2018-2019学年广东省广州市越秀区八年级(下)期末数学试卷(解析版)

合集下载

广东省广州市越秀区2019-2020学年八年级下期末数学试卷

广东省广州市越秀区2019-2020学年八年级下期末数学试卷

广东省广州市越秀区2019-2020学年八年级下期末数学试卷5-2016学年越秀区八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)11、式子在实数范围内有意义,则x的取值范围()x2A、x≤2B、x<2C、x>2D、x≥22、下列计算正确的是()A、633B、632C、2(3)3 D、933、一次函数y=x+1的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限4、16位参加歌咏比赛的同学的成绩各不相同,按成绩取前8名进入决赛,如果小丽知道了自己成绩后,要判断自己能否进入决赛,小丽需要知道这16位同学成绩的()A、中位数B、众数C、平均数D、方差5、在△ABC中,∠C=90°,∠B=60°,BC=2,则AC=()A、1B、4C、23D、326、若函数y=kx+b的图象经过原点,且y随x的增大而减小,则()A、k>0B、k<0C、b>0D、b<07、下列条件中,能判定四边形ABCD是平行四边形的是()A、AB∥CD,∠B=∠DB、AB∥CD,AD=BCC、AB=BC,CD=DAD、∠A=∠B,∠C=∠D8、下列命题的逆命题是真命题的是()A、若两个实数相等,则这两个实数的平方相等B、若两个角是直角,则这两个角相等C、若AB=5,BC=4,CA=3,则△ABC是直角三角形D、若一个四边形的对角线互相垂直且平分,则这个四边形是菱形9、若顺次连接四边形ABCD各边中点得到的四边形是菱形,则四边形ABCD一定是()A、矩形B、菱形C、对角线相等的四边形D、对角线互相垂直的四边形10、如图在直线MN上有三个正方形A、B、C,若正方形A和正方形C的面积分别为16和20,则正方形B的面积为()A、24B、36C、40D、48二、填空题(本大题共6小题,每小题3分,共18分)11、在△ABC中,D、E分别是AB、AC的中点,若DE=4,则BC=12、某校规定学生的体育成绩由三部分组成;体育技能测试占50%,体育理论测试占20%,体育课外活动表现30%,甲同学的上述三部分成绩依次为96分,85分,90分,则甲同学的体育成绩为分13、某商店出售一种品牌运动鞋20双,各种尺码鞋的销售量如下表所示:则这20双鞋尺码的众数是14、小明家、公交车站、学校在同一条直线上,小明从家步行到公交车站,等公交车去学校,图中的折线表示小明的行程y与所花时间x之间的关系,根据图象可以计算得出,公交车的平均速度是 km/min15、实数a,b在数轴上的位置如图所示,则化简222a b a b的结果是()16、如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点A落在BC 边上'A点处,点D的对应点为点'D,若'3A B,则DM的长为三、解答题(本大题共62小题,解答应写出文字说明、推理过程或演算步骤)17、计算:(75)(75)(2712)318、如图,正方形网络中的每个小正方形边长都为1,每个小正方形的顶点叫格点,在图中画出符合下列条件的一个图形.(1)在左图中画一个直角△ABC,使它的顶点都在格点上,且斜边长AB为10;(2)在右图中画一个菱形ABCD,使它的顶点都在格点上,且边长AB为5.19、为了考查甲、乙两种小麦的长势,分别从中随机抽取10株麦苗,测得苗高(单位:cm)如下表:甲16 18 18 19 20 20 21 21 23 24 乙13 15 17 18 20 21 23 23 24 26(1)分别计算两种小麦的平均苗高;(2)哪种小麦的长势比较整齐?并说明理由.20、如图在ABCD中,E、F是对角线AC上的两点,且∠ABE=∠CDF求证:四边形BFDE是平行四边形.21、如图,在四边形ABCD中,AD∥BC,∠(1)若AD=2,AB=1,求四边形ABCD的面积;(2)若BC=6,∠DBC=30°,求四边形ABCD的周长.22、如图,在平面直角坐标系xOy中,已知A(3,3),B(9,0),若有一动点M从原点出发,沿x轴正半轴向点B运动,过点M作直线l⊥x轴.(1)如图①,若直线l与线段OA相较于点N,且M(2,0),求此时MN的长;(2)如图②,若直线l与线段AB相交雨点N,且MN=2,求此时点M的坐标.23、某文具店计划购进A,B两种计算器共60个,若购进A种计算器的数量不少于B 种计算器数量的2倍,且不超过B种计算器数量的3倍.(1)该文具店共有几种进货方案?(2)若销售每个A种计算器可获利润20元,销售每个B种计算器可获利润35元,则哪一种方案获得利润最大?最大的总利润是多少?24、如图,正方形ABCD中,E、F分别是CD、DA的中点.BE与CF相交于点P. (1)求证:BE⊥CF;(2)判断PA与AB的数量关系,并说明理由25、如图在ABCD中,对角线AC与BD相交于点O,AB=42,AC=4,BD=12.点P 是线段AD上的动点(不包含端点A、D),过点P作PE⊥AC,PF⊥BD,垂足分别为点E、F.(1)求△AOB的面积;(2)设PE=x,PF=y,求y关于x的函数关系式,并写出x的取值范围;(3)当14AP AD时,求PF的长.。

