sink由上图中的NM1来提供。
其中的bandgap电路如下图。
这里看上去好像电压源并没有和电路直接连在一起,但是由于系统中所有标记相同的点电位都相同,所以,图中的这种接法等效于直接把V4接到电路的正负极。
图1-14 加入激励源后的图二、Spectre 仿真 (opam)(1)直流分析(DC Analyses)我们在共模输入管脚接一个可以调节的电压源VCM ,使得这个电压源的电压从0升到高到3.3v 然后我们测量output 端的电压。
从图1-14中的Tools 菜单->Analog Environment 调出spectreV4AnalogLib/vsource/DCIbiasAnalogLib/isource/DCV0与V1 AnlogLib/vsinVCMAnalogLib/vsource/DC图2-1 spectre仿真界面。
带隙基准电压源(Bandgap)设计范例

由于 Q12 由 10 个发射极面积为单位面积的 NPN 组成(N=10) ,则
∆VBE = VT ln(
J 19 ) = VT ln N J 12
(1.18)
经过分压网路发大后和 VBE11 叠加后产生 VREF: R19 + R 20 + R 21 V REF = VT ln N + VBE11 R21 在室温(25o C)下, ∂V BE VBE − (3 + m)VT − E g / q = ≈ −2 mV / ° K ∂T T
( 1.19 )
( 1.20 )
∂∆VBE k = ln N ≈ +0.2mV / ° K ∂T q
(1.21)
若要在 25o C 实现温度系数为零,则要求 R19 + R20 + R 21 ≈ 10 R21 即
R19 + R20 = 9R 21
3) I BIAS 2 = VREF − VBEQ3 RR 8
I BIAS = I 1 =
∆VBE VT ln 2 = Rnew1 Rnew1
(1.14) 在室温下,VT =0.026V
I BIAS = 0.018 A Rnew1
2) 当考虑沟道长度调制效应
I 1 = K 7 [VG 7 − (VDD − I 1R12 ) − VTH 7 ] 2 [1 + λ (VG 7 − (VDD − I 1 R12 )]
(1.15)
I 2 = K8 [VG 8 − (V DD − I 2 R13 ) − VTH 8 ] 2 [1 + λ (VBEQ25 + I 2 R14 − VDD + I 2 R13 )] (1.16)
电子科大集成电路原理实验报告-CMOS模拟集成电路设计与仿真标准实验报告

电子科大集成电路原理实验报告-CMOS模拟集成电路设计与仿真标准实验报告电子科技大学微电子与固体电子学院集成电路原理与设计CMOS模拟集成电路设计与仿真电子科技大学实验报告实验地点:211楼606 实验时间:2014.6.7一、实验室名称:微电子技术实验室二、实验项目名称:CMOS模拟集成电路设计与仿真三、实验学时:4四、实验原理参照实验指导书。
五、实验目的本实验是基于微电子技术应用背景和《集成电路原理与设计》课程设置及其特点而设置,为IC设计性实验。
其目的在于:根据实验任务要求,综合运用课程所学知识自主完成相应的模拟集成电路设计,掌握基本的IC设计技巧。
学习并掌握国际流行的EDA仿真软件Cadence的使用方法,并进行电路的模拟仿真。
六、实验内容1、UNIX操作系统常用命令的使用,Cadence EDA仿真环境的调用。
2、设计一个运算放大器电路,要求其增益大于40dB, 相位裕度大于60?,功耗小于10mW。
3、根据设计指标要求,选取、确定适合的电路结构,并进行计算分析。
4、电路的仿真与分析,重点进行直流工作点、交流AC分析、瞬态Trans分析、建立时间小信号特性和压摆率大信号分析,能熟练掌握各种分析的参数设置方法。
5、电路性能的优化与器件参数调试,要求达到预定的技术指标。
6、整理仿真数据与曲线图表,撰写并提交实验报告。
