刚体动力学测试2
刚体动力学测试题1

刚体动力学1. 质量为m,长为l 的匀质细杆,可绕过端点O 的水平光滑固定轴在竖直平面上自由摆动,将杆从图中水平位置由静止释放,当摆角为θ时,试求:(1) 细杆旋转角速度ω和角加速度β(2) 转轴提供的沿杆方向的支持力1N 和垂直于杆方向的支持力2N2.一长为2a 的轻杆(质量可忽略)两端及中点各联一质量为m 的质点。
原来静止,突然对右端质点向垂直于杆的方向一击(冲量p ),求当三质点开始运动时的速率之比3.一质量为M 的均匀台球,半径为R 。
初始时静止地放在一个滑动摩擦系数为 的桌面上,突然受到一个水平方向的打击。
打击是在离球中心距离为h 的铅直面里发生的,球心的速度为0v 时,台球离开初始位置。
由于台球在打击后的转动,最终使台球中心获得079v 的速度。
求h 的值。
4.半径r = 1m的轮子,沿水平直线轨道纯滚动,轮心具有匀加速度a C = 0.5 m/s2,借助于铰接在轮缘A点上的滑块,带动杆OB绕垂直图面的轴O转动,在初瞬时(t = 0)轮处于静止状态,当t = 3s时机构的位置如图。
试求杆OB在此瞬时的角速度和角加速度。
5.长为l ,质量为m 的匀质杆AB ,A 端放在光滑的水平面上,B 端系在BD 绳索上,如图,当绳索铅垂而杆静止时,杆与地面夹角045=ϕ,当绳索突然断开,求此瞬时杆A 端的约束力?6.如图所示,质量为m,半径为r的匀质圆柱C,在质心为C位于与O同一高度时,在重力作用下,由静止开始沿斜面纯滚动。
求滚至半径为R的圆弧上时,作用于圆柱上的正压力和摩擦力,并表示成 的函数。
7.如图,质量可忽略不计的刚性细杆可绕通过其中点O的光滑水平轴在竖直面内自由转动。
两质量分别为2m和m的小球1和2(可视为质点)串在细杆上,它们与细杆之间的静摩擦μ=。
开始时细杆静止在水平位置,小球1和2分别位于紧靠细杆两端点A 系数为6和B的位置。
系统自水平位置以零初速下摆。
问小球1和2分别在什么位置脱离细杆?(分别求出小球1和2脱离细杆时细杆与水平线的夹角)。
刚体动力学刚体的转动与角动量守恒定律

刚体动力学刚体的转动与角动量守恒定律刚体动力学——刚体的转动与角动量守恒定律刚体动力学是研究刚体运动的物理学分支,主要研究刚体的平动和转动。
在刚体的运动过程中,角动量的守恒定律是关键的一条定律,它在很多物理问题的求解中起着重要的作用。
一、刚体转动的基本概念刚体是指具有一定形状和大小的物体,在运动过程中保持其形状和大小不变的情况下,绕一个固定轴线进行旋转。
在刚体转动的过程中,存在着固定轴线上的角位移、角速度、角加速度等概念。
角位移表示刚体在转动过程中的角度变化,通常用符号θ表示;角速度表示单位时间内刚体转动的角度变化率,通常用符号ω表示;角加速度表示单位时间内角速度的变化率,通常用符号α表示。
二、刚体的转动与力矩刚体在转动过程中需受到外力的作用,这些外力可以将刚体带动产生转动现象。
力矩是刚体转动的重要力学量,它描述了力对于刚体转动的影响程度。
力矩的大小等于力乘以作用点到转轴的距离,用数学式表示为:τ = F × r其中τ表示力矩,F表示力的大小,r表示作用点到转轴的距离。
三、刚体的转动惯量与角动量刚体的转动惯量与角动量是刚体转动过程中的另外两个重要概念。
转动惯量描述了刚体对于转动的惯性程度,它的大小取决于刚体的质量分布和几何形状。
角动量描述了刚体在转动过程中的旋转性质,它等于刚体质量的转动惯量乘以角速度,用数学式表示为:L = I × ω其中L表示角动量,I表示转动惯量,ω表示角速度。
四、角动量守恒定律角动量守恒定律是刚体动力学中的一个基本定律,它表明在没有外力矩作用的情况下,刚体转动过程中的角动量保持不变。
如果一个刚体在初态时角动量为L1,在末态时角动量为L2,且没有外力矩作用,则有L1 = L2。
这一定律体现了一个自然规律,对于理解刚体的转动过程和求解相关物理问题具有重要意义。
五、应用案例角动量守恒定律可以应用于各种实际物理问题的求解中,例如刚体的转动稳定性、陀螺的运动等。
(练习)刚体转动