2018-2019学年广东省广州市越秀区八年级(下)第二学期期末数学试卷及答案 含解析

2018-2019学年广东省广州市越秀区八年级(下)第二学期期末数学试卷及答案 含解析

2018-2019学年广东省广州市越秀区八年级第二学期期末数学试卷一、选择题1.下列计算正确的是()A.=±4B.=﹣5C.=10D.=32.计算﹣的结果是()A.25B.2C.D.53.为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg)分别为x1,x2,…,x8,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x8的平均数B.x1,x2,…,x8的方差C.x1,x2,…,x8的中位数D.x1,x2,…,x8的众数4.下列命题的逆命题是真命题的是()A.如果两个角是直角,那么它们相等B.如果两个实数相等,那么它们的平方相等C.如果一个四边形是菱形,那么它的四条边都相等D.如果一个四边形是矩形,那么它的对角线相等5.若平行四边形其中两个内角的度数之比为1:4,则其中较小的内角是()A.30°B.36°C.45°D.60°6.下列各曲线中,表示y是x的函数的是()A.B.C.D.7.若函数y=kx+b是正比例函数,且y随x的增大而减小,则下列判断正确的是()A.k>0B.k<0C.b>0D.b<08.已知一次函数y=kx+b的图象经过点(0,﹣1)与(﹣2,0),则不等式kx+b>0的解集是()A.x<﹣2B.x>﹣2C.x<﹣1D.x>﹣19.如图,四边形ABCD是直角梯形,E,F,G,H分别是AB,BC,CD,DA的中点,连接AC,BD,EF,FG,GH,HE,则图中的平行四边形共有()A.1个B.4个C.5个D.9个10.如图,在Rt△ABC中,∠A=90°,AB=8,AC=6,将△ABC沿CD翻折,使点A 与BC边上的点E重合,则CD的长是()A.3B.3C.D.5二、填空题11.使代数式有意义的x的取值范围是.12.如图,矩形ABCD的对角线AC与BD相交于点O,∠AOB=120°,AD=3,则AC 的长是.13.下表是某公司员工月收入的资料:月收入/元450001800010000550050003000人数1112510则这个公司员工月收入的中位数是元.14.某校为了了解该校学生在家做家务的情况,随机调査了50名学生,得到他们在一周内做家务所用时间的情况如下表所示时间/(小时)0≤t<11≤t<22≤t<33≤t<44≤t<5人数8142062则可以估计该校学生平均每人在一周内做家务所用时间是小时.(同一组中的数据用这组数据的组中值作代表.)15.如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m当梯子的顶端A沿墙向下滑的距离AC与梯子底端B向外移的距离BD相等时,AC的长是m.16.如图,平面直角坐标系xOy中.A(,0),B(0,5),点C在第一象限,且△ABC 是等边三角形,则直线BC的解析式是.三、解答题:本大題共9小题,满分72分.解答须写出文字说明、证明过程和演算步聚17.计算:(+)(﹣)+(﹣)÷18.如图,每个小正方形的边长都为1(1)求四边形ABCD的周长;(2)求∠BCD的大小.19.为了在甲、乙两名运动员中选拔一人参加全省跳水比赛,对他们的跳水技能进行考核.在相同条件下,各跳了10次,成绩(单位:分)如下甲82838685828387908488乙80828486908583818584(1)分别计算甲、乙两名运动员这10次跳水成绩的平均数和方差;(2)你认为选谁参加比赛更合适?并说明理由.20.如图,四边形ABCD中,AB∥CD,AC与BD相交于点O,AO=CO.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,AB=10,求BC的长.21.如图,▱ABCD中,O是AB的中点,CO=DO.(1)求证:▱ABCD是矩形.(2)若AD=3,∠COD=60°,求▱ABCD的面积.22.已知点P(x、y)在第一象限,且x+y=6,A(4,0),B(0,2),设△PAB的面积为S(1)求S关于x的函数解析式,并写出x的取值范围;(2)在给定的平面直角坐标系中画出函数S的图象,并写出S的取值范围.23.A,B两地相距24km.甲7:00由A地出发骑自行车去B地,速度为12km/h;乙8:00由A地出发沿同一路线驾驶汽车去B地,速度为60km/h.(1)分别写出甲、乙两人的行程y关于时刻x的函数解析式;(2)乙能否在途中超过甲?并说明理由.24.如图所示,边长为1的正方形ABCD被划分成五个小矩形R1、R2、R3、R4、R5,其中四个外围小矩形R1、R2、R3、R4的面积都相等.设小矩形R1的水平边长为a(0<a<1),竖直边长为b(0<b<a).(1)求证:a+b=1;(2)试问:中间小矩形R5是正方形吗?请说明理由.25.在平面直角坐标系xOy中,直线y=x+2与x轴、y轴分別相交于A,B两点.(1)求∠OAB的大小;(2)如图,点P(a,b)在第二象限,M(a,0),N(0,b),直线PM,PN分别与线段AB相交于点E,.当点P运动时,四边形PMON的面积为定值2.试判断以线段AB,EF,FB为边的三角形的形状,并说明理由.参考答案一、选择题:共10小题,每小题3分,满分30分.在毎小题给出的四个选项中,只有一项是符合题目要求的1.下列计算正确的是()A.=±4B.=﹣5C.=10D.=3【分析】直接利用二次根式的性质分别化简得出答案.解:A、=4,故此选项错误;B、=5,故此选项错误;C、(5)2=50,故此选项错误;D、=3,正确.故选:D.2.计算﹣的结果是()A.25B.2C.D.5【分析】首先化简二次根式,然后再合并同类二次根式即可.解:﹣=3﹣2=,故选:C.3.为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg)分别为x1,x2,…,x8,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x8的平均数B.x1,x2,…,x8的方差C.x1,x2,…,x8的中位数D.x1,x2,…,x8的众数【分析】根据方差的意义即可判断.解:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.故选:B.4.下列命题的逆命题是真命题的是()A.如果两个角是直角,那么它们相等B.如果两个实数相等,那么它们的平方相等C.如果一个四边形是菱形,那么它的四条边都相等D.如果一个四边形是矩形,那么它的对角线相等【分析】根据逆命题的概念分别写出各个命题的逆命题,根据平方的概念、菱形、矩形的判定定理判断.解:A、如果两个角是直角,那么它们相等的逆命题是如果两个角相等,那么这两个角是直角,是假命题;B、如果两个实数相等,那么它们的平方相等的逆命题是如果两个数的平方相等,那么这两个数相等,是假命题;C、如果一个四边形是菱形,那么它的四条边都相等的逆命题是如果一个四边形四条边都相等,那么这个四边形是菱形,是真命题;D、如果一个四边形是矩形,那么它的对角线相等的逆命题是如果一个四边形的对角线相等,那么这个四边形是矩形,是假命题;故选:C.5.若平行四边形其中两个内角的度数之比为1:4,则其中较小的内角是()A.30°B.36°C.45°D.60°【分析】根据平行四边形的性质即可求解.解:设平行四边形的一个内角为x°,则另一个内角为(4x)°,根据平行四边形对边平行,同旁内角互补,得x°+(4x)°=180°,解得x=36.故选:B.6.下列各曲线中,表示y是x的函数的是()A.B.C.D.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.解:第一个图中,对于x的每一个取值,y可能有两个值与之对应,不符合题意;第二个图中,对于x的每一个取值,y可能有两个值与之对应,不符合题意;第三个图中,对于x的每一个取值,y可能有两个值与之对应,不符合题意;第四个图中,对于x的每一个取值,y都有唯一确定的值与之对应,符合题意;故选:D.7.若函数y=kx+b是正比例函数,且y随x的增大而减小,则下列判断正确的是()A.k>0B.k<0C.b>0D.b<0【分析】根据正比例函数的定义得到b=0,然后由正比例函数图象的性质作答.解:∵函数y=kx+b是正比例函数,∴b=0.又函数y=kx+b的图象是y随x的增大而减小,∴k<0.观察选项,只有选项B符合题意.故选:B.8.已知一次函数y=kx+b的图象经过点(0,﹣1)与(﹣2,0),则不等式kx+b>0的解集是()A.x<﹣2B.x>﹣2C.x<﹣1D.x>﹣1【分析】写出一次函数图象在x轴上方所对应的自变量的范围即可.解:∵一次函数y=kx+b的图象经过点(0,﹣1)与(﹣2,0),∴不等式kx+b>0的解集为x<﹣2.故选:A.9.如图,四边形ABCD是直角梯形,E,F,G,H分别是AB,BC,CD,DA的中点,连接AC,BD,EF,FG,GH,HE,则图中的平行四边形共有()A.1个B.4个C.5个D.9个【分析】利用三角形中位线定理和平行四边形的判定定理解答.解:如图,∵E,F,G,H分别是AB,BC,CD,DA的中点,∴EF∥AC∥GH,GF∥BD∥HE,∴图中的平行四边形有:四边形HQGP、四边形EQPF,四边形GMNF,四边形HMNE,四边形GHEF,四边形GMOP,四边形HQOM,四边形OQEN,四边形PONF,共9个.故选:D.10.如图,在Rt△ABC中,∠A=90°,AB=8,AC=6,将△ABC沿CD翻折,使点A与BC边上的点E重合,则CD的长是()A.3B.3C.D.5【分析】根据勾股定理得到BC===10,根据折叠的性质得到CE =AC=6,AD=DE,∠CED=∠A=90°,求得BE=4,设AD=DE=x,根据勾股定理即可得到结论.解:∵在Rt△ABC中,∠A=90°,AB=8,AC=6,∴BC===10,∵将△ABC沿CD翻折,使点A与BC边上的点E重合,∴CE=AC=6,AD=DE,∠CED=∠A=90°,∴BE=4,设AD=DE=x,∴BD=8﹣x,∵BD2=DE2+BE2,∴(8﹣x)2=x2+42,解得:x=3,∴AD=3,∴CD===3,故选:A.二、填空题:共6小题,每小题3分,满分18分11.使代数式有意义的x的取值范围是x≥1.【分析】根据二次根式的性质,即“被开方数大于等于0时二次根式才有意义”,解答即可.解:∵有意义,∴x﹣1≥0,解得:x≥1.故答案为:x≥1.12.如图,矩形ABCD的对角线AC与BD相交于点O,∠AOB=120°,AD=3,则AC 的长是6.【分析】根据矩形的对角线相等且互相平分可得OA=OD,再求出∠AOD=60°,然后判断出△AOD是等边三角形,根据等边三角形的性质求出OA,即可得出AC的长.解:在矩形ABCD中,OA=OC=AC,OB=OD=BD,AC=BD,∴OA=OD,∵∠AOB=120°,∴∠AOD=180°﹣120°=60°,∴△AOD是等边三角形,∴OA=AD=3,∴AC=2OA=6;故答案为:613.下表是某公司员工月收入的资料:月收入/元450001800010000550050003000人数1112510则这个公司员工月收入的中位数是4000元.【分析】根据中位数的概念求解可得.解:∵一共有20个数据,其中位数是第10、11个数据的平均数,∴这组数据的中位数是=4000(元),故答案为:4000.14.某校为了了解该校学生在家做家务的情况,随机调査了50名学生,得到他们在一周内做家务所用时间的情况如下表所示时间/(小时)0≤t<11≤t<22≤t<33≤t<44≤t<5人数8142062则可以估计该校学生平均每人在一周内做家务所用时间是 2.1小时.(同一组中的数据用这组数据的组中值作代表.)【分析】利用组中值求平均数,再利用样本估计总体的思想解决问题即可解:50名学生平均每人在一周内做家务所用时间==2.1(小时),故答案为2.1小时.15.如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m当梯子的顶端A沿墙向下滑的距离AC与梯子底端B向外移的距离BD相等时,AC的长是 1.4m.【分析】先根据勾股定理求出OB的长,根据勾股定理即可得到结论.解:∵∠O=90°,AB=2.6,OA=2.4,∴OB===1,设AC=BD=x,∴OC=2.4﹣x,OD=1+x,∴CD2=OC2+OD2,∴2.62=(2.4﹣x)2+(1+x)2,解得:x=1.4,∴AC=1.4.故答案为:1.4.16.如图,平面直角坐标系xOy中.A(,0),B(0,5),点C在第一象限,且△ABC 是等边三角形,则直线BC的解析式是y=﹣x+5.【分析】过点C作CD⊥x轴于点D,设C(a,b),根据勾股定理和梯形的面积可得出a,b的关系式,解出a,b的值即可求出点C的坐标,则直线BC的解析式可求出.解:过点C作CD⊥x轴于点D,在Rt△AOB中,OA=,OB=5,∴AB===2,∵△ABC是等边三角形,∴S△ABC==7,设C(a,b),∵AC2=AD2+CD2,∴①∵S梯形BODC=S△AOB+S△ABC+S△ADC,∴×(5+b)×a=+7+②,由①②解得a=3,b=4,∴C(3,4),∵B(0,5),设直线BC的解析式为y=kx+5,∴3k+5=4,∴k=﹣,∴直线BC的解析式为y=﹣x+5,故答案为:y=﹣x+5.三、解答题:本大題共9小题,满分72分.解答须写出文字说明、证明过程和演算步聚17.计算:(+)(﹣)+(﹣)÷【分析】直接利用乘法公式以及二次根式的混合运算法则计算得出答案.解:原式=(12﹣6)+(4﹣3)÷=6+1=7.18.如图,每个小正方形的边长都为1(1)求四边形ABCD的周长;(2)求∠BCD的大小.【分析】(1)根据勾股定理求出AD、CD、BC、AB的长,再相加即可;(2)先求出DC2+BC2=BD2,再根据勾股定理的逆定理求出即可.解:(1)由勾股定理得:DC==,BC==2,AD==,AB==,所以四边形ABCD的周长为AB+BC+cd+ad=+2++=+3+;(2)连接BD,由勾股定理得:BD==5,∵DC=,BC=2,∴DC2+BC2=BD2,∴∠BCD=90°.19.为了在甲、乙两名运动员中选拔一人参加全省跳水比赛,对他们的跳水技能进行考核.在相同条件下,各跳了10次,成绩(单位:分)如下甲82838685828387908488乙80828486908583818584(1)分别计算甲、乙两名运动员这10次跳水成绩的平均数和方差;(2)你认为选谁参加比赛更合适?并说明理由.【分析】(1)根据平均数和方差的计算公式列出算式进行计算即可;(2)根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,即可得出答案.解:(1)甲的平均数=,甲的方差==6.6;乙的平均数=;乙的方差==7.2,(2)∵6.6<7.2,∴选甲参加比赛更合适.20.如图,四边形ABCD中,AB∥CD,AC与BD相交于点O,AO=CO.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,AB=10,求BC的长.【分析】(1)根据平行线的性质得出∠DCO=∠BAO,根据全等三角形的判定得出△DCO≌△BAO,根据全等三角形的性质得出DO=BO,根据平行四边形的判定得出即可;(2)根据线段垂直平分线的性质得出AB=BC,代入求出即可.【解答】(1)证明:∵AB∥CD,∴∠DCO=∠BAO,在△DCO和△BAO中∴△DCO≌△BAO(ASA),∴DO=BO,∵AO=CO,∴四边形ABCD是平行四边形;(2)解:∵由勾股定理得:BC2=CO2+OB2,AB2=AO2+OB2,又∵AO=CO,∴AB2=BC2,∴AB=BC,∵AB=10,∴BC=AB=10.21.如图,▱ABCD中,O是AB的中点,CO=DO.(1)求证:▱ABCD是矩形.(2)若AD=3,∠COD=60°,求▱ABCD的面积.【分析】(1)根据平行四边形的想做的菜AD=BC,AD∥BC,求出∠A+∠B=180°,根据全等三角形的判定△DAO≌△CBO,根据全等三角形的性质∠A=∠B,求出∠A=90°,根据矩形的判定得出即可;(2)根据全等求出∠DOA=∠COB,根据勾股定理得出AO2+32=(2AO)2,求出AO,在球场AB,即可求出面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠A+∠B=180°,∵O是AB的中点,∴AO=BO,在△DAO和△CBO中∴△DAO≌△CBO(SSS),∴∠A=∠B,∵∠A+∠B=180°,∴∴∠A=90°,∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)解:∵△DAO≌△CBO,∠DOC=60°,∴∠DOA=∠COB=(180°﹣∠DOC)=60°,∵∠A=90°,∴∠ADO=30°,∵AD=3,DO=2AO,由勾股定理得:AO2+32=(2AO)2,解得:AO=,∴AB=2AO=2,∴▱ABCD的面积是AB×AD=2=6.22.已知点P(x、y)在第一象限,且x+y=6,A(4,0),B(0,2),设△PAB的面积为S(1)求S关于x的函数解析式,并写出x的取值范围;(2)在给定的平面直角坐标系中画出函数S的图象,并写出S的取值范围.【分析】(1)根据割补法即可表示三角形的面积;(2)根据(1)中所得函数即可画出图象.解:(1)点P(x、y)在第一象限,且x+y=6,y=6﹣x.x>0,6﹣x>0,所以0<x<6.∵A(4,0),B(0,2),设△PAB的面积为SS=(x+4)(6﹣x)﹣×4×2﹣(6﹣x﹣2)•x=﹣x+8答:S关于x的函数解析式为S=﹣x+8,x的取值范围为0<x<6.(2)∵0<x<6.∴2<﹣x+8<8.∴2<S<8.如图:即为函数S的图象.答:S的取值范围为2<S<8.23.A,B两地相距24km.甲7:00由A地出发骑自行车去B地,速度为12km/h;乙8:00由A地出发沿同一路线驾驶汽车去B地,速度为60km/h.(1)分别写出甲、乙两人的行程y关于时刻x的函数解析式;(2)乙能否在途中超过甲?并说明理由.【分析】(1)根据行程=速度×时间分别列式即可;(2)利用60x﹣480>12x﹣84,进而得出x的取值范围,进而得出答案.解:(1)设行程为ykm,时刻为xh,甲:y=12(x﹣7)=12x﹣84,乙:y=60(x﹣8)=60x﹣480;(2)能在途中超过甲.理由:由60x﹣480>12x﹣84,解得:x>8.25,此时60(8.25﹣8)=15<24,8:25=8时15分,答:8时15分后乙超过甲.24.如图所示,边长为1的正方形ABCD被划分成五个小矩形R1、R2、R3、R4、R5,其中四个外围小矩形R1、R2、R3、R4的面积都相等.设小矩形R1的水平边长为a(0<a<1),竖直边长为b(0<b<a).(1)求证:a+b=1;(2)试问:中间小矩形R5是正方形吗?请说明理由.【分析】(1)根据小矩形的面积相等即可证明;(2)结合(1)的结论,根据设中间的小矩形两边长分别为x、y,列出整式进行化简即可说明.解:(1)∵小矩形R1的水平边长为a(0<a<1),竖直边长为b(0<b<a),矩形R1、R2、R3、R4的面积都相等,都等于ab,∵正方形ABCD的边长为1,∴小矩形R2的水平边长为1﹣a,竖直边长为.小矩形R4的水平边长为,竖直边长为1﹣b,∴小矩形R3的水平边长为1﹣,竖直边长为1﹣,∴(1﹣)(1﹣)=ab化简整理,得(a+b﹣1)(2ab﹣1)=0∴a+b=1或2ab=1,∵四个矩形面积和小于1,排除2ab=1,∴2ab=1不成立.所以a+b=1.(2)答:中间小矩形R5是正方形,理由如下:设中间小矩形R5的水平边长为x,竖直边长为y,∴x=a﹣,y=﹣b,∵a+b=1,∴a=1﹣b,b=1﹣a,x=a﹣==1﹣2b,y=﹣b,==2a﹣1,假设x=y,则1﹣2b=2a﹣1,2a+2b=2,∴a+b=1,由(1)得a+b=1,所以假设成立,x=y,所以中间小矩形R5是正方形.25.在平面直角坐标系xOy中,直线y=x+2与x轴、y轴分別相交于A,B两点.(1)求∠OAB的大小;(2)如图,点P(a,b)在第二象限,M(a,0),N(0,b),直线PM,PN分别与线段AB相交于点E,.当点P运动时,四边形PMON的面积为定值2.试判断以线段AB,EF,FB为边的三角形的形状,并说明理由.【分析】(1)当x=0或y=0时分别可以求出y的值和x的值就可以求出OA与OB的值,从而就可以得出结论;(2)先根据E、F的坐标表示出相应的线段,根据勾股定理求出线段AE、EF、BF,然后根据勾股定理逆定理即可判定组成的三角形为直角三角形.解:(1)∵直线y=x+2,∴当x=0时,y=2,B(0,2),当y=0时,x=﹣2,A(﹣2,0)∴OA=OB=2.∵∠AOB=90°∴∠OAB=45°;(2)∵四边形OMPN是矩形,∠OAF=∠EBO=45°,∴△AME、△BNF、△PEF为等腰直角三角形.∵E点的横坐标为a,E(a,a+2),∴AM=EM=a﹣2,∴AE2=2(a﹣2)2=2a2﹣8a+8.∵F的纵坐标为b,F(b﹣2,b)∴BN=FN=2﹣b,∴BF2=2(2﹣b)2=2b2﹣8b+8.∴PF=PE=a﹣(2﹣b)=a+b﹣2,∴EF2=2(a+b﹣2)2=2a2﹣4ab+2b2﹣8a﹣8b+8.∵ab=2,∴EF2=2a2+2b2﹣8a﹣8b+16∴EF2=AE2+BF2.∴线段AE、EF、BF组成的三角形为直角三角形.。