七、实验仪器设备(1)工作站或微机终端一台(2)局域网2(3)EDA仿真软件 1套八、实验步骤1、根据实验指导书熟悉UNIX操作系统常用命令的使用,掌握Cadence EDA仿真环境的调用。
2、根据设计指标要求,设计出如下图所示的电路结构。
并进行计算分析,确定其中各器件的参数。
3、电路的仿真与分析,重点进行直流工作点、交流AC分析、瞬态Trans分析,能熟练掌握各种分析的参数设置方法。
4、电路性能的优化与器件参数调试,要求达到预定的技术指标。
具体计算步骤如下:(参见模拟CMOS集成电路设计)1. 通过额定功耗和片外电容C计算偏置电路电流以及流进M6,M8电流,再通过相关试验得到相关pmos,nmos的Vth和k和λ,得到m6,m8,m9宽长比并计算密勒电容Cc2. 通过cmr计算m4和m0的宽长比3. 通过GB和Cc求出m2和m5宽长比4. 由m6,m8的Ids电流计算m7宽长比5. 进行电路仿真,观察电路是否符合各方面要求。
CMOS模拟集成电路实训H SPICE辅助设计教学PPT讲解学习

内容
•
•
•
•
•
•
•
H-SPICE概述
H-SPICE网表
Model & Sub circuits
Component
Source
Control
实训
(1)常用控制语句
• 直流工作点
• 直流扫描和直流小信号分析
• 交流扫描和小信号分析
• 瞬态分析
(2).OP直流工作点分析
• 语法格式
– .OP
• 瞬态分析结果
.lis
.tr#+
• 瞬态分析测量结果
• 直流分析结果
.mt#
.sw#+
• 直流分析测ห้องสมุดไป่ตู้结果
• 交流分析结果
.ms#
.ac#+
• 交流分析测量结果
• 输出状态
.ma#
.st#
• 工作点节点电压(初始条件) .ic
# :代表扫描分析序号或者硬拷贝文件序号,一般从0 开始。
+:表示在用.POST语句产生图形数据后该文件才被确立。
• 网表文件第一行为标题行
• H-SPICE并不是所见即所得模式,但可以借助Cadence实现
内容
•
•
•
•
•
•
•
H-SPICE概述
H-SPICE网表
Model & Sub circuits
Component
Source
Control
实训
(1)SPICE背景
• SPICE:Simulation Program with Integrated Circuit Emphasis
集成电路实习报告(通用6篇)精选全文

可编辑修改精选全文完整版集成电路实习报告艰辛而又充满意义的实习生活又告一段落了,想必都收获了成长和成绩,是时候回头总结这段时间的实习生活了。
你所见过的实习报告应该是什么样的?下面是小编帮大家整理的集成电路实习报告(通用6篇),仅供参考,大家一起来看看吧。
集成电路实习报告1一:实习目的1、学习焊接电路板的有关知识,熟练焊接的具体操作。
2、看懂收音机的原理电路图,了解收音机的基本原理,学会动手组装和焊接收音机。
3、学会调试收音机,能够清晰的收到电台。
4、学习使用protel电路设计软件,动手绘制电路图。
二:焊接的技巧或注意事项焊接是安装电路的基础,我们必须重视他的技巧和注意事项。
1、焊锡之前应该先插上电烙铁的插头,给电烙铁加热。
2、焊接时,焊锡与电路板、电烙铁与电路板的夹角最好成45度,这样焊锡与电烙铁夹角成90度。
3、焊接时,焊锡与电烙铁接触时间不要太长,以免焊锡过多或是造成漏锡;也不要过短,以免造成虚焊。
4、元件的腿尽量要直,而且不要伸出太长,以1毫米为好,多余的可以剪掉。
5、焊完时,焊锡最好呈圆滑的圆锥状,而且还要有金属光泽。
三:收音机的原理本收音机由输入回路高放混频级、一级中放、二级中放、前置低放兼检波级、低放级和功放级等部分组成接收频率范围为535千赫1065千赫的中段。
1、具体原理如下原理图所示:2、安装工艺要求:动手焊接前用万用表将各元件测量一下,做到心中有数,安装时先安装低矮和耐热元件(如电阻),然后再装大一点的元件(如中周、变压器),最后装怕热的元件(如三极管)。
电阻的安装:将电阻的阻值选择好后根据两孔的距离弯曲电阻脚可采用卧式紧贴电路板安装,也可以采用立式安装,高度要统一。