d π 2 t 由 dt 150 π t 2 t dt 得 d 0 150 0 π 3 t rad 450
在 300 s 内转子转过的转数
π 3 4 N (300 ) 3 10 2π 2π 450
例6 半径为R,质量为m的均 匀圆盘在水平桌面上绕中心轴 转动,盘与桌面间的摩擦系数为 μ ,求转动中的摩擦力矩的大小. 解:设盘厚度为h,以盘轴心 为圆心取半径为r, 宽为dr的 微圆环,其质量为
(mA mC 2)mB g FT2 mA mB mC 2 mA mB g 令 mC 0,得 FT1 FT2 mA mB
FT1
PC
FC
FT2
例3 一根长为l 质量为m 的均匀细直棒,其一端有一固定的光 滑水平轴,因而可以在竖直平面内转动。最初棒静止在水平位 置,求它由此下摆 角时的角加速度和角速度。( J 1 ml 2 ) 解: 棒下摆为加速过程,外力矩为 重力对O 的力矩。
x O
3
mg
x
重力对整个棒的合力矩与全部重力集中 作用在质心所产生的力矩一样。 重力力矩为: M mgx
1 M mgl cos 2 d d d d dt d dt d
1 mgl cos M 2 3g cos (为一变量) 1 J 2l ml 2 3
由动能定理
O
m
l
x
C
mg
l A 0 Md 0 mgcosd 2 1 2 lmg 1 2 J ml sin 0 J 0 3 2 2 3gsin 1/ 2 3gsin 2 ( ) l l
此题也可用机械能守恒定律方便求解
刚体动力学

n i 1
1 2
Δmi
vi2
o ri vi
mi
1 2
n i 1
Δmi ri 2
2
1
式中
n
mi
ri2
称为刚体对转轴的转动惯量
。
i 1
用J 表示:
n
J mi ri2
i 1
代入动能公式中, 得到刚体转动动能的一般表达式
Ek
1 2
J2
Ek
1 2
mv2
刚体转动动能与质点运动动能在表达形式上是相
3
若刚体的质量连续分布 , 转动惯量中的求和号 用积分号代替
J r 2dm r 2 dV
单位:kg.m2
讨论:1.质量越大,转动惯量越大。 2.在总质量一定的条件下,刚体的质元分布 离轴越远,转动惯量越大。和质量分布有关。 3.转轴位置不一样,转动惯量不同。
与转动惯量有关的因素:
0
R 2πr 3 d r
0
2π R r3 d r 1 mR2
0
2
9
三、力矩作的功
力 矩 (moment of force)
力矩
M
r
F
大小 M= F r sinθ= F d
方向 右手定则
力臂:从转轴Z与截面
的交点O到力F的作用
线的垂直距离d称为力
对转轴的力臂
M
i 1
矩的代数和, 也就是作用于刚体的外力对转轴的合外
力矩Mz 。14来自如果刚体在力矩Mz 的作用下绕固定轴从位置1转 到2 , 在此过程中力矩所作的功为
分析刚体的运动学和动力学问题

分析刚体的运动学和动力学问题摘要本文主要介绍了刚体的运动学和动力学问题。
首先,我们介绍了刚体的概念及其特点,解释了什么是刚体运动学和动力学。
其次,我们详细讨论了刚体的运动学问题,包括刚体的位移、速度和加速度的计算方法,以及刚体的角位移、角速度和角加速度的计算方法。
然后,我们深入探讨了刚体的动力学问题,包括刚体的受力分析、刚体平衡条件的推导,以及刚体的动量和动能的计算方法。
最后,我们还介绍了一些常见的刚体运动学和动力学问题,并给出了相应的实例分析。
关键词:刚体,运动学,动力学,位移,速度,加速度,角位移,角速度,角加速度,受力分析,平衡条件,动量,动能1. 引言刚体是物理学中一个重要的概念,广泛应用于力学、工程、机械等领域。
刚体的运动学和动力学问题是研究刚体运动规律的基础,对于理解和应用刚体的运动行为具有重要意义。
2. 刚体的概念及特点刚体是指在外力作用下始终保持形状不变的物体,其内部各个点间的相对位置和相对距离不会发生变化。
刚体的特点是分子之间的相对位置保持不变,相互作用力保持不变,因此刚体具有固定的外形和尺寸。
3. 刚体运动学问题刚体运动学是研究刚体的位置、速度和加速度随时间变化的规律。