2018-2019学年广东省广州市三中八年级(下)期末数学试卷含答案

2018-2019学年广东省广州市三中八年级(下)期末数学试卷含答案

2018-2019学年广东省广州市三中八年级(下)期末数学试卷一.选择题(满分30分,每小题3分)1.下列二次根式中,是最简二次根式的是( )A .B .C .D .2.△ABC 三边长分别为a 、b 、c ,则下列条件不能判断△ABC 是直角三角形的是( )A .a =3,b =4,c =5B .a =4,b =5,c =6C .a =6,b =8,c =10D .a =5,b =12,c =13 3.如果一组数据﹣3,﹣2,0,1,x ,6,9,12的平均数为3,则x 为( )A .2B .3C .﹣1D .14.一次函数y =﹣3x +5的图象不经过的象限是第( )象限A .一B .二C .三D .四5.对于两组数据A ,B ,如果sA 2>sB 2,且A =B ,则( )A .这两组数据的波动相同B .数据B 的波动小一些C .它们的平均水平不相同D .数据A 的波动小一些6.下列命题中的假命题是( )A .过直线外一点有且只有一条直线与这条直线平行B .平行于同一直线的两条直线平行C .直线y =2x ﹣1与直线y =2x +3一定互相平行D .如果两个角的两边分别平行,那么这两个角相等7.在同一直角坐标系中,一次函数y =(k ﹣2)x +k 的图象与正比例函数y =kx 图象的位置可能是( )A .B .C .D .8.如图,矩形ABCD中,AB=8,BC=4,把矩形ABCD沿过点A的直线AE折叠,点D落在矩形ABCD内部的点D′处,则CD′的最小值是()A.4 B.C.D.9.如图,平行四边形ABCD中,∠BDC=30°,DC=4,AE⊥BD于E,CF⊥BD于F,且E、F 恰好是BD的三等分点,AE、CF的延长线分别交DC.AB于N、M点,那么四边形MENF的面积是()A.B.C.2D.210.如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使得△MNP为等腰直角三角形,则符合条件的点P有(提示:直角三角形斜边上的中线等于斜边的一半)()A.2个B.3个C.4个D.5个二.填空题(满分18分,每小题3分)11.若a,b都是实数,b=+﹣2,则a b的值为.12.直角三角形两条边的长度分别为3cm,4cm,那么第三条边的长度是cm.13.如果将直线y=3x﹣1平移,使其经过点(0,2),那么平移后所得直线的表达式是.14.已知一次函数y 1=x 和函数y 2=,当y 1>y 2时,x 的取值范围是 .15.如图,在▱ABCD 中,∠ADO =30°,AB =8,点A 的坐标为(﹣3,0),则点C 的坐标为 .16.(3分)在平行四边形ABCD 中,CD =2AD ,BE ⊥AD ,点F 为DC 中点,连接EF 、BF ,下列结论:①∠ABC =2∠ABF ;②EF =BF ;③S四边形DEBC =2S △EFB ;④∠CFE =3∠DEF ,其中正确的有 .三.解答题17.(10分)计算:(1);(2).18.(6分)已知△ABC ,AB =AC ,D 为BC 上一点,E 为AC 上一点,AD =AE .(1)如果∠BAD =10°,∠DAE =30°,那么∠EDC = °.(2)如果∠ABC =60°,∠ADE =70°,那么∠BAD = °,∠CDE = °.(3)设∠BAD =α,∠CDE =β猜想α,β之间的关系式,并说明理由.19.(6分)如图,在▱ABCD 中,∠BAD 的角平分线交BC 于点E ,交DC 的延长线于点F ,连接DE .(1)求证:DA =DF ;(2)若∠ADE =∠CDE =30°,DE =2,求▱ABCD 的面积.20.(8分)在全民读书月活动中,某校随机抽样调查了一部分学生本学期计划购买课外书的费用情况,根据图中的相关信息,解答下面问题;(1)这次调查获取的样本容量是;(2)由统计图可知,这次调查获取的样本数据的众数是;中位数是;(3)求这次调查获取的样本数据的平均数;(4)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.21.(10分)如图,△ABC中,AB=AC.求作一点D,使得以A、B、C、D为顶点的四边形是菱形,并证明你作图的正确性.(要求:尺规作图,保留作图痕迹,不写作法)22.(12分)如图,直线过A(﹣1,5),P(2,a),B(3,﹣3).(1)求直线AB的解析式和a的值;(2)求△AOP的面积.23.(12分)如图所示,在菱形ABCD中,AC是对角线,CD=CE,连接DE.(1)若AC=16,CD=10,求DE的长.(2)G是BC上一点,若GC=GF=CH且CH⊥GF,垂足为P,求证: DH=CF.24.(12分)如图,△ABC的三个顶点的坐标分别为A(﹣1,﹣1).B(3,2),C(1,﹣2).(1)判断△ABC的形状,请说明理由.(2)求△ABC的周长和面积.25.(13分)如图,矩形OABC在平面直角坐标系中的位置如图所示,点B(﹣3,5),点D 在线段AO上,且AD=2OD,点E在线段AB上,当△CDE的周长最小时,求点E的坐标.26.(13分)如图,在菱形ABCD中,AB=4,∠DAB=60°,点E是AD边的中点,点M是AB 边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)当AM的值为时,四边形AMDN是矩形,请你把猜想出的AM值作为已知条件,说明四边形AMDN是矩形的理由.参考答案一.选择题1.解:=,A不是最简二次根式;B,是最简二次根式;=3,C不是最简二次根式;=a,D不是最简二次根式;故选:B.2.解:A.∵32+42=52,∴△ABC是直角三角形;B.∵52+42≠62,∴△ABC不是直角三角形;C.∵62+82=102,∴△ABC是直角三角形;D.∵122+42=132,∴△ABC是直角三角形;故选:B.3.解:∵﹣3,﹣2,0,1,x,6,9,12的平均数为3,∴=3,解得:x=1,故选:D.4.解:∵﹣3<0,∴图象经过二、四象限;∵5>0,∴直线与y轴的交点在y轴的正半轴上,图象还过第一象限.所以一次函数y=﹣3x+5的图象经过一、二、四象限,不经过第三象限.故选:C.5.解:∵s A2>s B2,∴数据B组的波动小一些.故选:B.6.解:A、过直线外一点有且只有一条直线与这条直线平行,正确.B、平行于同一直线的两条直线平行,正确;C、直线y=2x﹣1与直线y=2x+3一定互相平行,正确;D、如果两个角的两边分别平行,那么这两个角相等,错误;应该是如果两个角的两边分别平行,那么这两个角相等或互补;7.解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,3象限;当0<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,4象限;当k<0时,正比例函数y=kx图象经过2,4象限,一次函数y=(k﹣2)x+k的图象2,3,4象限,当(k﹣2)x+k=kx时,x=<0,所以两函数交点的横坐标小于0,选C.8.解:如图,连接AC,∵四边形ABCD是矩形∴AD=BC=4,∠B=90°∵AB=8,BC=4,∴AC==4∵折叠∴AD=AD'=4,∴点D'在以点A为圆心,AD长为半径的圆上,∴当点D'在线段AC上时,CD'值最小,∴CD'的最小值=4﹣4故选:C.9.解:∵四边形ABCD是平行四边形,∴AB=DC=4,∵E、F恰好是BD的三等分点,∴DE=EF=BF,∵AE⊥BD于E,CF⊥BD于F,∴AM=BM=AB=2,又∵∠ABD=30°,则在Rt△BFM中,MF=BM=1,BF=,同理:在Rt△DEN中,EN=1,∴EN=MF,∵AE⊥BD,CF⊥BD,∴MF∥EN,∴四边形MENF是平行四边形,∵E、F恰好是BD的三等分点,∴EF=BF=,∴四边形MENF的面积=1×=.故选:B.10.解:设N坐标为(x,0)若点M在第三象限,则x<0若∠MNP=90°,MN=NP,则P(0,0)若∠NMP=90°,MN=MP,则四边形MNOP是正方形,∴ON=MP=﹣x,MN=PO=﹣x∴M(x,x)∴x=2x+3∴x=﹣3∴P(0,﹣3)若∠MPN=90°,MP=NP,过点P作PE⊥MN,∴PE=ON=﹣x,MN=﹣2x,∴M(x,2x)∴2x=2x+3方程无解,即这样的P点不存在.若点M在第二象限,则x<0若∠MNP=90°,MN=NP,则P(0,0)若∠NMP=90°,MN=MP,则四边形MNOP是正方形∴ON=MP=﹣x,MN=PO=﹣x∴M(x,﹣x)∴﹣x=2x+3∴x=﹣1∴P(0,1)若∠MPN=90°,MP=NP,过点P作PE⊥MN,∴PE=ON=﹣x,MN=﹣2x,∴M(x,﹣2x)∴﹣2x=2x+3∴x=﹣∴P(0,)当点P在第一象限则x>0∵M(x,2x+3)∴x≠2x+3,∴∠MNP≠90°,∠NMP≠0若∠MPN=90°,MP=NP,过点P作PE⊥MN,∴PE=ON=x,MN=2x,∴M(x,2x)∴2x=2x+3方程无解,则这样的P点不存在.故P(0,0),(0,1),(0,﹣3),(0,),符合条件的点P有4个点故选:C.二.填空题(共6小题,满分18分,每小题3分)11.解:∵b=+﹣2,∴1﹣2a=0,解得:a=,则b=﹣2,故a b=()﹣2=4.故答案为:4.12.解:当这个直角三角形的两直角边分别为3cm,4cm时,则该三角形的斜边的长为:=5(cm).当这个直角三角形的一条直角边为3cm,斜边为4cm时,则该三角形的另一条直角边的长为:=(cm).故答案为:5或.13.解:设平移后直线的解析式为y=3x+b.把(0,2)代入直线解析式得2=b,解得b=2.所以平移后直线的解析式为y=3x+2.故答案为:y=3x+2.14.解:解不等式组,得﹣<x<0;解不等式组,得0≤x<,综上可得,﹣<x<.故答案为﹣<x<.15.解:∵点A坐标为(﹣3,0)∴AO=3∵∠ADO=30°,AO⊥DO∴AD=2AO=6,∵DO=∴DO=3∴D(0,3)∵四边形ABCD是平行四边形∴AB =CD =8,AB ∥CD∴点C 坐标(8,3)故答案为(8,3)16.解:如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .∵CD =2AD ,DF =FC ,∴CF =CB ,∴∠CFB =∠CBF ,∵CD ∥AB ,∴∠CFB =∠FBH ,∴∠CBF =∠FBH ,∴∠ABC =2∠ABF .故①正确,∵DE ∥CG ,∴∠D =∠FCG ,∵DF =FC ,∠DFE =∠CFG ,∴△DFE ≌△FCG (AAS ),∴F E =FG ,∵BE ⊥AD ,∴∠AEB =90°,∵AD ∥BC ,∴∠AEB =∠EBG =90°,∴BF =EF =FG ,故②正确,∵S △DFE =S △CFG ,∴S 四边形DEBC =S △EBG =2S △BEF ,故③正确,∵AH =HB ,DF =CF ,AB =CD ,∴CF =BH ,∵CF ∥BH ,∴四边形BCFH 是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故答案为:①②③④三.解答题17.解:(1)原式=3﹣2++2=;(2)原式=(+2)(﹣2)==15﹣12=3.18.解:(1)∵∠BAD=10°,∠DAE=30°,∴∠BAC=∠BAD+∠D AE=40°,∵AB=AC,∴∠B=∠C=(180°﹣∠BAC)=70°.∵AD=AE,∠DAE=30°,∴∠ADE=∠AED=(180°﹣∠DAE)=75°.∵∠B=70°,∠BAD=10°,∴∠ADC=∠B+∠BAD=80°,∴∠EDC=∠ADC﹣∠ADE=5°.故答案为5;(2)∵AB=AC,∠ABC=60°,∴∠BAC=60°,∵AD=AE,∠ADE=70°,∴∠DAE=180°﹣2∠ADE=40°,∴∠BAD=60°﹣40°=20°,∴∠ADC=∠BAD+∠ABD=60°+20°=80°,∴∠CDE=∠ADC﹣∠ADE=10°,故答案为:20,10;(3)猜想:α=2β.理由如下:设∠B=x,∠AED=y,∵AB=AC,AD=AE,∴∠C=∠B=x,∠ADE=∠AED=y.∵∠AED=∠CDE+∠C,∴y=β+x,∵∠ADC=∠BAD+∠B=∠ADE+∠CDE,∴α+x=y+β=β+x+β,∴α=2β.19.(1)证明:∵四边形ABCD为平行四边形,∴AB∥CD.∴∠BAF=∠F.∵AF平分∠BAD,∴∠BAF=∠DAF.∴∠F=∠DAF.∴AD=FD.(2)解:∵∠ADE=∠CDE=30°,AD=FD,∴DE⊥AF.∵tan ∠ADE =,,∴AE =2.∴S 平行四边形ABCD =2S △ADE =AE •DE =4.20.解:(1)6+12+10+8+4=40,故答案为:40. (2)众数是30元,中位数是50元,故答案为:30,50.(3)==50.5元,答:平均数是50.5元.(4)1000×50.5=50500元,答:该校本学期计划购买课外书的总花费为50500元.21.解:如图即为所求作的菱形理由如下:∵AB =AC ,BD =AB ,CD =AC ,∴AB =BD =CD =AC ,∴四边形ABDC 是菱形.22.解:(1)设直线AB 的解析式为y =kx +b (k ≠0),将A (﹣1,5),B (3,﹣3)代入y =kx +b ,得:,解得:, ∴直线AB 的解析式为y =﹣2x +3.当x =2时,y =﹣2x +3=﹣1,∴点P 的坐标为(2,﹣1),即a 的值为﹣1.(2)设直线AB 与y 轴交于点D ,连接OA ,OP ,如图所示.当x =0时,y =﹣2x +3=3,∴点D 的坐标为(0,3).S △AOP =S △AOD +S △POD =OD •|x A |+OD •|x P |=×3×1+×3×2=.23.(1)解:连接BD 交AC 于K .∵四边形ABC D 是菱形,∴AC ⊥BD ,AK =CK =8,在Rt △AKD 中,DK ==6,∵CD =CE ,∴EK =CE ﹣CK =10﹣8=2,在Rt △DKE 中,DE ==2.(2)证明:过H 作HQ ⊥CD 于Q ,过G 作GJ ⊥CD 于J .∵CH ⊥GF ,∴∠GJF =∠CQH =∠GPC =90°,∴∠QCH =∠JGF ,∵CH =GF ,∴△CQH ≌△GJF (AAS ),∴QH =CJ ,∵GC =GF ,∴∠QCH =∠JGF =∠CGJ ,CJ =FJ =CF ,∵GC =CH ,∴∠CHG =∠CGH ,∴∠CDH +∠QCH =∠HGJ +∠CGJ ,∴∠CDH =∠HGJ ,∵∠GJF =∠CQH =∠GPC =90°,∴∠CDH=∠HGJ=45°,∴DH=QH,∴DH=2QH=CF.24.解:(1)△ABC是直角三角形,由勾股定理可得:,,,∴AC2+BC2=AB2,∴△ABC是直角三角形,(2)△ABC的周长为:AC+BC+AB=,△ABC的面积为:.25.解:如图,作点D关于直线AB的对称点D′,连接CD′交AB于点E′.此时△DCE′的周长最小.∵四边形AOCB是矩形, B(﹣3,5),∴OA=3,OC=5,∵AD=2OD,∴AD=2,OD=1,∴AD′=AD=2,∴D′(﹣5,0),∵C(0,5),∴直线CD′的解析式为y=x+5,∴E′(﹣3,2).26.解:(1)∵点E是AD边的中点,∴AE=ED,∵AB∥CD,∴∠NDE=∠MAE,在△NDE和△MAE中,,∴△NDE≌△MAE(ASA),∴ND=AM,∵ND∥AM,∴四边形AMDN是平行四边形;(2)当AM=2时,说明四边形是矩形.∵E是AD的中点,∴AE=2,∵AE=AM,∠EAM=60°,∴△AME是等边三角形,∴AE=EM,∴AE=ED=EM,∴∠AMD=90°,∵四边形ABCD是菱形,故当AM=2时,四边形AMDN是矩形.。

广东省广州市越秀区2019-2020学年八年级下册数学期末考试试卷(解析版)

广东省广州市越秀区2019-2020学年八年级下册数学期末考试试卷(解析版)