瓷片电容和三极管的脚剪的长短要适中,它们不要超过中周的高度。
电解电容紧贴线路板立式焊接,太高会影响后盖的安装。
、棒线圈的四根引线头可直接用电烙铁配合松香焊锡丝来回摩擦几次即可自动上锡,四个线头对应的焊在线路板的铜泊面。
CMOS模拟集成电路实训-Bandgap

R3
ln n
R2
VDD
Y
A1
R3
n
Q2
VREF
电路实现
VDD M2
R1
R2
M1
M0
R3
M3
M4
Q1
n Q2
M6
M7
VREF
IBIAS M5
两种结构的性能比较
1.驱动能力 PTAT基准不能直接为后续电路提供电流,需要在带隙电压基准和后
续电路中加入缓冲器才能提供电流。 2.面积
运放输出基准需要使用3个电阻,并且在Q1和Q2的比值n较小的时候, 需要使用更大阻值的R1和R2。因此消耗更多的芯片面积。
M R2 17.2 R1 ln n
VDD
M5
M6
M
M8
I1
A 1
I2
I3
X
Y
VREF
R1
R2
n
Q2
Q3
Q1
电路实现
VDD M5
M3
M4
M0
M1
R1
M2 Q1
M6
M7
M8
VREF R2
M9
Q2
Q3
内容
• 带隙电压基准的基本原理 • 常用带隙电压基准结构
– PTAT带隙电压基准 – 运放输出电压基准
射极电压的差值(ΔVBE)与绝对温度成正比 双极型晶体管构成了带隙电压基准的核心
负温度系数电压
·双极型晶体管,其集电极电流(IC)与基极-发射极电压(VBE)关系为
IC IS exp(VBE VT )
其中,VT kT q 。利用此公式推导得出VBE电压的温度系数为
VBE VBE (4 m)VT Eg q
电子科技大学集成电路实验报告――模拟集成电路
电子科技大学集成电路实验报告――模拟集成电路CMOS模拟集成电路设计及HSPICE使用实验学时:4学时实验一CMOS工艺参数测量一、实验目的:学习和掌握EDA仿真软件Hspice;了解CMOS工艺技术及元器件模型,掌握MOSFET工作原理及其电压电流特征;通过仿真和计算,获得CMOS中NMOS和PMOS的工艺参数kp,kn, p, n,Vtp,Vtn,为后续实验作准备。
二、实验内容:1)通过Hspice仿真,观察NMOS和PMOS管子的I-V特性曲线;2)对于给定长宽的MOSFET,通过Hspice仿真,测得几组栅-源电压、漏-源电压和漏-源电流数据,代入公式IDSn1WKn()n(VGS Vtn)2(1 nVDS),求得对应的工艺参数2Lkp,kn, p, n,Vtp,Vtn 。
三、实验结果:本实验中所测试的NMOS管、PMOS管L=1u,W由学号确定。
先确定W。
W等于学号的最后一位,若学号最后一位=0,则W=10u。
所以,本实验中所测试的NMOS管、PMOS管的尺寸为:(1)测0.5um下NMOS和PMOS管的I-V特性曲线所用工艺模型是TSMC 0.50um。
所测得的Vgs=1V时,NMOS管Vds从0V到2.5V变化时的I-V特性曲线为:所测得的Vds=1.2V时,NMOS管Vgs从0V到2.5V变化时的I-V特性曲线为:所测得的Vsg=1V时,PMOS管Vsd从0V到2.5V变化时的I-V特性曲线为:所测得的Vsd=1.2V时,PMOS管Vsg从0V到2.5V变化时的I-V特性曲线为:(2)计算TSMC 0.50um工艺库下mos管对应的工艺参数测试NMOS管相关参数,Hspice中仿真用源文件(.sp文件)为:NOMS I-V Characteristic M1 OUT IN 0 0 CMOSn L=1U W=8U VIN IN 0 1 VOUT OUT 0 1.2.