对于刚体的位移、速度和加速度的计算,我们可以从两方面来考虑:3.1 刚体的直线运动对于刚体的直线运动,我们可以利用刚体的质心来进行计算。
刚体的质心是所有质点的质量之和与各质点质量的加权平均值。
通过计算刚体的质心的位移、速度和加速度,我们可以得到刚体的直线运动规律。
3.2 刚体的转动运动对于刚体的转动运动,我们需要引入刚体的转动轴和转动角。
刚体的转动轴是通过刚体上的一个点且与刚体的质心相距一定距离的直线。
刚体的转动角是刚体围绕转动轴旋转过的角度。
通过计算刚体的转动角、角速度和角加速度,我们可以得到刚体的转动运动规律。
4. 刚体动力学问题刚体动力学是研究刚体受力分析、平衡条件和动量、动能的变化规律。
对于刚体的受力分析,我们可以利用牛顿第二定律和刚体的转动惯量来进行计算。
刚体的运动学与动力学问题练习

刚体的运动学与动力学问题练习刚体的运动学与动力学问题练习1.如图14—14所示,一个圆盘半径为R ,各处厚度一样,在每个象限里,各处的密度也是均匀的,但不同象限里的密度则不同,它们的密度之比为1ρ:2ρ:3ρ:4ρ=1:2:3:4,求这圆盘的质心位置.2.如图14—15所示,质量为m 的均匀圆柱体,截面半径为R ,长为2R .试求圆柱体绕通过质心及两底面边缘的转轴(如图中的1Z 、2Z )的转动惯量J .3.如图14—16所示,匀质立方体的边长为a ,质量为m .试求该立方体绕对角线轴PQ 的转动惯量J .4.椭圆细环的半长轴为A ,半短轴为B ,质量为m (未必匀质),已知该环绕长轴的转动惯量为A J ,试求该环绕短轴的转动惯量B J .5.如图14—17所示矩形均匀薄片ABCD 绕固定轴AB 摆动,AB 轴与竖直方向成30α=°角,薄片宽度AD d =,试求薄片做微小振动时的周期.6.一个均匀的薄方板,质量为M ,边长为a ,固定它的一个角点,使板竖直悬挂,板在自身的重力作用下,在所在的竖直平面内摆动.在穿过板的固定点的对角线上的什么位置(除去转动轴处),贴上一个质量为m 的质点,板的运动不会发生变化?已知对穿过板中心而垂直于板的轴,方板的转动惯量为216J Ma =. 7.如图14—18所示,两根等质量的细杆BC 及AC ,在C 点用铰链连接,质量不计,放在光滑水平面上,设两杆由图示位置无初速地开始运动,求铰链C 着地时的速度.8.如图14—19所示,圆柱体A 的质量为m ,在其中部绕以细绳,绳的一端B 固定不动,圆柱体初速为零地下落,当其轴心降低h 时,求圆柱体轴心的速度及绳上的张力.图14-14图14-15 图14-16 图14-17图14-18图14-199.如图14—20所示,实心圆柱体从高度为h 的斜坡上从静止纯滚动地到达水平地面上,继续纯滚动,与光滑竖直墙做完全弹性碰撞后返回,经足够长的水平距离后重新做纯滚动,并纯滚动地爬上斜坡,设地面与圆柱体之间的摩擦系数为μ,试求圆柱体爬坡所能达到的高度'h .10.在一个固定的、竖直的螺杆上的一个螺帽,螺距为s ,螺帽的转动惯量为J ,质量为m .假定螺帽与螺杆间的摩擦系数为零,螺帽以初速度0v 向下移动,螺帽竖直移动的速度与时间有什么关系?这是什么样的运动?重力加速度为g .11.在水平地面上有两个完全相同的均匀实心球,其一做纯滚动,质心速度v ,另一静止不动,两球做完全弹性碰撞,因碰撞时间很短,碰撞过程中摩擦力的影响可以不计.试求:(1)碰后两球达到纯滚动时的质心速度; (2)全部过程中损失的机械髓的百分数. 12.如图14—21所示,光滑水平地面上静止地放着质量为M 、长为l 的均匀细杆.质量为m 的质点以垂直于杆的水平初速度0v 与杆一端做完全非弹性碰撞.求(1)碰后系统的速度及绕质心的角速度,(2)实际的转轴(即静止点)位于何处?13.如图14—22所示,实心匀质小球静止在圆柱面顶点,受到微扰而自由滚下,为了令小球在θ≤45°范围内做纯滚动,求柱面与球间摩擦因数μ至少多大?14.如图14—23所示,半径为R 的乒乓球,绕质心轴的转动惯量223J mR =,m 为乒乓球的质量,以一定的初始条件在粗糙的水平面上运动,开始时球的质心速度为0C v ,初角速度为0?,两者的方向如图.