广东省广州市越秀区2019-2020学年八年级下册数学期末考试试卷(解析版)一、选择题1.下列式子没有意义的是()A. B. C. D.2.下列计算中,正确的是()A. ÷ =B. (4 )2=8C. =2D. 2 ×2 =23.刻画一组数据波动大小的统计量是()A. 平均数B. 方差C. 众数D. 中位数4.在暑假到来之前,某机构向八年级学生推荐了A,B,C三条游学线路,现对全级学生喜欢哪一条游学线路作调查,以决定最终的游学线路,下面的统计量中最值得关注的是()A. 方差B. 平均数C. 中位数D. 众数5.关于正比例函数y=﹣2x,下列结论中正确的是()A. 函数图象经过点(﹣2,1)B. y随x的增大而减小C. 函数图象经过第一、三象限D. 不论x取何值,总有y<06.以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A. 2,3,4B. ,,C. 1,,2D. 7,8,97.若一个直角三角形的一条直角边长是5cm,另一条直角边比斜边短1cm,则斜边长为()cm.A. 10B. 11C. 12D. 138.如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,则菱形ABCD的面积是()A. 24B. 26C. 30D. 489.在下列命题中,是假命题的是()A. 有一个角是直角的平行四边形是矩形B. 一组邻边相等的矩形是正方形C. 一组对边平行且相等的四边形是平行四边形D. 有两组邻边相等的四边形是菱形10.已知平面上四点A(0,0),B(10,0),C(12,6),D(2,6),直线y=mx﹣3m+6将四边形ABCD 分成面积相等的两部分,则m的值为()A. B. ﹣1 C. 2 D.二、填空题11.已知a= +2,b= ﹣2,则ab=________.12.一次函数y=kx+b(k≠0)中,x与y的部分对应值如下表:x ﹣2 ﹣1 0 1 2y ﹣6 ﹣4 ﹣2 0 2那么,一元一次方程kx+b=0的解是x=________.13.如图是一次函数y=mx+n的图象,则关于x的不等式mx+n>2的解集是________.14.一组数据:2019、2019、2019、2019、2019,它的方差是________.15.考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端垂直滑下6个单位时,请问其下端离开墙角有多远?”,这个问题的答案是:其下端离开墙角________个单位.16.如图所示,在Rt△ABC中,∠A=90°,DE∥BC,F,G,H,I分别是DE,BE,BC,CD的中点,连接FG,GH,HI,IF,FH,GI.对于下列结论:①∠GFI=90°;②GH=GI;③GI= (BC﹣DE);④四边形FGHI是正方形.其中正确的是________(请写出所有正确结论的序号).三、解答题17.计算:(+ ﹣)× .18.如图,在△ABC中,AD⊥BC,AB=5,BD=4,CD= .(1)求AD的长.(2)求△ABC的周长.19.如图在平行四边形ABCD中,AC交BD于点O,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:四边形AECF 为平行四边形.20.下表是某校八年级(1)班43名学生右眼视力的检查结果.视力 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0人数 1 2 5 4 3 5 1 1 5 10 6(1)该班学生右眼视力的平均数是________(结果保留1位小数).(2)该班学生右眼视力的中位数是________.(3)该班小鸣同学右眼视力是4.5,能不能说小鸣同学的右眼视力处于全班同学的中上水平?试说明理由.21.如图,正方形ABCD的对角线相交于点O,BC=6,延长BC至点E,使得CE=8,点F是DE的中点,连接CF、OF.(1)求OF的长.(2)求CF的长.22.如图,在平面直角坐标系中,直线y=kx+b经过点A(﹣30,0)和点B(0,15),直线y=x+5与直线y=kx+b 相交于点P,与y轴交于点C.(1)求直线y=kx+b的解析式.(2)求△PBC的面积.23.2016年下半年开始,不同品牌的共享单车出现在城市的大街小巷.现已知A品牌共享单车计费方式为:初始骑行单价为1元/半小时,不足半小时按半小时计算.内设邀请机制,每邀请一位好友注册认证并充值押金成功,双方骑行单价均降价0.1元/半小时,骑行单价最低可降至0.1元/半小时(比如,某用户邀请了3位好友,则骑行单价为0.7元/半小时).B品牌共享单车计费方式为:0.5元/半小时,不足半小时按半小时计算.(1)某用户准备选择A品牌共享单车使用,设该用户邀请好友x名(x为整数,x≥0),该用户的骑行单价为y元/半小时.请写出y关于x的函数解析式.(2)若有A,B两种品牌的共享单车各一辆供某用户一人选择使用,请你根据该用户已邀请好友的人数,给出经济实惠的选择建议.24.下面我们做一次折叠活动:第一步,在一张宽为2的矩形纸片的一端,利用图(1)的方法折出一个正方形,然后把纸片展平,折痕为MC;第二步,如图(2),把这个正方形折成两个相等的矩形,再把纸片展平,折痕为FA;第三步,折出内侧矩形FACB的对角线AB,并将AB折到图(3)中所示的AD处,折痕为AQ.根据以上的操作过程,完成下列问题:(1)求CD的长.(2)请判断四边形ABQD的形状,并说明你的理由.25.如图,正方形ABCD中,AB=4,P是CD边上的动点(P点不与C、D重合),过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP═x,△PBF的面积为S1,△PDE 的面积为S2.(1)求证:BP⊥DE.(2)求S1﹣S2关于x的函数解析式,并写出x的取值范围.(3)分别求当∠PBF=30°和∠PBF=45°时,S1﹣S2的值.答案解析部分一、<b >选择题</b>1.【答案】B【考点】二次根式有意义的条件【解析】【解答】A、有意义,A不合题意;B、没有意义,B符合题意;C、有意义,C不合题意;D、有意义,D不合题意;故答案为:B.【分析】依据二次根式被开放数为非负数求解即可.2.【答案】C【考点】二次根式的性质与化简,二次根式的乘除法【解析】【解答】解:A、原式= = =3,A不符合题意;B、原式=32,B不符合题意;C、原式=|﹣2|=2,C符合题意;D、原式=4 ,D不符合题意;故答案为:C.【分析】依据二次根式的除法法则可对A作出判断;依据二次根式的性质可对B、C作出判断,依据二次根式的乘法法则可对D作出判断.3.【答案】B【考点】统计量的选择【解析】【解答】由于方差反映数据的波动情况,衡量一组数据波动大小的统计量是方差.故答案为:B.【分析】方差是反应一组数据波动大小的量.4.【答案】D【考点】统计量的选择【解析】【解答】由于众数是数据中出现次数最多的数,故全级学生喜欢的游学线路最值得关注的应该是统计调查数据的众数.故答案为:D.【分析】决定最终的线路应改由多数人员的意见决定,故此可得到问题的答案.5.【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:A、当x=﹣2时,y=﹣2×(﹣2)=4,即图象经过点(﹣2,4),不经过点(﹣2,1),故本选项错误;B、由于k=﹣2<0,所以y随x的增大而减小,故本选项正确;C、由于k=﹣2<0,所以图象经过二、四象限,故本选项错误;D、∵x>0时,y<0,x<0时,y>0,∴不论x为何值,总有y<0错误,故本选项错误.故答案为:B.【分析】依据正比例函数的图像和性质可对B、C、D作出判断,将x=-2代入函数解析式可求得y的值,从而可对A作出判断.6.【答案】C【考点】勾股定理的逆定理【解析】【解答】A、22+32≠42,故不是直角三角形,A不符合题意;B、()2+()2≠()2,故不是直角三角形,B不符合题意;C、12+()2=22,故是直角三角形,C符合题意;D、72+82≠92,故不是直角三角形,D不符合题意;故答案为:C.【分析】依据勾股定理的逆定理进行判断即可.7.【答案】D【考点】勾股定理【解析】【解答】设斜边长为xcm,则另一条直角边为(x﹣1)cm,由勾股定理得,x2=52+(x﹣1)2,解得,x=13,则斜边长为13cm,故答案为:D.【分析】设斜边长为xcm,则另一条直角边为(x-1)cm,然后依据勾股定理列方程求解即可.8.【答案】A【考点】菱形的性质【解析】【解答】∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB= ,= ,=4,∴BD=2OB=8,∴S菱形ABCD= ×AC×BD= ×6×8=24.故答案为:A.【分析】根据菱形的对角线互相垂直且互相平分可得到AC⊥BD,且AO=OC=3,然后依据勾股定理可求得BO的长,从而可得到BD的长,最后依据菱形的面积等于对角线乘积的一半求解即可.9.【答案】D【考点】命题与定理【解析】【解答】A、有一个角是直角的平行四边形是矩形,正确,A不符合题意;B、一组邻边相等的矩形是正方形,正确,B不符合题意;;C、一组对边平行且相等的四边形是平行四边形,正确,C不符合题意;D、有两组邻边相等且平行的四边形是菱形,错误,D不符合题意.故答案为:D.【分析】首先依据矩形的定义、正方形的判定定理、平行四边形的判定定理、菱形的判定定理判定命题的对错,从而可做出判断.10.【答案】B【考点】待定系数法求一次函数解析式【解析】【解答】解:如图,∵A(0,0),B(10,0),C(12,6),D(2,6),∴AB=10﹣0=10,CD=12﹣2=10,又点C、D的纵坐标相同,∴AB∥CD且AB=CD,∴四边形ABCD是平行四边形,∵12÷2=6,6÷2=3,∴对角线交点P的坐标是(6,3),∵直线y=mx﹣3m+6将四边形ABCD分成面积相等的两部分,∴直线y=mx﹣3m+6经过点P,∴6m﹣3m+6=3,解得m=﹣1.故答案为:B.【分析】首先依据各点的坐标可确定出四边形ABCD为平行四边形,然后可求得两对角线交点的坐标,然后由直线平分线四边形的面积可知直线经过点(6,3),最后将点(6,3)代入直线解析式求解即可.二、<b >填空题</b>11.【答案】1【考点】分母有理化【解析】【解答】解:∵a= +2,b= ﹣2,∴ab=(+2)(﹣2)=5﹣4=1,故答案为:1【分析】依据平方差公式和二次根式的性质进行计算即可.12.【答案】1【考点】一次函数与一元一次方程【解析】【解答】解:根据上表中的数据值,当y=0时,x=1,即一元一次方程kx+b=0的解是x=1.故答案是:1.【分析】依据表格找出当y=0时,对应的x的取值即可.13.【答案】x>0【考点】一次函数与一元一次不等式【解析】【解答】解:由题意,可知一次函数y=mx+n的图象经过点(0,2),且y随x的增大而增大,所以关于x的不等式mx+n>2的解集是x>0.故答案为:x>0.【分析】不等式的解集为当y>2时,函数自变量的取值范围.14.【答案】0【考点】方差【解析】【解答】解:该组数据一样,没有波动,方差为0,故答案为:0.【分析】方差的意义或利用方差公式进行解答即可.15.【答案】18【考点】勾股定理的应用【解析】【解答】解:∵PC=AB=30,PA=6,∴AC=24,∴BC= = =18,∴下端离开墙角18个单位.故答案为:18.【分析】根据题意可得到PC=AB=30,AC=24,然后在Rt△ABC中利用勾股定理求出CB的长即可.16.【答案】①③【考点】中点四边形【解析】【解答】解:延长IF交AB于K,∵DF=EF,BG=GE,∴FG= BD,GF∥AB,同理IF∥AC,HI= BD,HI∥BD,∴∠BKI=∠A=90°,∴∠GFI=∠BKI=90°,∴GF⊥FI,故①正确,∴FG=HI,FG∥HI,∴四边形FGHI是平行四边形,∵∠GFI=90°,∴四边形FGHI是矩形,故②④错误,延长EI交BC于N,则△DEI≌△CNI,∴DE=CN,EJ=JN,∵EG=GB,EI=IN,∴GI= BHN= (BC﹣DE),故③正确,故答案为①③.【分析】对于①,延长IF交AB于K,然后根据两直线平行同位角相等进行解答即可;对于②和④.只要证明四边形FGHI是矩形即可判断;对于③,先延长EI交BC于N,然后再证明△DEI≌△CNI,依据全等三角形的性质可得到DE=CN,EJ=JN,然后再结合中点的定义可推出GI=HN=(BC-DE).三、<b >解答题</b>17.【答案】解:原式=(6 + ﹣3 )×= ×=7.【考点】二次根式的混合运算【解析】【分析】先将各二次根式化简为最简二次根式,然后再合并同类二次根式,最后,在依据二次根式的乘法法则进行计算即可.18.【答案】(1)解:在Rt△ABD中,AD= =3(2)解:在Rt△ACD中,AC= =2 ,则△ABC的周长=AB+AC+BC=5+4+ +2 =9+3【考点】勾股定理【解析】【分析】(1)在Rt△ABD中,依据勾股定理可求得AD的长;(2)在Rt△ACD中,依据勾股定理可求得AC的长,然后再依据三角形的周长等于三边长度之和求解即可.19.【答案】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∠AEB=∠CFD=90°,在△AEB和△CFD中,∵,∴△AEB≌△CFD(AAS),∴AE=CF,∴四边形AECF是平行四边形.【考点】平行四边形的判定与性质【解析】【分析】首先依据四边形的性质可得AB=CD,AB∥CD,然后再证明AE∥CF,接下来,利用AAS 证得△AEB≌△CFD,依据全等三角形的性质可得到AE=CF,最后依据一组对边相等且平行的四边形是平行四边形进行证明即可.20.【答案】(1)4.6(2)4.7(3)解:不能,∵小鸣同学右眼视力是4.5,小于中位数4.7,∴不能说小鸣同学的右眼视力处于全班同学的中上水平.【考点】中位数、众数【解析】【解答】解:(1)该班学生右眼视力的平均数是×(4.0+4.1×2+4.2×5+4.3×4+4.4×3+4.5×5+4.6+4.7+4.8×5+4.9×10+5.0×6)≈4.6,故答案为:4.6;(2)由于共有43个数据,其中位数为第22个数据,即中位数为4.7,(3)不能,∵小鸣同学右眼视力是4.5,小于中位数4.7,∴不能说小鸣同学的右眼视力处于全班同学的中上水平.故答案为:(1)4.6;(2)4.7;(3)不能.【分析】(1)根据加权平均数公式求解即可;(2)首先将这组数据按照从小到大的顺序排列,中位数为第22个数据;(3)根据小鸣同学右眼视力是4.5,小于中位数4.7,故此可得到问题的答案.21.【答案】(1)解:∵四边形ABCD是正方形,∴BC=CD=6,∠BCD=∠ECD=90°,OB=OD,∵CE=8,∴BE=14,∵OB=OD,DF=FE,∴OF= BE=7.(2)解:在Rt△DCE中,DE= = =10,∵DF=FE,∴CF= DE=5.【考点】正方形的性质【解析】【分析】(1)由正方形的性质可知O为BD的中点,故此OF是△DBE的中位线,然后依据三角形中位线的性质解答即可;(2)在Rt△DCE中,利用勾股定理求出DE,再利用直角三角形斜边上中线等于斜边的一半求解即可. 22.【答案】(1)解:将点A(﹣30,0)、B(0,15)代入y=kx+b,,解得:,∴直线y=kx+b的解析式为y= x+15.(2)解:联立两直线解析式成方程组,,解得:,∴点P的坐标为(20,25).当x=0时,y=x+5=5,∴点C的坐标为(0,5),∴BC=15﹣5=10,∴S△PBC= BC•x P= ×10×20=100.【考点】两条直线相交或平行问题【解析】【分析】(1)将点A和点B的坐标代入直线的解析式得到关于k、b的方程组,从而可求得k、b 的值,于是可得到直线AB的解析式;(2)联立两直线解析式成方程组,通过解方程组可得出点P的坐标,由一次函数图象上点的坐标特征可求出点C的坐标,进而可得出线段BC的长度,最后利用三角形的面积公式求解即可.23.【答案】(1)解:由题意可得,当0≤x≤9且x为正整数时,y=1﹣0.1x,当x≥10且x为正整数时,y=0.1,即y关于x的函数解析式是y=(2)解:由题意可得,当0≤x≤9时,1﹣0.1x>0.5,可得,x<5,则当x≤x<5且x为正整数时,选择B品牌的共享单车;当0≤x≤9时,1﹣0.1x=0.5,得x=5,则x=5时,选择A或B品牌的共享单车消费一样;当0≤x≤9时,1﹣0.1x<0.5,得x>5,则x>5且x为正整数,选择A品牌的共享单车;当x≥10且x为正整数时,0.1<0.5,故答案为:项A品牌的共享单车.【考点】二元一次方程组的应用,一次函数的应用【解析】【分析】(1)可分为0≤x≤9且x为正整数或x≥10且x为正整数两种情况列出y与x的函数关系式;(2)分为0≤x≤9;0≤x≤9;0≤x≤9;当x≥10四种情况列出关于x的方程或不等式,然后再进行求解即可.24.【答案】(1)解:∵∠M=∠N=∠MBC=90°,∴四边形MNCB是矩形,∵MB=MN=2,∴矩形MNCB是正方形,∴NC=CB=2,由折叠得:AN=AC= NC=1,Rt△ACB中,由勾股定理得:AB= = ,∴AD=AB= ,∴CD=AD﹣AC= ﹣1;(2)解:四边形ABQD是菱形,理由是:由折叠得:AB=AD,∠BAQ=∠QAD,∵BQ∥AD,∴∠BQA=∠QAD,∴∠BAQ=∠BQA,∴AB=BQ,∴BQ=AD,BQ∥AD,∴四边形ABQD是平行四边形,∵AB=AD,∴四边形ABQD是菱形.【考点】正方形的判定与性质【解析】【分析】(1)首先证明四边形MNCB为正方形,然后再依据折叠的性质得到:CA=1,AB=AD,最后再依据CD=AD-AC求解即可;(2)根据平行线的性质和折叠的性质可得到∠BAQ=∠BQA,然后依据等角对等边的性质得到AB=BQ,接下来,依据一组对边平行且相等的四边形为平行四边形可证明四边形ABQD是平行四边形,再由AB=AD,可得四边形ABQD是菱形.25.【答案】(1)解:如图1中,延长BP交DE于M.∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCE=90°,∵CP=CE,∴△BCP≌△DCE,∴∠BCP=∠CDE,∵∠CBP+∠CPB=90°,∠CPB=∠DPM,∴∠CDE+∠DPM=90°,∴∠DMP=90°,∴BP⊥DE.(2)解:由题意S1﹣S2= (4+x)•x﹣•(4﹣x)•x=x2(0<x<4).(3)解:①如图2中,当∠PBF=30°时,∵∠CPE=∠CEP=∠DPF=45°,∠FDP=90°,∴∠PFD=∠DPF=45°,∴DF=DP,∵AD=CD,∴AF=PC,∵AB=BC,∠A=∠BCP=90°,∴△BAF≌△BCP,∴∠ABF=∠CBP=30°,∴x=PC=BC•tan30°= ,∴S1﹣S2=x2= .②如图3中,当∠PBF=45°时,在CB上截取CN=CP,理解PN.由①可知△ABF≌△BCP,∴∠ABF=∠CBP,∵∠PBF=45°,∴∠CBP=22.5°,∵∠CNP=∠NBP+∠NPB=45°,∴∠NBP=∠NPB=22.5°,∴BN=PN= x,∴x+x=4,∴x=4 ﹣4,∴S1﹣S2=(4 ﹣4)2=48﹣32 .【考点】正方形的性质【解析】【分析】(1)首先延长BP交DE于M.然后依据SAS可证明△BCP≌△DCE,依据全等三角形的性质可得到∠BCP=∠CDE,由∠CBP+∠CPB=90°,∠CPB=∠DPM,即可推出∠CDE+∠DPM=90°;(2)根据题意可得到S1-S2=S△PBE-S△PDE,然后依据三角形的面积公式列出函数关系式即可;(3)分当∠PBF=30°和∠PBF=45°两种情形分别求出PC的长,最后再利用(2)中结论进行计算即可.。

2018-2019学年广州市越秀区八年级上册期末数学试卷(含答案)

2018-2019学年广州市越秀区八年级上册期末数学试卷(含答案)