***** LIST NODE POST *.DC VOUT 0 2.5 0.1 .DC VIN 0 2.5 0.1*.DC VOUT 0 2.5 0.1 VIN 0.8 1.0 0.2 .PRINT DC I(M1).LIB “C:\synopsys\project\tsmc_050um_model.lib"CMOS_MODELS .END所测得的NMOS管电流曲线为:所测的数据如下表:根据公式IDSn1Kn()n(VGS Vtn)2(1 nVDS),计算kn, n,Vtn,分别为:2Lkn 119 10-6, n 0.028,Vtn 1.37测试PMOS管相关参数,Hspice中仿真用源文件(.sp文件)为:POMS I-V CharacteristicM1 OUT IN Vdd Vdd CMOSP L=1U W=8UVIN Vdd IN 1 VOUT Vdd OUT 1.2.***** LIST NODE POST *.DC VOUT 0 2.5 0.1 .DC VIN 0 2.5 0.1*.DC VOUT 0 2.5 0.1 VIN 0.8 1.0 0.2.PRINT DC I(M2).LIB "C:\synopsys\project\tsmc_050um_model.lib"CMOS_MODELS .END所测得的PMOS管电流曲线为:所测的数据如下表:计算TSMC 0.50um 工艺中pmos 参数pptp,分别为:Kp 54.89 10-6, p 0.017,Vtp 0.927综上所述,可得:四、思考题2)不同工艺,p, n不同。
实验二CMOS模拟集成电路设计与仿真
实验二CMOS模拟集成电路设计与仿真实验二 CMOS 模拟集成电路设计与仿真CMOS(Complementary Metal-Oxide-Semiconductor)模拟集成电路(Analog Integrated Circuits)是一种基于金属-氧化物-半导体结构的集成电路技术。
在本实验中,我们将学习并实践CMOS模拟集成电路的设计和仿真,以加深对其原理和应用的理解。
通过此实验,我们将能够熟练掌握CMOS模拟集成电路设计与仿真的基本流程与方法。
一、实验目的本实验旨在通过设计和仿真CMOS模拟集成电路,加深对其工作原理的理解,掌握电路设计与仿真的基本方法。
二、实验原理CMOS模拟集成电路是一种基于n型和p型MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)的电路。
通过调节不同MOS管的工作状态,可以实现不同的电路功能。
其中,n型MOS管的主要特点是电导率高,适用于放大增益较大的部分;p型MOS管的主要特点是电导率低,适用于控制电流流动的部分。
三、实验步骤1. 电路设计:根据实际需求,确定设计所需的CMOS模拟集成电路。
在设计前,应先详细了解电路的功能、性能及工作原理,确定所需的器件数目和性能参数。
2. 电路布局:根据设计要求,将设计的各个电路模块在模拟集成电路上进行布局,合理安排电路的位置和空间,以保证电路的稳定性和性能。
3. 电路连接:按照布局图,将所需的电路模块进行连接,确保各个模块之间信号的正确传输和电路功能的正常实现。
4. 电路仿真:使用专业的仿真软件,将设计好的CMOS模拟集成电路进行仿真,验证其电路性能和功能。
在仿真过程中,应注意选择合适的仿真参数和验证方法,以保证仿真结果的准确性和可靠性。
5. 仿真分析:根据仿真结果,对电路的性能和功能进行分析和评估。
如果发现问题或改进的空间,可以根据分析结果进行相应的调整和优化。
6. 总结与展望:根据实验结果和分析,总结实验过程中的经验和教训,提出可能的改进和未来的研究方向。
模拟CMOS集成电路拉扎维实验二
实验二单级放大器的设计一、实验目的及任务1、掌握单级放大器的原理和性能。
2、设计一个采用电阻做负载的共源级放大器。
二、实验相关知识1、采用电阻做负载的共源级放大器电路的大信号分析。
如果输入电压从零开始增大,截止,(如图2.1(b))。
当接近时,开始导通,电流流经,使减小。
如果不是非常小,饱和导通,我们可以得到:这里忽略了沟道调制效应。
进一步增大,下降更多,管子继续工作在饱和区,直到(图2.1(b)中的A点)。
在A 点出满足:从上式可以计算出,并进一步计算出。
