数学分析1期末考试讲解汇编
大一上数学分析期末考试题及答案

大一上数学分析期末考试题及答案一、选择题(每题3分,共30分)1. 极限的定义是:如果对于任意的正数ε,都存在正整数N,使得当n>N时,都有|a_n - A| < ε,则称序列{a_n}的极限为A。
A. 正确B. 错误答案:A2. 函数f(x)=x^2在区间(-∞, +∞)上是单调递增的。
A. 正确B. 错误答案:B3. 函数f(x)=x^3在区间(-∞, +∞)上是单调递增的。
A. 正确B. 错误答案:A4. 函数f(x)=sin(x)在区间[0, π]上是单调递增的。
A. 正确B. 错误答案:B5. 函数f(x)=x^2在区间[0, +∞)上是单调递增的。
A. 正确B. 错误答案:A6. 函数f(x)=x^3在区间(-∞, +∞)上是单调递增的。
A. 正确B. 错误答案:A7. 函数f(x)=e^x在区间(-∞, +∞)上是单调递增的。
A. 正确B. 错误答案:A8. 函数f(x)=ln(x)在区间(0, +∞)上是单调递增的。
A. 正确B. 错误答案:A9. 函数f(x)=1/x在区间(0, +∞)上是单调递减的。
A. 正确B. 错误答案:B10. 函数f(x)=x^2在区间(-∞, 0)上是单调递减的。
A. 正确B. 错误答案:A二、填空题(每题4分,共20分)11. 极限lim(x→0) (sin(x)/x) = ________。
答案:112. 极限lim(x→+∞) (1/x) = ________。
答案:013. 极限lim(x→0) (1 - cos(x))/x^2 = ________。
答案:1/214. 函数f(x)=x^3在x=0处的导数为 ________。
答案:015. 函数f(x)=e^x在x=0处的导数为 ________。
答案:1三、计算题(每题10分,共40分)16. 计算极限lim(x→0) (tan(x) - sin(x))/x^3。
解:利用洛必达法则,对分子分母分别求导三次,得到极限为1/2。
大一数学分析(1)试卷分析与讲评PPT31页

40、学而不思则罔,思而不学则殆。——孔子
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
1
0
、
倚
南
窗
以
寄
傲
,
审
容
膝
之
易
安
。
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
大一数学分析(1)试卷分析与讲评
6
、
露
凝
无
游
氛
,新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8
、
吁
嗟
身
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
数学分析(1)期末试题集(计算题部分)

2.设 求 的极值.
解:当 时, .令 ,得稳定点 .
当 时, ;当 时, ,故 为极小值点,极小值为 ;
当 时, ,所以 在 内严格单调增,无极值.
而在 的邻域内,左边函数单调增,右边函数单调减,故 为极大值点,函数的极大值为 .
3.设函数 满足 .讨论 是否为 的极值点.
解若 ,由极值的必要条件知, 不是 的极值点.
当 时, , 单调减少.当 时, , 单调增加.于是 为 在 内唯一的极小值,也为最小值.因此函数 的零点个数与 的符号有关.
当 ,即 时, 在 恒为正值函数,无零点;
当 ,即 时, 在 内只有一个零点,即 ;
当当 ,即 时,因为 ,由连续函数的零点定理知, 和 ,使得 ,且由函数的单调性知, 在 和 内最多各有一个零点,所以当 时, 在 有且只有两个零点.
(4)因为
所以 是偶函数.
(5) .所以 是奇函数.
7.求函数 的值域.
解因为反函数 的定义域为 ,所以函数 的值域为 .
8.设有方程 其中 .求解 与 .
解由方程组得 ,代入 ,所以 .
9.若函数 的图形有对称中心 及 ,试证 为周期函数,并求出周期 .
解由于 的图形有对称中心 及 ,于是有
.
进而有 且 ,令 ,由上式便得到 .由周期函数的定义,注意到 ,因此 是以 为周期的周期函数.
10、设函数 在 内有定义,且对任意的实数 ,有 ,求 .
解由于 ,且 .
11、若函数 对其定义域内的一切 ,恒有 ,则称函数 对称于 .证明:如果函数 对称于 及 ,则 必定是周期函数.
证若 及
所以 是以 为最小周期的周期函数.
12.若 的图形有对称轴 和对称中心 ,求证 为周期函数.
大一期末数学试卷讲解