2017-2018学年广东省广州市越秀区八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分)1.(3分)下面有四个图案,其中不是轴对称图形的是()A.B.C.D.2.(3分)若分式的值为零,则x的值为()A.﹣2 B.±2 C.2 D.13.(3分)下列运算正确的是()A.(﹣a3)2+(﹣a2)3=0 B.(﹣b)2•(﹣b)4=﹣b6C.(﹣a3)2(﹣a2)3=﹣a6 D.x2•x4=x84.(3分)下列各因式分解中,结论正确的是()A.x2+5x+6=(x﹣1)(x+6)B.x2﹣x+6=(x+2)(x﹣3)C.a2﹣2ab+b2﹣1=(a+b+1)(a+b﹣1) D.(a+b)2+2a+2b﹣3=(a+b+3)(a+b﹣1)5.(3分)到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点 B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点6.(3分)用剪刀将一个四边形沿直线剪去一部分,剩下部分的图形的内角和将()A.增加180°B.减少180°C.不变D.以上三种情况都有可能7.(3分)在下列四个轴对称图形中,对称轴条数最多的是()A.正方形B.正五边形C.正六边形D.正七边形8.(3分)如图,已知AB=AC,AE=AF,BE与CP交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.①和2 B.②和③C.①和③D.①、②和③9.(3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的3倍,若设乘公交车平均每小时走X千米,根据题意可列方程为()A. +20=B.=+C.=+20 D. +=10.(3分)如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条 B.3条 C.4条 D.5条二、填空题(本题共有6小题,每小题3分,共18分)11.(3分)要使分式有意义,那么x必须满足.12.(3分)已知一个n边形的内角和是其外角和的4倍多180度,则n=.13.(3分)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是.14.(3分)如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连结AD.若AC=4cm,△ADC的周长为11cm,则BC的长为cm.15.(3分)如图,在△ABC中,BF⊥AC于F,AD⊥BC于D,BF与AD相交于E.若AD=BD,BC=8cm,DC=3cm,则AE=cm.16.(3分)化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=.三、解答题(本题共有7小题,共72分)17.(10分)完成下列运算:(1)(2x﹣1)(2x+1)﹣(4x+1)(x﹣1)(2)(x2+x)﹣y(x+2)18.(10分)解下列分式方程:(1)=(2)1﹣=19.(12分)(1)先化简,再求值:(2x+y)(2x﹣y)+(x+y)2﹣5x2,其中x=3,y=5.(2)先化简,再求值:(﹣),其中a=﹣.20.(8分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.21.(8分)如图,△ABC和△CDE都是等边三角形,且B,C,D三点共线,连接AD,BE相交于点P,求证:BE=AD.22.(12分)山地自行车越来越受到大众的喜爱,某车行经销了某品牌的A、B两型车,其经销的A型车去年销售总额为5万元,今年每辆车的销售价将比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.其中A,B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元)11001400销售价格(元)今年的销售价格2000试问:(1)今年A型车每辆售价多少元?(2)该车行计划新进一批A型车和B型车共60辆(见上表),要使这批车获利不少于33000元,A型车至多进多少辆?23.(12分)在△ABC中,AB=AC,点D在底边BC上,AE=AD,连结DE.(1)如图①,已知∠BAC=90°,∠BAD=60°,求∠CDE的度数.(2)如图①,已知∠BAC=90°,当点D在BC(点B、C除外)上运动时,试探究∠BAD与∠CDE 的数量关系;(3)如图②,若∠BAC≠90°,试探究∠BAD与∠CDE的数量关系.2017-2018学年广东省广州市越秀区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共有10小题,每小题3分,共30分)1.(3分)下面有四个图案,其中不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选A.2.(3分)若分式的值为零,则x的值为()A.﹣2 B.±2 C.2 D.1【解答】解:∵分式的值为零,∴|x|﹣2=0,解得:x=±2.故选:B.3.(3分)下列运算正确的是()A.(﹣a3)2+(﹣a2)3=0 B.(﹣b)2•(﹣b)4=﹣b6C.(﹣a3)2(﹣a2)3=﹣a6 D.x2•x4=x8【解答】解:A、原式=a6﹣a6=0,符合题意;B、原式=b2•b4=b6,不符合题意;C、原式=a6•(﹣a6)=﹣a12,不符合题意;D、原式=x6,不符合题意.故选:A.4.(3分)下列各因式分解中,结论正确的是()A.x2+5x+6=(x﹣1)(x+6)B.x2﹣x+6=(x+2)(x﹣3)C.a2﹣2ab+b2﹣1=(a+b+1)(a+b﹣1)D.(a+b)2+2a+2b﹣3=(a+b+3)(a+b﹣1)【解答】解:A、原式=(x+2)(x+3),错误;B、原式不能分解,错误;C、原式=(a﹣b+1)(a﹣b﹣1),错误;D、原式═(a+b+3)(a+b﹣1),正确,故选D5.(3分)到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点 B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:C.6.(3分)用剪刀将一个四边形沿直线剪去一部分,剩下部分的图形的内角和将()A.增加180°B.减少180°C.不变D.以上三种情况都有可能【解答】解:如下图所示:观察图形可知,四边形剪掉一个角后,剩下的图形可能是五边形,也可能是四边形,还可能是三角形.则剩下的纸片图形是三角形或四边形或五边形.内角和是:180°或360°或540°.故选:D.7.(3分)在下列四个轴对称图形中,对称轴条数最多的是()A.正方形B.正五边形C.正六边形D.正七边形【解答】解:A、正方形,有4条对称轴;B、正五边形,有5条对称轴;C、正六边形,有6条对称轴;D、正七边形,有7条对称轴.故选:D.8.(3分)如图,已知AB=AC,AE=AF,BE与CP交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.①和2 B.②和③C.①和③D.①、②和③【解答】解:如图,连接AD;在△ABE与△ACF中,,∴△ABE≌△ACF(SAS);∴∠B=∠C;∵AB=AC,AE=AF,∴BF=CE;在△CDE与△BDF中,,∴△CDE≌△BDF(AAS),∴DC=DB;在△ADC与△ADB中,,∴△ADC≌△ADB(SAS),∴∠CAD=∠BAD;综上所述,①②③均正确,故选D9.(3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的3倍,若设乘公交车平均每小时走X千米,根据题意可列方程为()A. +20=B.=+C.=+20 D. +=【解答】解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+.故选:B.10.(3分)如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条 B.3条 C.4条 D.5条【解答】解:如图所示,当CA=CF=3,BC=BD=3,BC=CE=3,BG=CG,都能得到符合题意的等腰三角形.故选C.二、填空题(本题共有6小题,每小题3分,共18分)11.(3分)要使分式有意义,那么x必须满足x≠0.【解答】解:要使分式有意义,那么x必须满足x≠0,故答案为:x≠012.(3分)已知一个n边形的内角和是其外角和的4倍多180度,则n=11.【解答】解:(n﹣2)•180°﹣4×360°=180°,解得n=11,故答案为:11.13.(3分)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是18°.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°∵BD是AC边上的高,∴BD⊥AC,∴∠DBC=90°﹣72°=18°.故答案为:18°.14.(3分)如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连结AD.若AC=4cm,△ADC的周长为11cm,则BC的长为7cm.【解答】解:∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD,∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm,∵AC=4cm,∴BC=7cm.故答案为:7.15.(3分)如图,在△ABC中,BF⊥AC于F,AD⊥BC于D,BF与AD相交于E.若AD=BD,BC=8cm,DC=3cm,则AE=2cm.【解答】解:∵BF⊥AC于F,AD⊥BC于D,∴∠CAD+∠C=90°,∠CBF+∠C=90°,∴∠CAD=∠CBF,∵在△ACD和△BED中,,∴△ACD≌△BED,(ASA)∴DE=CD,∴AE=AD﹣DE=BD﹣CD=BC﹣CD﹣CD=2;故答案为2.16.(3分)化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=(a+1)100.【解答】解:原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98]=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97]=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96]=…=(a+1)100.故答案为:(a+1)100.三、解答题(本题共有7小题,共72分)17.(10分)完成下列运算:(1)(2x﹣1)(2x+1)﹣(4x+1)(x﹣1)(2)(x2+x)﹣y(x+2)【解答】解:(1)原式=4x2﹣1﹣(4x2﹣4x+x﹣1)=4x2﹣1﹣4x2+4x﹣x+1=3x;(2)原式=(x2+x)•﹣xy﹣2y=2xy+2y﹣xy﹣2y=xy.18.(10分)解下列分式方程:(1)=(2)1﹣=【解答】解:(1)化为整式方程为:x+2=4解得:x=2,检验:把x=2代入x2﹣4=0,所以原方程无解;(2)化为整式方程为:(6x﹣2)﹣2=5解得:x=1.5,检验x=1.5是原方程的解,所以原方程的解是x=1.5.19.(12分)(1)先化简,再求值:(2x+y)(2x﹣y)+(x+y)2﹣5x2,其中x=3,y=5.(2)先化简,再求值:(﹣),其中a=﹣.【解答】解:(1)原式=4x2﹣y2+x2+2xy+y2﹣5x2=2xy,当x=3,y=5时,原式=30;(2)原式=•=,当a=﹣时,原式=﹣1.20.(8分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.【解答】解:∵AD是BC边上的高,∠B=42°,∴∠BAD=48°,∵∠DAE=18°,∴∠BAE=∠BAD﹣∠DAE=30°,∵AE是∠BAC的平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°﹣∠B﹣∠BAC=78°.21.(8分)如图,△ABC和△CDE都是等边三角形,且B,C,D三点共线,连接AD,BE相交于点P,求证:BE=AD.【解答】证明:∵△ABC和△CDE都是等边三角形,∴CA=CB,CD=CE,∠ACB=60°,∠DCE=60°,∴∠ACE=60°,∴∠ACD=∠BCE=120°,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE.22.(12分)山地自行车越来越受到大众的喜爱,某车行经销了某品牌的A、B两型车,其经销的A型车去年销售总额为5万元,今年每辆车的销售价将比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.其中A,B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元)11001400销售价格(元)今年的销售价格2000试问:(1)今年A型车每辆售价多少元?(2)该车行计划新进一批A型车和B型车共60辆(见上表),要使这批车获利不少于33000元,A型车至多进多少辆?【解答】解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得:=,解得:x=1600.经检验,x=1600是原方程的根.答:今年A型车每辆售价1600元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,由题意,得(1600﹣1100)a+(2000﹣1400)(60﹣a)≥33000,解得:a≤30,故要使这批车获利不少于33000元,A型车至多进30辆.23.(12分)在△ABC中,AB=AC,点D在底边BC上,AE=AD,连结DE.(1)如图①,已知∠BAC=90°,∠BAD=60°,求∠CDE的度数.(2)如图①,已知∠BAC=90°,当点D在BC(点B、C除外)上运动时,试探究∠BAD与∠CDE 的数量关系;(3)如图②,若∠BAC≠90°,试探究∠BAD与∠CDE的数量关系.【解答】解:(1)∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵∠BAD=60°,∴∠DAE=30°,∵AD=AE,∴∠AED=75°,∴∠CDE=∠AED=∠C=30°;(2)设∠BAD=x,∴∠CAD=90°﹣x,∵AE=AD,∴∠AED=45°+,∴∠CDE=x,即;(3)设∠BAD=x,∠C=y,∵AB=AC,∠C=y,∴∠BAC=180°﹣2y,∵∠BAD=x,∴∠AED=y+x,∴.即.。

2018-2019学年广东省广州市越秀区八年级(下)期末数学试卷

2018-2019学年广东省广州市越秀区八年级(下)期末数学试卷

2018-2019学年广东省广州市越秀区八年级(下)期末数学试卷一、选择题:本大题共10小题,每小题3分,满分30分.在毎小题给出的四个选项中,只有一项是符合题目要求的1.(3分)下列计算正确的是()A.=±4B.=﹣5C.=10D.=32.(3分)计算﹣的结果是()A.25B.2C.D.53.(3分)为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg)分别为x1,x2,…,x8,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x8的平均数B.x1,x2,…,x8的方差C.x1,x2,…,x8的中位数D.x1,x2,…,x8的众数4.(3分)下列命题的逆命题是真命题的是()A.如果两个角是直角,那么它们相等B.如果两个实数相等,那么它们的平方相等C.如果一个四边形是菱形,那么它的四条边都相等D.如果一个四边形是矩形,那么它的对角线相等5.(3分)若平行四边形其中两个内角的度数之比为1:4,则其中较小的内角是()A.30°B.36°C.45°D.60°6.(3分)下列各曲线中,表示y是x的函数的是()A.B.C.D.7.(3分)若函数y=kx+b是正比例函数,且y随x的增大而减小,则下列判断正确的是()A.k>0B.k<0C.b>0D.b<08.(3分)已知一次函数y=kx+b的图象经过点(0,﹣1)与(﹣2,0),则不等式kx+b>0的解集是()A.x<﹣2B.x>﹣2C.x<﹣1D.x>﹣19.(3分)如图,四边形ABCD是直角梯形,E,F,G,H分别是AB,BC,CD,DA的中点,连接AC,BD,EF,FG,GH,HE,则图中的平行四边形共有()A.1个B.4个C.5个D.9个10.(3分)如图,在Rt△ABC中,∠A=90°,AB=8,AC=6,将△ABC沿CD翻折,使点A与BC边上的点E重合,则CD的长是()A.3B.3C.D.5二、填空题:本大题共6小题,每小题3分,满分18分11.(3分)使代数式有意义的x的取值范围是.12.(3分)如图,矩形ABCD的对角线AC与BD相交于点O,∠AOB=120°,AD=3,则AC的长是.13.(3分)下表是某公司员工月收入的资料:月收入/元450001800010000550050003000人数1112510则这个公司员工月收入的中位数是元.14.(3分)某校为了了解该校学生在家做家务的情况,随机调査了50名学生,得到他们在一周内做家务所用时间的情况如下表所示时间/(小时)0≤t<11≤t<22≤t<33≤t<44≤t<5人数8142062则可以估计该校学生平均每人在一周内做家务所用时间是小时.(同一组中的数据用这组数据的组中值作代表.)15.(3分)如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m当梯子的顶端A沿墙向下滑的距离AC与梯子底端B向外移的距离BD相等时,AC的长是m.16.(3分)如图,平面直角坐标系xOy中.A(,0),B(0,5),点C在第一象限,且△ABC是等边三角形,则直线BC的解析式是.三、解答题:本大題共9小题,满分72分.解答须写出文字说明、证明过程和演算步聚17.(6分)计算:(+)(﹣)+(﹣)÷18.(8分)如图,每个小正方形的边长都为1(1)求四边形ABCD的周长;(2)求∠BCD的大小.19.(8分)为了在甲、乙两名运动员中选拔一人参加全省跳水比赛,对他们的跳水技能进行考核.在相同条件下,各跳了10次,成绩(单位:分)如下甲82838685828387908488乙80828486908583818584(1)分别计算甲、乙两名运动员这10次跳水成绩的平均数和方差;(2)你认为选谁参加比赛更合适?并说明理由.20.(8分)如图,四边形ABCD中,AB∥CD,AC与BD相交于点O,AO=CO.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,AB=10,求BC的长.21.(8分)如图,▱ABCD中,O是AB的中点,CO=DO.(1)求证:▱ABCD是矩形.(2)若AD=3,∠COD=60°,求▱ABCD的面积.22.(8分)已知点P(x、y)在第一象限,且x+y=6,A(4,0),B(0,2),设△P AB的面积为S(1)求S关于x的函数解析式,并写出x的取值范围;(2)在给定的平面直角坐标系中画出函数S的图象,并写出S的取值范围.23.(8分)A,B两地相距24km.甲7:00由A地出发骑自行车去B地,速度为12km/h;乙8:00由A地出发沿同一路线驾驶汽车去B地,速度为60km/h.(1)分别写出甲、乙两人的行程y关于时刻x的函数解析式;(2)乙能否在途中超过甲?并说明理由.24.(8分)如图所示,边长为1的正方形ABCD被划分成五个小矩形R1、R2、R3、R4、R5,其中四个外围小矩形R1、R2、R3、R4的面积都相等.设小矩形R1的水平边长为a(0<a <1),竖直边长为b(0<b<a).(1)求证:a+b=1;(2)试问:中间小矩形R5是正方形吗?请说明理由.25.(10分)在平面直角坐标系xOy中,直线y=x+2与x轴、y轴分別相交于A,B两点.(1)求∠OAB的大小;(2)如图,点P(a,b)在第二象限,M(a,0),N(0,b),直线PM,PN分别与线段AB相交于点E,F.当点P运动时,四边形PMON的面积为定值2.试判断以线段AE,EF,FB为边的三角形的形状,并说明理由.。