当时,工作在线性区:如果足够高以使进入深线性区,,从图2.1(b)的等效电路可以得到:2、采用电阻为负载的共源级放大器小信号特性由于在线性区跨导会下降,通常要确保,工作在图2.1(b)中A 点的左侧。
式(2.1)表征输入输出特性,并把它的斜率看作小信号增益,可以得到:此结果可以从下面的观察中直接得到:将输入电压的变化转换为漏极电流的变化,进一步转换为输入电压的变化。
从图2.1(d)的小信号等效电路也可以得到同样的结果。
V DD R DM 1V outV inV outV inV THV in1V outV inR DR onV DD V +-+-V 1outg m V 1R D(a)(c)(d)(b)图2.1 (a)共源级;(b)输入-输出特性;(c)MOS管工作在线性区的等效电路;(d)饱和区的小信号模型三、实验内容和步骤1、根据实验相关知识所述,画出采用电阻做负载的共源级放大器的原理图。
2、根据所画原理图编写电路网表。
3、调入SMIC0.35um混合信号工艺库。
4、先计算电路的直流工作点,随后进行仿真并得到电路的直流工作点,将仿真结果与计算结果进行比较。
5、在网表中加入DC分析的激励语句,做DC大信号仿真,得到放大器的直流转移特性曲线,并对的出的曲线进行分析说明。
6、在网表中加入AC分析的激励语句,做小信号仿真,得到放大器的AC频率特性和低频小信号增益,并对仿真结果给出分析和说明。
CMOS模拟集成电路设计与仿真实验指导书
CMOS模拟集成电路设计与仿真实验指导书模拟集成电路原理实验指导书二零一二年五月实验1 集成电路版图识别与提取一、实验目的随着IT产业的迅速发展,集成电路在国民经济和国防建设中的地位日益突出。
IC设计技术尤显重要。
版图识别与提取是微电子IC逆向设计的关键技术。
一方面可借鉴并消化吸收先进、富有创意的版图设计思想、结构。
建立自己的版图库;另一方面通过分析、优化已有版图可将原有芯片的性能加以改进提高。
本实验是基于微电子技术应用背景和《模拟集成集成电路》课程设置及其特点而设置,目的在于:1增加对塑封、陶瓷封装等不同封装形式的感性认识;2 增加对硅圆片、芯片的感性认识;3 学习并掌握集成电路版图的图形识别、电路拓扑结构提取。
4能对提取得到的电路进行功能分析、确定,并可运用EDA软件展开模拟仿真。
二、实验原理本实验重点放在版图识别、电路拓扑提取、版图编辑三大模块,实验流程如下:三、实验内容1.观察典型集成电路的封装形式;2.观察集成电路成品剖片的电路结构;3.观察硅圆片与未封装的芯片;4.在芯片上找出划片槽、测试单管、分布在芯片边缘的压焊点、对位标记,并测出有关图形的尺寸和间距。
仔细观察芯片图形的总体布局,找出电源线、地线、输入端、输出端以及相应的压焊点;6.判断集成电路的工艺类别;7.根据以上判断、提取芯片上图形所示电路图的拓扑结构;复查、修正,并进行仿真验证。
四、实验步骤1.观察典型集成电路的封装形式;2.对集成电路成品剖片的电路结构进行观察;3.观察测试单管。
仔细观察芯片的布局布线,找出电源线和地线。
4.确定芯片工艺类别,分清单个的元件结构,提取版图电路拓扑结构五、实验报告1.版图识别与提取过程总结2.绘出所提版图的电路拓扑结构六、附:版图照片(含铝线照片):金属1层去铝线照片衬底层课下思考练习: 金属1层去铝线照片衬底层实验2CMOS模拟集成电路设计与仿真一、实验目的与意义随着IT产业的迅猛发展,微电子集成电路在通讯、计算机及其他消费类电子产品中的重要地位日益突出,而IC的生产和设计技术水平是决定IC芯片性能的两大要素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设置扫描变量
ADE窗口中,点击“Tools”→“Paremetric Analysis” 在Paremetric Analysis窗口中,选择“Set up”→“Pick Name For Vareable” →“Sweep 1...” 在Paremetric Analysis Pick Sweep 1窗口中选择“res”作为变量
VDD
M1 M2 M3 VREF
I1+ I2