已知乒乓球与地面间的摩擦因数为μ.试求乒乓球开始做纯滚动所需的时间及纯滚动时的质心速度.15.如图14—24所示,一个刚性的固体正六角棱柱,形状就像通常的铅笔,棱柱的质量为M ,密度均匀.横截面六边形的边长为a .六角棱柱相对于它的中心轴的转动惯量2512J Ma =.相对于棱边的转动惯量是'2512J Ma =.现令棱柱开始不均匀地滚下斜面.假设摩擦力足以阻止任何滑动,并且一直接触斜面.某一棱刚碰上斜面之前的角速度为i ?,碰后瞬间角速度为f ?,在碰撞前后瞬间的动能记为ki E 和kf E .试证明f i s ??=,kf ki E rE =,并求出系数s 和r 的值.图14-20图14-21图14-23 图14-22 图14-24参考答案1.先确定一半径为R 的1/4圆的匀质薄板的质心,如图答14—1所示,在xOy 坐标中,若质心坐标为(x c ,y c ),由对称性知x c =yc ,则根据质心的等效意义,有231lim cos()cos()sin()lim[sin 3()sin()]42222822nc x x i R x RiR iR iR iinnnnnnnππππππππ→∞→∞===+∑,于是有313sin()sin ()1432222lim [sin 3()sin()]lim[3222234sin() 4c x x n n R R n n x i i n n n nnπππππππ→∞→∞+=+=??1sin ()sin ()442222]43sin()4n n R n n nnππππππ++=.针对本题中圆盘各象限密度不同有下列方程22123412344()()443c R R R x ππρρρρρρρρπ+++=--+, 22123412344()()443c R R R y ππρρρρρρρρπ+++=--+,解以上方程得0c x =,815c y R π=-.故质心坐标为(0,815R π-).2.如图答14—2所示,对图中所示的1Z 、2Z 、Z 坐标系与3Z 、4Z 、Z 坐标系运用正交轴定理,有1234J J J J J J ++=++,其中2312JmR =,24712J mR =,由对称等效可知 2121324J J mR ==. 3.如图答14—3所示,将立方体等分为边长为2a的八个小立方体,每个小立方体体对角线到大立方体体对角线距离d ==,依照本专题例3用量纲分析法求解有22222()()6()()(82828m a m a m kma k k ??=++,所以有 16k =,21 6J ma =.图答14-11Z R2ZZ4Z3Z图答14-2图答14-34.由正交轴定理22()A B i iiJ J m x y +=+∑及椭圆方程22221y x A B+=,得22222222()(1)A B i i i A A A J J m A y y mA J B B +=-+=+-∑,所以222B A A J mA J B=-.5.如图答14—4所示,设板质量为M ,则对AB 轴的转动惯量2211lim ()3nn i M d J i Md n n →∞===∑,对应于与竖直成α角的转轴,等效的重力是与轴垂直的分量sin Mg α,则24T =. 6.薄板上未贴m 时对悬点的转动惯量22023J J Md Ma =+=, 贴m后22123J Ma mx =+.振动周期相同,应有01'()J J Mgl M m gl =+,贴上m 后,质心相对悬点'mx Mll M m+=+,l =,解得x =.7.初始时,系统具有的重力势能P E mgh =,m 为一根杆的质量,铰链C 刚着地时,速度C v 竖直向下,各杆的瞬时转轴为()A B ,转动惯量2/3J ml =,l 表示每段杆长:由于铰链C 质量不计,则系统总动能22221112()233C k Cv E J ml mv l ?===,下落中机械能守恒,有 213Cmgh mv =,mgh:得C v =. 8.