2018-2019人教版广东省广州市越秀区八年级下册期末模拟考试数学试卷

2018-2019人教版广东省广州市越秀区八年级下册期末模拟考试数学试卷

2018 —2019学年度第二学期八年级下册期末模拟考试考号:题号-一- -二二三四五总分得分、选择题(共10个小题,每小题3分,满分30分)6cm和8cm,则它的面积是(A . 6cm2B . 12 cm2C . 24 cm2D. 48 cm27.如图,在△ ABC 中,若AB= AC = 6, BC = 4, D是BC的中点,则AD的长等于(密封线内不要答题A . 5B . 6C . 2D . 42.在厶ABC中,/ I A:/ B:/ C = 1: 1:2,则下列说法错误的是()2 2.2A . a +c = b2 c 2B. c = 2a C . a= bD . / C =90°1 •若VTW与最简二次根式—是同类二次根式,则m的值为()3 •如图是甲、乙两名运动员正式比赛前的5次训练成绩的折线统计图,C.甲、乙的成绩一样稳定B .乙D •无法判断4 •根据下列条件,得不到平行四边形的是() A . AB = CD , AD= BCC. AB = CD , AD //BCB . AB // CD , AB =CDD . AB // CD , AD //BC你认为成绩较稳定&如图,已知矩形ABCD中,R、P分别是DC、BC上的点,C.线段EF的长不改变R不动时,那么下列结论成立的是(9.已知直线y=(k- 2)x+k经过第一、二、四象限,B. k> 2线段线段分别是AP、RP的中EF的长逐渐减小EF的长不能确定k的取值范围是(0v k v 210 .如图,在厶ABC中,AC= BC,有一动点P从点A出发,沿A T C T B^A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()八年级数学试卷第1页(共6页)八年级数学试卷第2页(共6页))三、解答题(一)(共3个小题,每小题6分,满分18 分)17. (6 分)计算:(+3 : - 2 : )X 2 :.18. (6分)如图,直线I是一次函数y= kx+b的图象.(1)求出这个一次函数的解析式.(2根据函数图象,直接写出y v 2时x的取值范围.A. B.、填空题(共6个小题,每小题4分,满分24分)11•若一组数据1, 3, X, 4, 5, 6的平均数是4,则这组数据的众数是____________ .12•如图,在矩形ABCD中,对角线AC、BD交于点O,/ A0D = 120°,对角线AC= 4, 则BC的长为__________________ .19.(6分)中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国诗词大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A 类(非常喜欢),B类(较喜欢)C类(一般),D类(不喜欢).请结合两幅统计图,回答下列问题:(1)求本次抽样调查的人数;(2)请补全两幅统计图;(3)若该校有3000名学生,请你估计观看“中国诗词大会”节目较喜欢的学生人13. 二次根式_________________ ■有意义的条件是.14. 在厶ABC中,AB = 17cm, AC = 10cm, BC边上的高等于8cm,贝U BC的长为_______ cm.b15. 一次函数y= kx+b,当1w x w 4时,3w y w 6,贝U卜的值是__________ .16. 已知如图,?ABCD中AC、BD交于点O, OE丄AC交AD于点E,连结CE,若?ABCD的周长为32cm,则厶DCE的周长为 _________ cm.数.7分,满分21分)20. (7 分)如图,/ B= 90°, AB = 4, BC = 3, CD = l2, AD = 13,点E 是AD 的中密封线内不要答题c z>点,求CE的长.八年级数学试卷第3页(共4页)八年级数学试卷第4页(共6页)21.( 7分)如图,在平面坐标系中,已知 A (- 一,0), B ( 0, 3), C ( 0,- 1)占八、、♦若点D在直线AC上,且DB = DC,求点D的坐标.AB = CD , BF = DE , AE 丄BD , CF 丄BD,垂足分五、解答题(三)(共3个小题,每小题9分,满分27 分)23.( 9分)某市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2元收费.如果超过20吨,未超过的部分仍按每吨2元收费,超过部分按每吨2.5元收费.设某户每月用水量为x吨,应收水费为y元.(1)分别写出当每月用水量未超过20吨和超过20吨时,y与x之间的函数关系式;(2)若某用户5月份和6月份共用水45吨,且5月份的用水量不足20吨,两个月共交水费95元,求该用户5月份和6月份分别用水多少吨?24•我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1 ,四边形ABCD中,点E, F ,G, H分别为边AB , BC, CD, DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA= PB, PC= PD , / APB =Z CPD, 点E, F, G, H分别为边AB, BC, CD , DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使/ APB = /CPD = 90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)25.( 9分)如图所示,已知直线L过点A ( 0, 1 )和B (1 , 0), P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M .(1)直接写出直线L的解析式;(2)设OP",△ OPQ的面积为S,求S关于t的函数关系式;并求出当0 v t v 2时,S的最大值;(3)直线L1过点A且与x轴平行,问在L1上是否存在点C,使得△ CPQ是以Q为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.4 vL(1) 求线段BC的长度;(2)密封线内不要答题别为E、F .(1)求证:△ ABECDF ;A0= CO.八年级数学试卷第5页(共6页) 八年级数学试卷第6页(共6页)。