A + - I1 I1
I1+ I2
•
VDD min VEB2 VDS
R2
R1
R2
R3
I2
N
1
I2
Q1
Q2
A CMOS Bandgap Reference with Sub-1-V Operation
曲率补偿带隙基准电路
•
I NL VEB 2 VEB 3 / R4
• • • •
基准电路的发展方向 PTAT带隙电压基准的设计 优化温度特性 实训
Lab1:PTAT带隙电压基准
• 指标
– VDD=3.3V/5V Vref =1.3V
M5 M6 M3 M4 VREF R2 M2 M9 Q2 Q3 M7 M8
PPM<20ppm/℃
VDD
• 要求
– 原理分析 – Spectre直流特性仿真
两种常用结构 • 先产生一个和绝对温度成正比(PTAT)的电流,再通过电 阻将该电流转变为电压,并与双极型晶体管的VBE相加,最 终获得和温度无关的基准电压 • 通过运算放大器完成VBE和ΔVBE的加权相加,在运算放大器 的输出端产生和温度无关的基准电压
内容
• 带隙电压基准的基本原理 • 常用带隙电压基准结构
温漂系数计算
计算公式: PPM
Vmax Vmin 106 (ppm/ ℃) Vaverage (Tmax Tmin )
Vmax Vmin 6 10( ppm/ ℃) 125Vaverage
列表显示温度系数
点击制表按钮 ,在“Display Results”中选择Value,点击
高PSRR带隙基准电路
无电阻带隙基准
ΔVD = VD2 - VD1 VOUT = VD2 + AG ΔVD VOUT ≈ 1.12 V 9 mV 0 …70 oC • A = 1.5
•
• •
B=4
G=6 AD1/AD2 = 8
Ref.: Buck, JSSC Jan. 2002, 81-83
可编程带隙基准
“OK”,显示计算结果
当R2=445kΩ时,温漂系数最小,PPM=24.13ppm/℃ 视频 :Calculator分析温漂系数
绘图显示温度系数
点击制图按钮 ,绘图显示温漂系数随R2电阻变化情况,
R2=445kΩ时出现最小值
内容
• 带隙电压基准的基本原理 • 常用带隙电压基准结构
– – PTAT带隙电压基准 运放输出电压基准
M0 R1
M1
• 实训一参考
Q1
Lab2:三支路基准电流源
• 指标
– VDD=5V Iref =30nA
VDD M5 I3 M6 M3 M4 M2 M1 IREF IOUT IREF M7
• 要求
– 原理分析 – Spectre直流特性仿真 – Spectre交流特性仿真
• 实训二参考
RS2
直流扫描 保存直流工作点
扫描温度
温度范围
开启
仿真结果输出
选择“VREF”端口为输出,开始仿真。
视频:带隙电压基准DC温度扫描
仿真结果分析
温度特性较差,正温度系数过小,这是由于R2/R1的比值过小所致
可通过调节R2/R1的比值来优化温度特性
内容
• 带隙电压基准的基本原理 • 常用带隙电压基准结构
双极晶体管比例设置
Q1,Q2,Q3的比例设置为 7:1:1
管子并联数
电阻设置
初始设置中M5,M6和M8设为相同的宽长比,因此M=1。 零温度系数条件为:
R 2 17.2 8.83 R 1 ln 7
令R1=26kΩ,则R2=230kΩ
阻值
设置仿真环境
基本库,晶体管,电阻,电容
设置仿真温度范围
当R2=445kΩ时,温度特性最好 视频:扫描电阻,优化温度特性
利用“Calculator”分析温度特性
在仿真结果图中点击“Tools”→“calculator”
缓存buffer 堆栈stack 函数 y**x + * / 功能 stackbuffer stack+buffer stack-buffer stack*buffer stack/buffer
射极电压的差值(ΔVBE)与绝对温度成正比 双极型晶体管构成了带隙电压基准的核心
负温度系数电压
· 双极型晶体管,其集电极电流(IC)与基极-发射极电压(VBE)关系为
IC I S exp(VBE VT )