如图答14—5所示,圆柱体关于几何轴的转动惯量212J mR =,对过与绳相切点P 的平行轴的转动惯量232P J m R =;设轴心降低h 时速度为v ,由机械能守恒定律 2213()24v mgh J mv R ==,所以v 又由质心运动定律mg T m R β-=,由转动定律2mgR mR β=.则13T mg =.9.纯滚动时,无机械能损失,于是满足方程2222113()2224mR v mgh mv mv R =+?=,圆柱体与光滑墙碰撞,开始做非纯滚动,经时间t 达到纯滚动,质心速度由'C C v v →,角速度从'C C v v R R →,运用动量定理及动量矩定理'()C C ft m v v =-,'2()2C C v v mR fRt R R =-,解得'3C C v v =,此后机械能守恒,联系第一式可得''234mgh mv =,得'9h h =10.由机械能守恒定律,得22220011()()22t t mgs J m v v ??=-+-,又因2v sπ=,可得图答14-4图答14-522'022224t m v v gs g s J m s π-==+,即螺帽匀加速直线下降'0t v v g t =+,'224m g g Jm sπ=+. 11.(1)如图答14—6所示,两球225mv J =,刚完成弹性碰撞时,两球交换质心速度,角速度未变;设两球各经1t 、2t 达到纯滚动状态,质心速度为1v 、2v ,对球1有11ft mv =,2112()5v mR v fRt R R =-,所以127v v =;对球2有22()ft m v v =-,22225v mR fRt R =,257v v =.(2)系统原机械能222211127()22510k mR v E mv mv R =+?=;达到纯滚动后2222221125122529()()()()277257770k v v mR v v E m mv =++?+=,则2041%49η=≈. 12.(1)碰后系统质心位置从杆中点右移为2m lx m M ?=+.由质心的动量守恒0()C mv M m v =+,求得质心速度0C mv v M m=+. (2)由角动量守恒202122l Ml lmv m x ??=+,x 为瞬时轴距杆右端的距离,考虑质心速度与角速度关系022()2()C v mv Ml m M x Ml x M m ?==+--+,在23x l =处,有06(4)mv M m l ?=+. 13.圆柱半径与小球半径分别以R 、r 表示,小球滚到如图14—7位置时,质心速度设为C v ,角加速度β,转动惯量225J mr =,受到重力mg 、圆柱面支持力N 、静摩擦力f ,由质心运动定律,有 2cos Cmv mg N R rθ-=+,①sin mg f m r θβ-=,②自转动定律有 225fr mr β=,③ 又因小球做纯滚动,摩擦力为静摩擦力不做功,球的机械能守恒 22221127()(1cos )()22510C C Cv mr mg R r mv mv r θ+-=+?=,④ 将③式代入②式得5sin 2f mg f mr mr θ-=,于是2sin 7f mg θ=;将④式代人①式得10()(1cos )cos 7()mg R r mg N R r θθ+--=+,所以1710(cos )77N mg θ=-.图答14-6图答14-7C因做滚动,必定f ≤N μ,即μ≥2sin 17cos 10θθ-,在θ≤45°范围内μ≈0.7.14.乒乓球与地接触点O 既滚又滑且达到纯滚时,由角动量守恒,得 00C C mRv J mRv J ??-=+,即002()3C C v v R ??-=+.达到纯滚动时C v R ?=,由此可得纯滚动质心的速度002233C C v v R ?=-;其中,002233C v R ?>,纯滚后球向右顺时针纯滚,若002233C v R ?<,则纯滚后球向左逆时针纯滚.质心匀加速滚动,达到纯滚时间设为t ,由0C C v v gt μ=-,可得002()5C v R t gμ+=. 15.设以某棱为轴转动历时t ?,角速度i f ??→,时间短,忽略重力冲量及冲量矩,矢量关系如图答14—8所示,对质心由动量定理 ()sin 6i f N t Ma π=+,()cos6f i f t Ma π-?=-.对刚体动量矩定理25cossin()6612f i f ta N ta Ma ππ-?=-.解得1117f i ??=,1117s =,2121 289r s ==.图答14-8。