2018-2019学年广东省广州市越秀区八年级(上)期末数学试卷

2018-2019学年广东省广州市越秀区八年级(上)期末数学试卷

2018-2019学年广东省广州市越秀区八年级(上)期末数学试卷一、选择題(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.2.(3分)下列图形中,不具有稳定性的是()A.B.C.D.3.(3分)点(﹣1,2)关于x轴对称的点的坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,﹣2)D.(2,﹣1)4.(3分)在中,分式的个数为()A.1B.2C.3D.45.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)﹣3=C.(ab3)4=ab12D.(﹣3a4)3=﹣27a126.(3分)纳米(mm)是非常小的长度单位,1nm=10﹣9m,较小的病毒直径仅为18﹣22纳米,18nm用科学记数法可表示为()A.0.18×10﹣7m B.0.18×10﹣11mC.1.8×10﹣8m D.1.8×10﹣10m7.(3分)如图,AC与BD相交于点O,AB∥CD,AB=CD,则图中的全等三角形共有()A.1对B.2对C.3对D.4对8.(3分)大拖拉机n天耕地a公顷,小拖拉机m天耕地b公顷,大拖拉机的工作效率是小拖拉机工作效率的()A.B.C.D.9.(3分)如图,点A、B、C、D在同一条直线上,AE=DF,CE=BF,要使得△ACE≌△DBF,则需要添加的一个条件可以是()A.AE∥DF B.CE∥BF C.AB=CD D.∠A=∠D 10.(3分)若2m=5,4n=3,则43n﹣m的值是()A.B.C.2D.4二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)已知等腰三角形的周长为32.底边长为12,则这个等腰三角形的腰长为.12.(3分)如图,在△ABC中,AD、AE分别是边BC上的中线与高,AE=4,△ABC的面积为12,则CD的长为.13.(3分)如图,在△ABC中,AC⊥BC,∠B=30°,CD⊥AB,垂足为D,若AD=1,则AC的长为.14.(3分)计算:的结果是(结果化为最简形式).15.(3分)如图,有一张长方形纸板,在它的四角各切去一个边长为a的正方形,然后将四周突出部分折起,制成一个长方体形状的无盖纸盒.如果纸盒的容积为2a(x2﹣y2)(x >y),底面长方形的一边长为x﹣y,则底面长方形的另一边长为.16.(3分)如图,在边长为2的等边△ABC中,D是BC的中点,点E在线段AD上,连结BE,在BE的下方作等边△BEF,连结DF.当△BDF的周长最小时,∠DBF的度数是.三、解答题(本大题共9小题,满分72分.解答须写出文字说明、证明过程和演算步骤)17.(6分)先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.18.(6分)解方程:﹣1=19.(8分)分解因式(1)a3b﹣9ab(2)4ab2﹣4ab+a20.(8分)如图,两条公路OA与OB相交于点O,在∠AOB的内部有两个小区C与D,现要修建一个市场P,使市场P到两条公路OA、OB的距离相等,且到两个小区C、D 的距离相等.(1)市场P应修建在什么位置?(请用文字加以说明)(2)在图中标出点P的位置(要求:用尺规作图,不写作法,保留作图痕遼,写出结论).21.(8分)如图,AC与BD相交于点E,AC=BD,AC⊥BC,BD⊥AD.垂足分别是C、D.(1)若AD=6,求BC的长;(2)求证:△ADE≌△BCE.22.(8分)如图,六边形ABCDEF的内角都相等,∠F AD=60°.(1)求∠ADE的度数;(2)求证:EF∥BC.23.(8分)如图,在△ABC中,AD平分∠BAC,AD与BC相交于点D,DE⊥AB,DF⊥AC,垂足分别是E、F,连接EF.(1)求证:AD垂直平分EF;(2)试问:与相等吗?并说明理由.24.(8分)两个小组同时从山脚开始攀登一座600m高的山,第一小组的攀登速度(即攀登高度与攀登时间之比)是第二小组的1.2倍,并比第二小组早20min到达山顶.(1)第二小组的攀登速度是多少?(2)如果山高为hm,第一小组的攀登速度是第二小组的k(k>1)倍,并比第二小组早tmin到达山顶,则第一小组的攀登速度是多少?25.(12分)如图,△ABC是等腰直角三角形,AB=BC,O是△ABC内部的一个动点,△OBD是等腰直角三角形,OB=BD.(1)求证:∠AOB=∠CDB;(2)若△COD是等腰三角形,∠AOC=140°,求∠AOB的度数.2018-2019学年广东省广州市越秀区八年级(上)期末数学试卷参考答案与试题解析一、选择題(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(3分)下列图形中,不具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性,四边形不具有稳定性即可判断.【解答】解:因为三角形具有稳定性,四边形不具有稳定性,故选:D.【点评】本题考查三角形的稳定性,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.(3分)点(﹣1,2)关于x轴对称的点的坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,﹣2)D.(2,﹣1)【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2),故选:C.【点评】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.(3分)在中,分式的个数为()A.1B.2C.3D.4【分析】利用分式的定义:分母中含有字母,判断即可得到结果.【解答】解:在所列的4个代数式中,分式的是和这2个,故选:B.【点评】此题考查了分式的定义,熟练掌握分式的定义是解本题的关键.5.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)﹣3=C.(ab3)4=ab12D.(﹣3a4)3=﹣27a12【分析】直接利用同底数幂的乘法运算法则以及积的乘方运算法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)﹣3=,故此选项错误;C、(ab3)4=a4b12,故此选项错误;D、(﹣3a4)3=﹣27a12,正确.故选:D.【点评】此题主要考查了同底数幂的乘法运算以及积的乘方运算,正确掌握相关运算法则是解题关键.6.(3分)纳米(mm)是非常小的长度单位,1nm=10﹣9m,较小的病毒直径仅为18﹣22纳米,18nm用科学记数法可表示为()A.0.18×10﹣7m B.0.18×10﹣11mC.1.8×10﹣8m D.1.8×10﹣10m【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:18nm=18×10﹣9m=0.000000018=1.8×10﹣8m.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.(3分)如图,AC与BD相交于点O,AB∥CD,AB=CD,则图中的全等三角形共有()A.1对B.2对C.3对D.4对【分析】图中全等三角形有4对,是△ADB≌△CBD,△ABC≌△CDA,△AOD≌△COB,△AOB≌△COD.首先证明△AOB≌△COD(ASA),再利用全等三角形的性质和判定一一证明即可.【解答】解:图中全等三角形有4对,是△ADB≌△CBD,△ABC≌△CDA,△AOD≌△COB,△AOB≌△COD,理由是:∵AB∥CD,∴∠ABD=∠CDB,∠BAO=∠DCO,∵AB=CD,∴△AOB≌△COD(ASA),∴OA=OC,OB=OD,∵∠AOD=∠COD,∴△AOD≌△COB(SAS),∴AD=BC,∵AD=BC,CD=AB,AC=CA,∴△ADC≌△CBA(SSS),∵AD=BC,AB=CD,DB=BD,∴△ADB≌△CBD(SSS),故选:D.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(3分)大拖拉机n天耕地a公顷,小拖拉机m天耕地b公顷,大拖拉机的工作效率是小拖拉机工作效率的()A.B.C.D.【分析】先分别求出大拖拉机和小拖拉机的工作效率,再进行相除,即可得出答案.【解答】解:∵大拖拉机n天耕地a公顷,∴大拖拉机的工作效率是,∵小拖拉机m天耕地b公顷,∴小拖拉机的工作效率是,∴大拖机的工作效率是小拖机的工作效率÷=倍.故选:A.【点评】此题考查了列代数式,用到的知识点是工作效率=工作总量÷工作时间,解题的关键是分别求出大拖拉机和小拖拉机的工作效率.9.(3分)如图,点A、B、C、D在同一条直线上,AE=DF,CE=BF,要使得△ACE≌△DBF,则需要添加的一个条件可以是()A.AE∥DF B.CE∥BF C.AB=CD D.∠A=∠D【分析】根据全等三角形的判定方法即可解决问题.【解答】解:在△AEC和△DFB中,∵AE=DF,EC=BF,根据SSS,需要添加AC=BD或AB=CD,根据SAS需要添加∠E=∠F,故选项C正确,故选:C.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考基础题.10.(3分)若2m=5,4n=3,则43n﹣m的值是()A.B.C.2D.4【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则将原式变形得出答案.【解答】解:∵2m=5,4n=3,∴43n﹣m=(4n)3÷4m=(4n)3÷(2m)2=.故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘除运算,正确将原式变形是解题关键.二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)已知等腰三角形的周长为32.底边长为12,则这个等腰三角形的腰长为10.【分析】根据等腰三角形两腰相等求出腰长,过顶点A作AD⊥BC于D,根据等腰三角形三线合一的性质求出BD,再利用勾股定理即可得到结论.【解答】解:如图过A作AD⊥BC于D,∵△ABC的周长是32,底边BC=12,∴AB=AC=(32﹣12)=10,故答案为:10.【点评】本题考查了等腰三角形三线合一的性质,勾股定理的应用,作辅助线求出底边上的高是解题的关键,作出图形更形象直观.12.(3分)如图,在△ABC中,AD、AE分别是边BC上的中线与高,AE=4,△ABC的面积为12,则CD的长为3.【分析】利用三角形的面积公式求出BC即可解决问题.【解答】解:∵AE⊥BC,AE=4,△ABC的面积为12,∴×BC×AE=12,∴×BC×4=12,∴BC=6,∵AD是△ABC的中线,∴CD=BC=3,故答案为3.【点评】本题考查三角形的面积,三角形的中线与高等知识,解题的关键是熟练掌握基本知识,属于中基础题.13.(3分)如图,在△ABC中,AC⊥BC,∠B=30°,CD⊥AB,垂足为D,若AD=1,则AC的长为2.【分析】根据30°角所对的直角边等于斜边的一半可求得斜边长.【解答】解:∵AC⊥BC,∴∠ACB=90°,∵∠B=30°,∴∠A=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=30°,∴AC=2AD=2,故答案为2.【点评】本题考查直角三角形的性质,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(3分)计算:的结果是(结果化为最简形式)2a.【分析】根据分式的混合运算顺序和运算法则化简即可得.【解答】解:原式=[﹣]•=•=•=2a,故答案为:2a.【点评】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.15.(3分)如图,有一张长方形纸板,在它的四角各切去一个边长为a的正方形,然后将四周突出部分折起,制成一个长方体形状的无盖纸盒.如果纸盒的容积为2a(x2﹣y2)(x >y),底面长方形的一边长为x﹣y,则底面长方形的另一边长为2(x+y).【分析】先求出长方体的底面积=体积÷高,然后求出底面另一边长=底面积÷一边长.【解答】解:长方体底面积:2a(x2﹣y2)÷a=2(x2﹣y2),长方体底面另一边长2(x2﹣y2)÷(x﹣y)=2(x+y),故答案为2(x+y).【点评】本题考查了整式的除法,熟练掌握平方差公式是解题的关键.16.(3分)如图,在边长为2的等边△ABC中,D是BC的中点,点E在线段AD上,连结BE,在BE的下方作等边△BEF,连结DF.当△BDF的周长最小时,∠DBF的度数是30°.【分析】连接CF,由条件可以得出∠ABE=∠CBF,再根据等边三角形的性质就可以证明△BAE≌△BCF,从而可以得出∠BCF=∠BAD=30°,作点D关于CF的对称点G,连接CG,DG,则FD=FG,依据当B,F,G在同一直线上时,DF+BF的最小值等于线段BG长,可得△BDF的周长最小,再根据等边三角形的性质即可得到∠DBF的度数.【解答】解:如图,连接CF,∵△ABC、△BEF都是等边三角形,∴AB=BC=AC,BE=EF=BF,∠BAC=∠ABC=∠ACB=∠EBF=∠BEF=∠BFE=60°,∴∠ABC﹣∠EBD=∠EBF﹣∠EBD,∴∠ABE=∠CBF,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴∠BCF=∠BAD=30°,如图,作点D关于CF的对称点G,连接CG,DG,则FD=FG,∴当B,F,G在同一直线上时,DF+BF的最小值等于线段BG长,此时△BDF的周长最小,由轴对称的性质,可得∠DCG=2∠BCF=60°,CD=CG,∴△DCG是等边三角形,∴DG=DC=DB,∴∠DBG=∠DGB=∠CDG=30°,故答案为:30°.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质的运用.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.三、解答题(本大题共9小题,满分72分.解答须写出文字说明、证明过程和演算步骤)17.(6分)先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.【分析】原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,当x=5,y=时,原式=50﹣7=43.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(6分)解方程:﹣1=【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+x﹣x2+x+2=6,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(8分)分解因式(1)a3b﹣9ab(2)4ab2﹣4ab+a【分析】(1)直接提取公因式ab,再利用平方差公式分解因式即可;(2)直接提取公因式a,再利用完全平方公式分解因式即可.【解答】解:(1)a3b﹣9ab=ab(a2﹣9)=ab(a﹣3)(a+3);(2)4ab2﹣4ab+a=a(4b2﹣4b+1)=a(2b﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.20.(8分)如图,两条公路OA与OB相交于点O,在∠AOB的内部有两个小区C与D,现要修建一个市场P,使市场P到两条公路OA、OB的距离相等,且到两个小区C、D 的距离相等.(1)市场P应修建在什么位置?(请用文字加以说明)(2)在图中标出点P的位置(要求:用尺规作图,不写作法,保留作图痕遼,写出结论).【分析】(1)直接利用角平分线的性质以及线段垂直平分线的性质分析得出答案;(2)直接利用角平分线的作法以及线段垂直平分线的作法得出答案.【解答】解:(1)点P应修建在∠AOB的角平分线和线段CD的垂直平分线的交点处;(2)如图所示:点P即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质以及线段垂直平分线的性质是解题关键.21.(8分)如图,AC与BD相交于点E,AC=BD,AC⊥BC,BD⊥AD.垂足分别是C、D.(1)若AD=6,求BC的长;(2)求证:△ADE≌△BCE.【分析】(1)根据HL证明Rt△ADB≌Rt△BCA即可;(2)由△ADB≌△BCA,推出AD=BC,再根据AAS即可证明△ADE≌△BCE;【解答】(1)解:∵AC⊥BC,BD⊥AD,∴∠D=∠C=90°,在Rt△ADB和Rt△BCA中,,∴Rt△ADB≌Rt△BCA(HL),∴AD=BC,∵AD=6,∴BC=6.(2)证明:∵△ADB≌△BCA,∴AD=BC,在△ADE和△BCE中,,∴△ADE≌△BCE(AAS).【点评】本题考查全等三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(8分)如图,六边形ABCDEF的内角都相等,∠F AD=60°.(1)求∠ADE的度数;(2)求证:EF∥BC.【分析】(1)由于六边形的内角和为720°,然后利用六边形ABCDEF的内角都相等得到每个内角的度数为120°,而∠DAB=60°,四边形ABCD的内角和为360°,由此即可分别求出∠CDA和∠EDA,最后利用平行线的判定方法即可推知AB∥DE,根据平行线的性质即可得到结论;(2)根据平行线的判定即可得到结论.【解答】解:(1)∵六边形ABCDEF的内角都相等,∴∠BAF=∠B=∠C=∠CDE=∠E=∠F=120,∵∠F AD=60°,∴∠F+∠F AD=180°,∴EF∥AD,∴∠E+∠ADE=180°,∴∠ADE=60°;(2)∵∠BAD=∠F AB﹣∠F AD=60°,∴∠BAD+∠B=180°,∴AD∥BC,∴EF∥BC.【点评】本题考查了多边形的内角和,以及平行线的判定,垂直的证明,三角形的内角和定理,证明平行是关键.23.(8分)如图,在△ABC中,AD平分∠BAC,AD与BC相交于点D,DE⊥AB,DF⊥AC,垂足分别是E、F,连接EF.(1)求证:AD垂直平分EF;(2)试问:与相等吗?并说明理由.【分析】(1)利用全等三角形的性质,证明AE=AF,DE=DF即可解决问题;(2)利用面积法证明即可;【解答】(1)证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,∴Rt△ADE≌Rt△AFD(HL),∴AE=AF,∵DE=DF,∴AD垂直平分相等EF.(2)解:结论:=.理由:∵==,∵DE=DF,∴.【点评】本题考查全等三角形的判定和性质,角平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会利用面积法证明线段之间的关系.24.(8分)两个小组同时从山脚开始攀登一座600m高的山,第一小组的攀登速度(即攀登高度与攀登时间之比)是第二小组的1.2倍,并比第二小组早20min到达山顶.(1)第二小组的攀登速度是多少?(2)如果山高为hm,第一小组的攀登速度是第二小组的k(k>1)倍,并比第二小组早tmin到达山顶,则第一小组的攀登速度是多少?【分析】(1)根据题意,可以列出相应的分式方程,本题得以解决;(2)根据题意,可以列出相应的分式方程,本题得以解决.【解答】解:(1)设第二小组的攀登速度是xm/min,,解得,x=5经检验,x=5是原分式方程的解,答:第二小组的攀登速度是5m/min;(2)设第一小组的攀登速度是am/min,,解得,a=,经检验,a=是原分式方程的解,答:第一小组的攀登速度是m/min.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要检验.25.(12分)如图,△ABC是等腰直角三角形,AB=BC,O是△ABC内部的一个动点,△OBD是等腰直角三角形,OB=BD.(1)求证:∠AOB=∠CDB;(2)若△COD是等腰三角形,∠AOC=140°,求∠AOB的度数.【分析】(1)根据等腰直角三角形的性质和全等三角形的判定和性质解答即可;(2)设∠AOB的度数为x,分三种情况进行解答即可.【解答】证明:(1)∵△ABC和△OBD是等腰直角三角形,∴AB=BC,OB=BD,∠ABC=∠OBD=90°,∵∠ABO+∠OBC=∠CBD+∠OBC,∴∠ABO=∠CBD,在△ABO和△CBD中,∴△ABO≌△CBD(SAS),∴∠AOB=∠CDB;(2)设∠AOB的度数为x,则∠CDB=x,∠CDO=x﹣45°,∠COD=∠COB﹣∠DOB=360°﹣140°﹣x﹣45°=175°﹣x,∠OCD=180°﹣∠CDO﹣∠COD=50°,①当∠CDO=∠COD时,x﹣45°=175°﹣x,解得:x=110°,②当∠CDO=∠OCD时,x﹣45°=50°,解得:x=95°,③当∠COD=∠OCD时,175°﹣x=50°,解得:x=125°,故∠AOB的度数为110°或95°或125°.【点评】本题考查了全等三角形的判定与性质,关键是根据等腰直角三角形的性质和全等三角形的判定和性质解答.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年广东省广州市越秀区八年级(下)期末数学试卷一、选择题:本大题共10小题,每小题3分,满分30分.在毎小题给出的四个选项中,只有一项是符合题目要求的1.(3分)下列计算正确的是()A.=±4B.=﹣5C.=10D.=32.(3分)计算﹣的结果是()A.25B.2C.D.53.(3分)为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg)分别为x1,x2,…,x8,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x8的平均数B.x1,x2,…,x8的方差C.x1,x2,…,x8的中位数D.x1,x2,…,x8的众数4.(3分)下列命题的逆命题是真命题的是()A.如果两个角是直角,那么它们相等B.如果两个实数相等,那么它们的平方相等C.如果一个四边形是菱形,那么它的四条边都相等D.如果一个四边形是矩形,那么它的对角线相等5.(3分)若平行四边形其中两个内角的度数之比为1:4,则其中较小的内角是()A.30°B.36°C.45°D.60°6.(3分)下列各曲线中,表示y是x的函数的是()A.B.C.D.7.(3分)若函数y=kx+b是正比例函数,且y随x的增大而减小,则下列判断正确的是()A.k>0B.k<0C.b>0D.b<08.(3分)已知一次函数y=kx+b的图象经过点(0,﹣1)与(﹣2,0),则不等式kx+b >0的解集是()A.x<﹣2B.x>﹣2C.x<﹣1D.x>﹣19.(3分)如图,四边形ABCD是直角梯形,E,F,G,H分别是AB,BC,CD,DA的中点,连接AC,BD,EF,FG,GH,HE,则图中的平行四边形共有()A.1个B.4个C.5个D.9个10.