VT kT q 。利用此公式推导得出VBE电压的温度系数为 其中,
VBE VBE (4 m)VT Eg q T T
– – PTAT带隙电压基准 运放输出电压基准
• • • •
基准电路的发展方向 PTAT带隙电压基准的设计 优化温度特性 实训
低输出电压带隙基准电路
• I1 VT ln N / R1 I 2 VEB 2 / R2 •
VREF I1 I 2 R3
R3 R2 VEB 2 VT ln N R2 R1
M0 R1
M1
内容
• 带隙电压基准的基本原理 • 常用带隙电压基准结构
– – PTAT带隙电压基准 运放输出电压基准
• • • •
基准电路的发展方向 PTAT带隙电压基准的设计 优化温度特性 实训
运放输出端产生基准电压
I C ,Q1 I C ,Q 2 VREF VX ,Y R1,2
R1
n
Q1
Q2
带隙电压基准电路
VDD
输出基准电压
M5
M6
M
VREF VBE ,Q3 M
R2 VT ln n R1
M8
I1
X
A1
I2
Y
I3
T=300K时的零温度系数条件
R1
R2
VREF
R2 17.2 M R1 ln n
n
Q1
Q2
Q3
电路实现
VDD M5 M6 M3 M4 VREF R2 M2 Q1 Q2 M9 Q3 M7 M8
VDD
VBE VBE1 VBE 2
nI I VT ln 0 VT ln 0 VT ln n I s1 Is2
因此,VBE的差值就表现出正温度系数
nI0 + ΔVBE I0
VBE k ln n 0 T q· 这个ຫໍສະໝຸດ 度系数与温度本身以及集电极电流无关。
Q1
Q2
实现零温度系数的基准电压
Q2
两种结构的性能比较
1.驱动能力 PTAT基准不能直接为后续电路提供电流,需要在带隙电压基准和后 续电路中加入缓冲器才能提供电流。 2.面积 运放输出基准需要使用3个电阻,并且在Q1和Q2的比值n较小的时候, 需要使用更大阻值的R1和R2。因此消耗更多的芯片面积。
内容
• 带隙电压基准的基本原理 • 常用带隙电压基准结构
M1
M2
M3
M4 I1+I2 +INL VREF
VT ln T / Tr / R4 •V I I I R REF 1 2 NL 3
T VT ln V ln N VEB 2 Tr T R1 R2 R4 R 3
(ln n)(0.087mV / C ) 1.5mV / C
即为
(ln n) 17.2
内容
• 带隙电压基准的基本原理 • 常用带隙电压基准结构
– – PTAT带隙电压基准 运放输出电压基准
• • • •
基准电路的发展方向 PTAT带隙电压基准的设计 优化温度特性 实训
常用带隙电压基准结构
设置扫描范围
设置“Sweep1”扫描范围为230~460kΩ “Total Steps”为“5”
选择窗口中的“Analysis”→“Start”,开始变量扫描
变量扫描结果分 析
当R2电阻为402kΩ时,温度系数为负 当R2电阻为460kΩ时,温度系数为正
缩小扫描范围,再次仿真
res扫描范围设置为402~460kΩ,再次扫描
m 1.5 , Eg 1.12eV 其中,
是硅的带隙能量。当 VBE 750mV ,
VBE T 1.5mV C 。 T 300 K 时,
·VBE的温度系数本身就与温度有关
正温度系数电压
· 如果两个同样的晶体管(IS1= IS2= IS,IS为双极型晶体管饱和 电流)偏置的集电极电流分别为nI0和I0,并忽略它们的基极电流, 那么它们基极-发射极电压差值为
利用上面的正,负温度系数的电压,可以设计一个零温度系数的基准电压,有 以下关系:
VREF VBE (VT ln n)
VT T 0.087mV / C ,因此令 1 ,只 因为 VBE T 1.5mV / C , 要满足上式 ,便可得到零温度系数的VREF。
内容
• 带隙电压基准的基本原理 • 常用带隙电压基准结构
– – PTAT带隙电压基准 运放输出电压基准
• • • •
基准电路的发展方向 PTAT带隙电压基准的设计 优化温度特性 实训