第4章刚体的运动学和动力学
P
II
M
d d 2 2 f " (t ) ቤተ መጻሕፍቲ ባይዱt dt
当 β c
0 t 1 2 ( ) t t 0 2 2 2 0 2 ( 0 )
z ω,
与质点的匀加速直线运动公式相象
二. 定轴转动刚体上各点的速度和加速度
端,试计算飞轮的角加速 解 (1) Fr J
(2) mg T ma
rO
T
Fr 98 0.2 39.2 rad/s 2 J 0.5
mgr J mr 2
两者区别
F
mg
Tr J a r
98 0.2 2 21 . 8 rad/s 0.5 10 0.22
例如 T' T
x dx
x
• 在定轴转动中,力矩可用代数值进行计算
T' T
M i TR T' R
M i TR T' r
二. 刚体对定轴的转动定律
实验证明 当 M 为零时,则刚体保持静止或匀速转动 当存在 M 时, 与 M 成正比,而与J 成反比
M J
刚体的转动定律
M kJ
例 一根长为 l ,质量为 m 的均匀细直棒,可绕轴 O 在竖直平 面内转动,初始时它在水平位置 m l x O 求 它由此下摆 角时的 解 取一质元
M xdm g g xdm
C
mg
dm
M mgxC
1 M mgl cos 2
xdm mxC
重力对整个棒的合力矩等于重力全部 集中于质心所产生的力矩
L x
J
1 x dx ML2 3
4-2刚体的转动-刚体动力学解析
mB g
1 m A mB mC 2 m Am B g T1 1 m A m B mC 2
物体B由静止出发作匀速直线运动
2mB gy v 2ay 1 m A mB mC 2
考虑滑轮与轴承间的摩擦力
由初始条件 : t 0时, 0 0, 0 0得 :
0
3g d sind 2l 0
3g (1 cos ) 2l
例4:一半径为R,质量为m的匀质圆盘,平放在粗 糙的水平桌面上。设盘与桌面间摩擦系数为 , 令圆盘最初以角速度 0绕通过中心且垂直盘面的 轴旋转,问它经过多少时间才停止转动?
2m1m2 T1 T2 g m2 m1
m2 m1 a g m2 m1
上题中的装置叫阿特伍德机,是一种可用来测 量重力加速度g的简单装置。因为在已知m1、 m2 、 r和J的情况下,能通过实验测出物体1和2的加速度a, 再通过加速度把g算出来。在实验中可使两物体的m1 和 m2 相近,从而使它们的加速度 a 和速度 v都较小, 这样就能角精确地测出a来。
例2.质量为 m A 的物体A静止在光滑的水 平面上,它和一轻绳相连接,此绳跨过一半 径为R、质量为 mC 的园柱形滑轮C,并系在 另一质量为 m B 的物体B上,滑轮与轴承间 A 的摩擦力不计.问: C (1)两物体的线加 速度? 水平和铅直 B 两段绳的张力? (2)B由静止下落距离y时速率? (3)若滑轮与轴承间的摩擦力矩为 M ,再 求线加速度及绳的张力.
1 1 2 a RT2 RT1 M J mC R mC Ra 2 R 2 ( 4)
解(1)(2)(4),即可得 a,T
拉格朗日方程刚体动力学振动 习题课
x
A vA
vCA
m 1 g c B
m 2g
解:系统的主动力均为有势力
分析系统的动能和势能
vT A 1 2xm 1 vA 2 A1 2 JA rx A 2 1 2 Am B2 v C 2 1 2JCA 2 B
vC vAvCA
T 3 4 m 1 x 2 1 2 m 2 x 2 1 6 m 2 L 22 1 2 m 2 x L c o s T ( x ,,)
V L2m2g(1cos)
拉格朗日函数 LTVL(x ,,)中不显含广义坐标x和时间t
7
BUAA
习题课
T x3 2m 1xm 2x1 2m 2L co sC 系统的什么广义动量守恒?