(3分)如图,在Rt△ABC中,∠A=90°,AB=8,AC=6,将△ABC沿CD翻折,使点A与BC边上的点E重合,则CD的长是()A.3B.3C.D.5二、填空题:本大题共6小题,每小题3分,满分18分11.(3分)使代数式有意义的x的取值范围是.12.(3分)如图,矩形ABCD的对角线AC与BD相交于点O,∠AOB=120°,AD=3,则AC的长是.13.(3分)下表是某公司员工月收入的资料:月收入/元450001800010000550050003000人数1112510则这个公司员工月收入的中位数是元.14.(3分)某校为了了解该校学生在家做家务的情况,随机调査了50名学生,得到他们在一周内做家务所用时间的情况如下表所示时间/(小时)0≤t<11≤t<22≤t<33≤t<44≤t<5人数8142062则可以估计该校学生平均每人在一周内做家务所用时间是小时.(同一组中的数据用这组数据的组中值作代表.)15.(3分)如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m当梯子的顶端A沿墙向下滑的距离AC与梯子底端B向外移的距离BD相等时,AC的长是m.16.(3分)如图,平面直角坐标系xOy中.A(,0),B(0,5),点C在第一象限,且△ABC是等边三角形,则直线BC的解析式是.三、解答题:本大題共9小题,满分72分.解答须写出文字说明、证明过程和演算步聚17.(6分)计算:(+)(﹣)+(﹣)÷18.(8分)如图,每个小正方形的边长都为1(1)求四边形ABCD的周长;(2)求∠BCD的大小.19.(8分)为了在甲、乙两名运动员中选拔一人参加全省跳水比赛,对他们的跳水技能进行考核.在相同条件下,各跳了10次,成绩(单位:分)如下甲82838685828387908488乙80828486908583818584(1)分别计算甲、乙两名运动员这10次跳水成绩的平均数和方差;(2)你认为选谁参加比赛更合适?并说明理由.20.(8分)如图,四边形ABCD中,AB∥CD,AC与BD相交于点O,AO=CO.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,AB=10,求BC的长.21.(8分)如图,▱ABCD中,O是AB的中点,CO=DO.(1)求证:▱ABCD是矩形.(2)若AD=3,∠COD=60°,求▱ABCD的面积.22.(8分)已知点P(x、y)在第一象限,且x+y=6,A(4,0),B(0,2),设△PAB 的面积为S(1)求S关于x的函数解析式,并写出x的取值范围;(2)在给定的平面直角坐标系中画出函数S的图象,并写出S的取值范围.23.(8分)A,B两地相距24km.甲7:00由A地出发骑自行车去B地,速度为12km/h;乙8:00由A地出发沿同一路线驾驶汽车去B地,速度为60km/h.(1)分别写出甲、乙两人的行程y关于时刻x的函数解析式;(2)乙能否在途中超过甲?并说明理由.24.(8分)如图所示,边长为1的正方形ABCD被划分成五个小矩形R1、R2、R3、R4、R5,其中四个外围小矩形R1、R2、R3、R4的面积都相等.设小矩形R1的水平边长为a (0<a<1),竖直边长为b(0<b<a).(1)求证:a+b=1;(2)试问:中间小矩形R5是正方形吗?请说明理由.25.(10分)在平面直角坐标系xOy中,直线y=x+2与x轴、y轴分別相交于A,B两点.(1)求∠OAB的大小;(2)如图,点P(a,b)在第二象限,M(a,0),N(0,b),直线PM,PN分别与线段AB相交于点E,.当点P运动时,四边形PMON的面积为定值2.试判断以线段AB,EF,FB为边的三角形的形状,并说明理由.2018-2019学年广东省广州市越秀区八年级(下)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,满分30分.在毎小题给出的四个选项中,只有一项是符合题目要求的1.(3分)下列计算正确的是()A.=±4B.=﹣5C.=10D.=3【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:A、=4,故此选项错误;B、=5,故此选项错误;C、(5)2=50,故此选项错误;D、=3,正确.故选:D.【点评】此题主要考查了二次根式的性质,正确化简二次根式是解题关键.2.(3分)计算﹣的结果是()A.25B.2C.D.5【分析】首先化简二次根式,然后再合并同类二次根式即可.【解答】解:﹣=3﹣2=,故选:C.【点评】此题主要考查了二次根式的加减,关键是正确把二次根式进行化简.3.(3分)为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg)分别为x1,x2,…,x8,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x8的平均数B.x1,x2,…,x8的方差C.x1,x2,…,x8的中位数D.x1,x2,…,x8的众数【分析】根据方差的意义即可判断.【解答】解:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.故选:B.【点评】本题考查方差,平均数,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.(3分)下列命题的逆命题是真命题的是()A.如果两个角是直角,那么它们相等B.如果两个实数相等,那么它们的平方相等C.如果一个四边形是菱形,那么它的四条边都相等D.如果一个四边形是矩形,那么它的对角线相等【分析】根据逆命题的概念分别写出各个命题的逆命题,根据平方的概念、菱形、矩形的判定定理判断.【解答】解:A、如果两个角是直角,那么它们相等的逆命题是如果两个角相等,那么这两个角是直角,是假命题;B、如果两个实数相等,那么它们的平方相等的逆命题是如果两个数的平方相等,那么这两个数相等,是假命题;C、如果一个四边形是菱形,那么它的四条边都相等的逆命题是如果一个四边形四条边都相等,那么这个四边形是菱形,是真命题;D、如果一个四边形是矩形,那么它的对角线相等的逆命题是如果一个四边形的对角线相等,那么这个四边形是矩形,是假命题;故选:C.【点评】本题考查的是命题的真假判断、逆命题的概念,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.(3分)若平行四边形其中两个内角的度数之比为1:4,则其中较小的内角是()A.30°B.36°C.45°D.60°【分析】根据平行四边形的性质即可求解.【解答】解:设平行四边形的一个内角为x°,则另一个内角为(4x)°,根据平行四边形对边平行,同旁内角互补,得x°+(4x)°=180°,解得x=36.故选:B.【点评】本题考查了平行四边形的性质,解决本题的关键是两边平行,同旁内角互补.6.(3分)下列各曲线中,表示y是x的函数的是()A.B.C.D.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:第一个图中,对于x的每一个取值,y可能有两个值与之对应,不符合题意;第二个图中,对于x的每一个取值,y可能有两个值与之对应,不符合题意;第三个图中,对于x的每一个取值,y可能有两个值与之对应,不符合题意;第四个图中,对于x的每一个取值,y都有唯一确定的值与之对应,符合题意;故选:D.【点评】主要考查了函数的定义,在一个变化过程中有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.7.(3分)若函数y=kx+b是正比例函数,且y随x的增大而减小,则下列判断正确的是()A.k>0B.k<0C.b>0D.b<0【分析】根据正比例函数的定义得到b=0,然后由正比例函数图象的性质作答.【解答】解:∵函数y=kx+b是正比例函数,∴b=0.又函数y=kx+b的图象是y随x的增大而减小,∴k<0.观察选项,只有选项B符合题意.故选:B.【点评】考查了正比例函数的定义,一次函数图象与系数的关系,注重考察学生思维的严谨性,易错题,难度中等.8.(3分)已知一次函数y=kx+b的图象经过点(0,﹣1)与(﹣2,0),则不等式kx+b >0的解集是()A.x<﹣2B.x>﹣2C.x<﹣1D.x>﹣1【分析】写出一次函数图象在x轴上方所对应的自变量的范围即可.【解答】解:∵一次函数y=kx+b的图象经过点(0,﹣1)与(﹣2,0),∴不等式kx+b>0的解集为x<﹣2.故选:A.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.9.(3分)如图,四边形ABCD是直角梯形,E,F,G,H分别是AB,BC,CD,DA的中点,连接AC,BD,EF,FG,GH,HE,则图中的平行四边形共有()A.1个B.4个C.5个D.9个【分析】利用三角形中位线定理和平行四边形的判定定理解答.【解答】解:如图,∵E,F,G,H分别是AB,BC,CD,DA的中点,∴EF∥AC∥GH,GF∥BD∥HE,∴图中的平行四边形有:四边形HQGP、四边形EQPF,四边形GMNF,四边形HMNE,四边形GHEF,四边形GMOP,四边形HQOM,四边形OQEN,四边形PONF,共9个.故选:D.【点评】本题主要考查平行四边形的判定和性质,中点四边形,三角形中位线定理,利用三角形中位线定理求得EF∥AC∥GH,GF∥BD∥HE是解题的关键.10.(3分)如图,在Rt△ABC中,∠A=90°,AB=8,AC=6,将△ABC沿CD翻折,使点A与BC边上的点E重合,则CD的长是()A.3B.3C.D.5【分析】根据勾股定理得到BC===10,根据折叠的性质得到CE =AC=6,AD=DE,∠CED=∠A=90°,求得BE=4,设AD=DE=x,根据勾股定理即可得到结论.【解答】解:∵在Rt△ABC中,∠A=90°,AB=8,AC=6,∴BC===10,∵将△ABC沿CD翻折,使点A与BC边上的点E重合,∴CE=AC=6,AD=DE,∠CED=∠A=90°,∴BE=4,设AD=DE=x,∴BD=8﹣x,∵BD2=DE2+BE2,∴(8﹣x)2=x2+42,解得:x=3,∴AD=3,∴CD===3,故选:A.【点评】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.二、填空题:本大题共6小题,每小题3分,满分18分11.(3分)使代数式有意义的x的取值范围是x≥1.【分析】根据二次根式的性质,即“被开方数大于等于0时二次根式才有意义”,解答即可.【解答】解:∵有意义,∴x﹣1≥0,解得:x≥1.故答案为:x≥1.【点评】本题主要考查了二次根式的意义和性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12.(3分)如图,矩形ABCD的对角线AC与BD相交于点O,∠AOB=120°,AD=3,则AC的长是6.【分析】根据矩形的对角线相等且互相平分可得OA=OD,再求出∠AOD=60°,然后判断出△AOD是等边三角形,根据等边三角形的性质求出OA,即可得出AC的长.【解答】解:在矩形ABCD中,OA=OC=AC,OB=OD=BD,AC=BD,∴OA=OD,∵∠AOB=120°,∴∠AOD=180°﹣120°=60°,∴△AOD是等边三角形,∴OA=AD=3,∴AC=2OA=6;故答案为:6【点评】本题考查了矩形的性质,等边三角形的判定与性质,熟记矩形的性质,证出△AOD是等边三角形是解题的关键.13.(3分)下表是某公司员工月收入的资料:月收入/元450001800010000550050003000人数1112510则这个公司员工月收入的中位数是4000元.【分析】根据中位数的概念求解可得.【解答】解:∵一共有20个数据,其中位数是第10、11个数据的平均数,∴这组数据的中位数是=4000(元),故答案为:4000.【点评】本体主要考查中位数,解题的关键是掌握中位数的概念.14.(3分)某校为了了解该校学生在家做家务的情况,随机调査了50名学生,得到他们在一周内做家务所用时间的情况如下表所示时间/(小时)0≤t<11≤t<22≤t<33≤t<44≤t<5人数8142062则可以估计该校学生平均每人在一周内做家务所用时间是 2.1小时.(同一组中的数据用这组数据的组中值作代表.)【分析】利用组中值求平均数,再利用样本估计总体的思想解决问题即可【解答】解:50名学生平均每人在一周内做家务所用时间==2.1(小时),故答案为2.1小时.【点评】本题考查加权平均数,样本估计总体的思想等知识,解题的关键是学会利用组中值求平均数,属于中考常考题型.15.(3分)如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m当梯子的顶端A沿墙向下滑的距离AC与梯子底端B向外移的距离BD相等时,AC的长是1.4m.【分析】先根据勾股定理求出OB的长,根据勾股定理即可得到结论.【解答】解:∵∠O=90°,AB=2.6,OA=2.4,∴OB===1,设AC=BD=x,∴OC=2.4﹣x,OD=1+x,∴CD2=OC2+OD2,∴2.62=(2.4﹣x)2+(1+x)2,解得:x=1.4,∴AC=1.4.故答案为:1.4.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.16.(3分)如图,平面直角坐标系xOy中.A(,0),B(0,5),点C在第一象限,且△ABC是等边三角形,则直线BC的解析式是y=﹣x+5.【分析】过点C作CD⊥AB于点D,过点D作DE⊥OB于点E,过点C作CF⊥DE于点F,求出D点坐标,证明△BDE∽△DCF,由比例线段求出DF,CF长,则EF可求出,再求出点C的坐标,则直线BC的解析式可求出.【解答】解:过点C作CD⊥AB于点D,过点D作DE⊥OB于点E,过点C作CF⊥DE 于点F,在Rt△AOB中,OA=,OB=5,∴==2,∵△ABC是等边三角形,∴D为AB的中点,∴D(),∵∠BED=∠CFD=90°,∠BDC=90°,∴∠CDF=∠EBD,∴△BDE∽△DCF,∴,∵==,∴,∴DF=,CF=DE==,∴,=4,∴C(3,4),∵B(0,5),设直线BC的解析式为y=kx+5,∴3k+5=4,∴,∴直线BC的解析式为y=﹣x+5,故答案为:y=﹣x+5.【点评】本题考查了用待定系数法求出一次函数的解析式,相似三角形的性质和判定,等边三角形的性质等,主要考查学生综合运用性质进行推理和计算的能力,正确作出辅助线是解题的关键.三、解答题:本大題共9小题,满分72分.解答须写出文字说明、证明过程和演算步聚17.(6分)计算:(+)(﹣)+(﹣)÷【分析】直接利用乘法公式以及二次根式的混合运算法则计算得出答案.【解答】解:原式=(12﹣6)+(4﹣3)÷=6+1=7.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.(8分)如图,每个小正方形的边长都为1(1)求四边形ABCD的周长;(2)求∠BCD的大小.【分析】(1)根据勾股定理求出AD、CD、BC、AB的长,再相加即可;(2)先求出DC2+BC2=BD2,再根据勾股定理的逆定理求出即可.【解答】解:(1)由勾股定理得:DC==,BC==2,AD==,AB==,所以四边形ABCD的周长为AB+BC+cd+ad=+2++=+3+;(2)连接BD,由勾股定理得:BD==5,∵DC=,BC=2,∴DC2+BC2=BD2,∴∠BCD=90°.【点评】本题考查了勾股定理和勾股定理的逆定理,能熟记定理的内容是解此题的关键.19.(8分)为了在甲、乙两名运动员中选拔一人参加全省跳水比赛,对他们的跳水技能进行考核.在相同条件下,各跳了10次,成绩(单位:分)如下甲82838685828387908488乙80828486908583818584(1)分别计算甲、乙两名运动员这10次跳水成绩的平均数和方差;(2)你认为选谁参加比赛更合适?并说明理由.【分析】(1)根据平均数和方差的计算公式列出算式进行计算即可;(2)根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,即可得出答案.【解答】解:(1)甲的平均数=,甲的方差==6.6;乙的平均数=;乙的方差==7.2,(2)∵6.6<7.2,∴选甲参加比赛更合适.【点评】本题考查方差的定义与意义,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.20.(8分)如图,四边形ABCD中,AB∥CD,AC与BD相交于点O,AO=CO.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,AB=10,求BC的长.【分析】(1)根据平行线的性质得出∠DCO=∠BAO,根据全等三角形的判定得出△DCO≌△BAO,根据全等三角形的性质得出DO=BO,根据平行四边形的判定得出即可;(2)根据线段垂直平分线的性质得出AB=BC,代入求出即可.【解答】(1)证明:∵AB∥CD,∴∠DCO=∠BAO,在△DCO和△BAO中∴△DCO≌△BAO(ASA),∴DO=BO,∵AO=CO,∴四边形ABCD是平行四边形;(2)解:∵由勾股定理得:BC2=CO2+OB2,AB2=AO2+OB2,又∵AO=CO,∴AB=BC,∵AB=10,∴BC=AB=10.【点评】本题考查了平行四边形的判定,全等三角形的性质和判定,勾股定理等知识点,能综合运用定理进行推理是解此题的关键.21.(8分)如图,▱ABCD中,O是AB的中点,CO=DO.(1)求证:▱ABCD是矩形.(2)若AD=3,∠COD=60°,求▱ABCD的面积.【分析】(1)根据平行四边形的想做的菜AD=BC,AD∥BC,求出∠A+∠B=180°,根据全等三角形的判定△DAO≌△CBO,根据全等三角形的性质∠A=∠B,求出∠A=90°,根据矩形的判定得出即可;(2)根据全等求出∠DOA=∠COB,根据勾股定理得出AO2+32=(2AO)2,求出AO,在球场AB,即可求出面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠A+∠B=180°,∵O是AB的中点,∴AO=BO,在△DAO和△CBO中∴△DAO≌△CBO(SSS),∴∠A=∠B,∵∠A+∠B=180°,∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)解:∵△DAO≌△CBO,∠DOC=60°,∴∠DOA=∠COB=(180°﹣∠DOC)=60°,∵∠A=90°,∴∠ADO=30°,∵AD=3,DO=2AO,由勾股定理得:AO2+32=(2AO)2,解得:AO=,∴AB=2AO=2,∴▱ABCD的面积是AB×AD=2=6.【点评】本题考查了矩形的判定和性质,平行四边形的性质,解直角三角形,全等三角形的性质和判定等知识点,能综合运用定理进行推理和计算是解此题的关键.22.(8分)已知点P(x、y)在第一象限,且x+y=6,A(4,0),B(0,2),设△PAB 的面积为S(1)求S关于x的函数解析式,并写出x的取值范围;(2)在给定的平面直角坐标系中画出函数S的图象,并写出S的取值范围.【分析】(1)根据割补法即可表示三角形的面积;(2)根据(1)中所得函数即可画出图象.【解答】解:(1)点P(x、y)在第一象限,且x+y=6,y=6﹣x.x>0,6﹣x>0,所以0<x<6.∵A(4,0),B(0,2),设△PAB的面积为SS=(x+4)(6﹣x)﹣×4×2﹣(6﹣x﹣2)•x=﹣x+8答:S关于x的函数解析式为S=﹣x+8,x的取值范围为0<x<6.(2)∵0<x<6.∴2<﹣x+8<8.∴2<S<8.如图:即为函数S的图象.答:S的取值范围为2<S<8.【点评】本题考查了动点问题的函数图象,解决本题的关键是准确求出函数解析式.23.(8分)A,B两地相距24km.甲7:00由A地出发骑自行车去B地,速度为12km/h;乙8:00由A地出发沿同一路线驾驶汽车去B地,速度为60km/h.(1)分别写出甲、乙两人的行程y关于时刻x的函数解析式;(2)乙能否在途中超过甲?并说明理由.【分析】(1)根据行程=速度×时间分别列式即可;(2)利用60x﹣480>12x﹣84,进而得出x的取值范围,进而得出答案.【解答】解:(1)设行程为ykm,时刻为xh,甲:y=12(x﹣7)=12x﹣84,乙:y=60(x﹣8)=60x﹣480;(2)能在途中超过甲.理由:由60x﹣480>12x﹣84,解得:x>8.25,此时60(8.25﹣8)=15<24,8:25=8时15分,答:8时15分后乙超过甲.【点评】本题考查了一次函数的应用,主要利用了函数解析式的求解,理解并表示出时间是解题的关键.24.(8分)如图所示,边长为1的正方形ABCD被划分成五个小矩形R1、R2、R3、R4、R5,其中四个外围小矩形R1、R2、R3、R4的面积都相等.设小矩形R1的水平边长为a (0<a<1),竖直边长为b(0<b<a).(1)求证:a+b=1;(2)试问:中间小矩形R5是正方形吗?请说明理由.【分析】(1)根据小矩形的面积相等即可证明;(2)根据中间的小矩形的四个边都相等,四个角都是直角即可说明.【解答】解:(1)∵矩形R1、R2、R3、R4的面积都相等,小矩形R1的水平边长为a(0<a<1),竖直边长为b(0<b<a).∴小矩形R2的水平边长为b,竖直边长为a.∵正方形ABCD的边长为1,∴a+b=1.(2)答:中间小矩形R5是正方形,理由如下:∵中间小矩形R5的四个边长都为a﹣b,四个角都为90°,所以中间小矩形R5是正方形.【点评】本题考查了整式的混合运算、正方形的判定,解决本题的关键是掌握正方形的判定方法.25.(10分)在平面直角坐标系xOy中,直线y=x+2与x轴、y轴分別相交于A,B两点.(1)求∠OAB的大小;(2)如图,点P(a,b)在第二象限,M(a,0),N(0,b),直线PM,PN分别与线段AB相交于点E,.当点P运动时,四边形PMON的面积为定值2.试判断以线段AB,EF,FB为边的三角形的形状,并说明理由.【分析】(1)当x=0或y=0时分别可以求出y的值和x的值就可以求出OA与OB的值,从而就可以得出结论;(2)先根据E、F的坐标表示出相应的线段,根据勾股定理求出线段AE、EF、BF,然后根据勾股定理逆定理即可判定组成的三角形为直角三角形.【解答】解:(1)∵直线y=x+2,∴当x=0时,y=2,B(0,2),当y=0时,x=﹣2,A(﹣2,0)∴OA=OB=2.∵∠AOB=90°∴∠OAB=45°;(2)∵四边形OMPN是矩形,∠OAF=∠EBO=45°,∴△AME、△BNF、△PEF为等腰直角三角形.∵E点的横坐标为a,E(a,a+2),∴AM=EM=a﹣2,∴AE2=2(a﹣2)2=2a2﹣8a+8.∵F的纵坐标为b,F(b﹣2,b)∴BN=FN=2﹣b,∴BF2=2(2﹣b)2=2b2﹣8b+8.∴PF=PE=a﹣(2﹣b)=a+b﹣2,∴EF2=2(a+b﹣2)2=2a2﹣4ab+2b2﹣8a﹣8b+8.∵ab=2,∴EF2=2a2+2b2﹣8a﹣8b+16∴EF2=AE2+BF2.∴线段AE、EF、BF组成的三角形为直角三角形.【点评】本题考查了一次函数图象上点的坐标特征,等腰直角三角形的性质的运用,矩形的面积、勾股定理及勾股定理的逆定理的运用,熟练掌握性质定理是解题的关键.。

相关文档
最新文档