研究整体:
x
A vA
研究圆盘:
LrA12mAr2A12m1rxF Ay
A
F
vCA LrA Fr
A
r
F Ax
c m 1 g
T V 1 2 m 1 x 2 1 2 m 2 x 2 1 6 m 2 L 2 2 1 2 m 2 x L c o s L 2 m 2 g ( 1 c o s ) E
6
BUAA
习题课
例:机构在铅垂面内运动,均质圆盘质量m1在地面上纯滚动,均 质杆AB质量m2用光滑铰链与圆盘连接。求系统首次积分。AB=L
拉格朗日方程刚体动力学振动 习 题课
BUAA
第二类拉格朗日方程的总结
对于具有完整理想约束的质点系,若系统的自由度为k,
则系统的动力学方程为:
d dt
L qj
qLj
Q'j
(j1, ,k)
其中:LTV T:为系统的动能,V:为系统的势能
Q
《刚体动力学》课件
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:碰撞、打击、爆炸等 角动量定理 角动量定理
定义:角动量是物体转动惯量和角速度的乘积 单击此处输入你的项正文,文字是您思想的提炼。
角动量定理公式:L=Iω
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:行星运动、陀螺仪等
刚体的滚动和滑动摩擦
刚体滚动:刚体在平面内绕固定点转动,滚动摩擦力产生的原因和影响
刚体滑动摩擦:刚体在平面内滑动时产生的摩擦力,滑动摩擦系数与接触面材料和粗糙度等因素 的关系
刚体滚动和滑动摩擦的应用实例:例如,汽车轮胎与地面之间的滚动摩擦力,以及机械零件之间 的滑动摩擦力等
刚体滚动和滑动摩擦的实验研究:通过实验研究刚体滚动和滑动摩擦力的影响因素和规律,为实 际应用提供理论支持
04
刚体动力学基本原理
牛顿第二定律
定义:物体加速度的大小跟作用 力成正比,跟物体的质量成反比
应用:解释物体运动状态变化的 原因
添加标题
添加标题
公式:F=ma
添加标题
添加标题
注意事项:只适用于宏观低速运 动的物体
动量定理和角动量定理
定义:动量是物体质量与速度的乘积
单击此处输入你的项正文,文字是您思想的提炼。
刚体动力学研究内容
刚体的定义和性质 刚体运动的基本形式 刚体动力学的基本方程 刚体动力学的研究方法
刚体动力学发展历程
早期发展:古代力学对刚体的研究 经典力学时期:牛顿、伽利略等经典力学大师对刚体动力学的研究 弹性力学时期:弹性力学的发展对刚体动力学的影响 现代发展:计算机技术和数值模拟方法在刚体动力学中的应用
课程内容:刚体 的平动、转动、 碰撞等动力、力学等相关专 业的本科生和研 究生
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 一质量为m ,长为l 的匀质细长杆,一端与固定点O 光滑铰链。
初始时刻杆竖直向上,
尔后倒下,试分别求出此后杆绕铰链O 转动的角速度ω ,作用于铰链上的力N F 与杆转过的
角度θ的关系。
2.长为l 的匀质棒,一端以光滑铰链悬挂于固定点。
若起始时,棒自水平位置静止开始运动,当棒通过竖直位置时铰链突然松脱,棒开始自由运动。
在以后的运动中:
(i)证明棒质心的轨迹为一抛物线。
(ii)棒的质心下降h 距离时,棒已转过多少圈?
3.如图,质量为M 的匀质细杆AB 静止在光滑水平面上,B 端的弹簧机构(其质量可忽略)将质量为m 的小球相对于地面以速度v 水平弹出,v 的方向与AB 杆的夹角记为ϕ,设弹出的小球恰好能与细杆A 端相遇,且细杆转过的角度不超过π,试求质量比m M =γ和角度ϕ的取值范围。
4.已知均质杆AB 的质量m=4kg,长l =600mm,均匀圆盘B 的质量为6kg,半径为r =100mm, 作纯滚动。
弹簧刚度为k =2N/mm,不计套筒A 及弹簧的质量。
连杆在与水平面成30º角时无初速释放。
求(1)当AB 杆达水平位置而接触弹簧时,圆盘与连杆的角速度;(2)弹簧的最大压缩量max 。
5.轻质细杆两端分别固定小球A,B ,B 球的质量是A 球质量的α倍,其中1>α,开始时细杆左半部分静止在水平地面上,右半部分露在桌面外,自由释放后,细杆会绕着桌面侧棱偏转,即图中的ϕ角会从零开始增大,开始时,倾斜偏转过程中细杆中点一直不离开桌面侧棱,直到倾角ϕ达到某0ϕ(2
00πϕ<<)值时,细杆中点开始滑离桌面侧棱,试求细杆中部与桌面侧棱之间的摩擦因数μ
3,求图示6.图示机构中,曲柄OA长为r,绕O轴以等角速度w0转动,AB=6r,BC=r3
位置时滑块C的速度和加速度。
7.均匀细杆AB长为l,质量为m1,上端B靠在光滑的墙上,下端A以铰链与匀质圆柱中心相连。
圆柱质量为m2,半径为R,放在粗糙的水平面上,自图示位置由静止开始滚动而不滑动,杆与水平线的夹角θ=450.求点A在初瞬时的加速度。