一、选择题1. 下列函数中,在其定义域内连续的函数是:()A. f(x) = |x|,x∈RB. f(x) = x^2,x∈RC. f(x) = x^3,x∈RD. f(x) = |x|,x∈[0, +∞)【答案】A【解析】选项A中的函数f(x) = |x|在其定义域内连续,因为绝对值函数在其定义域内处处连续。
选项B、C、D中的函数在其定义域内均不连续。
2. 设函数f(x) = x^3 - 3x,则f(x)的极值点是:()A. x = 0B. x = -1C. x = 1D. x = 3【答案】C【解析】对f(x)求导得f'(x) = 3x^2 - 3,令f'(x) = 0,解得x = ±1。
将x = ±1代入f(x),得f(±1) = -2。
因此,f(x)的极值点是x = 1。
3. 设函数f(x) = x^2 - 4x + 4,则f(x)的图像是:()A. 顶点在(2, 0)B. 顶点在(0, 4)C. 顶点在(4, 0)D. 顶点在(0, -4)【答案】A【解析】函数f(x) = x^2 - 4x + 4可以写成f(x) = (x - 2)^2,这是一个开口向上的抛物线,其顶点为(2, 0)。
4. 下列级数中,收敛的是:()A. ∑(n=1 to ∞) (1/n^2)B. ∑(n=1 to ∞) (1/n)C. ∑(n=1 to ∞) (n^2)D. ∑(n=1 to ∞) (e^n)【答案】A【解析】根据p级数的性质,当p > 1时,p级数收敛。
选项A中的级数是p级数,且p = 2 > 1,因此收敛。
5. 设矩阵A = [1 2; 3 4],则矩阵A的逆矩阵是:()A. [2 -3; -4 1]B. [2 3; -4 1]C. [1 2; -3 4]D. [1 -2; 3 4]【答案】A【解析】计算矩阵A的行列式|A| = 14 - 23 = 4 - 6 = -2。
数学分析1-期末考试试卷(B卷)

数学分析1 期末考试试卷(B 卷)一、填空题(本题共5个小题,每小题4分,满分20分) 1、设0111,1n nx x x +==+, 则 lim n n x →∞= 。
2、(归结原则)设0()(;)o f x U x δ在内有定义,0lim ()x xf x →存在的充要条件是:3、设)1ln(2x x y ++=,则=dy 。
4、当x = 时,函数()2x f x x =取得极小值。
5、已知)(x f 的一个原函数是cos xx,则()xf x dx '=⎰。
二、单项选择题(本题共5个小题,每小题4分,满分20分) 1、设()232x x f x =+-,则当0x →时( )。
(A )()f x x 与是等价无穷小。
(B )()f x x 与是同阶但非等价无穷小。
(C )()f x x 为的高阶无穷小量。
(D )()f x x 为的低阶无穷小量。
2、设函数()f x x a =在点处可导,则函数()f x 在x a =处不可导的充分条件是( )。
(A )()0()0.f a f a '==且 (B )()0()0.f a f a '>>且(C )()0()0.f a f a '=≠且 (D )()0()0.f a f a '<<且 3、若),()()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则)(x f 在),0(+∞内有( )。
(A )0)(,0)(<''>'x f x f 。
(B )0)(,0)(>''>'x f x f 。
(C )0)(,0)(<''<'x f x f 。
(D )0)(,0)(>''<'x f x f 。
《数学分析1》期末考试试卷2

《数学分析1》期末考试试卷(闭卷 120分钟)一.判断题(每小题2分,共20分)1、max SupA A SupA A ∈⇔=2、设A B ,为非空数集, A B inf A inf B ⊂≤,则.3、若()f x 无下界,则存在{}()n x D f ⊂,使得lim ()n n f x →∞=-∞4、若0lim ()x x f x →存在的充要条件是当00()()0x x y x f x f y →→-→,时,5、若单调数列{}n x 有收敛子列,则{}n x 收敛6、若()()f x g x ,在0x x =均不连续,则()()f x g x ±在0x 也不连续7、()f x 在0x x =可导,()g x 在0x x =不可导,则()()f x g x ±在0x x =不可导 8、21lim sin0x x x →= 9、若0()0f x '=,则0x 一定是()f x 的极值点10、()f x 在[)a +∞,上一致连续,则2()f x 在[)a +∞,上也一致连续二.求极限(每题5分,共20分)1、lim xx nx→∞(1+)2、0(1)1lim(0)ln(1)x x x αα→+-≠+ 3、2lim (arctan )x x x π→+∞ 4、22011lim()sin x x x→-三.计算题(每题5分,共20分)1、用导数定义求'2、y dy =3、ln(cos dy y x dx=+,求 4、求()(ln(1))n x -四.证明题(每题5分,共20分)1、设0lim ()0x f x a →=≠.证明:011lim()x f x a→= 2、lim 0n n x →∞=,{}n y 有界,证明lim()0n n n x y →∞=.3、证明:()ln f x x =在[)1∞,+内一致收敛4、设()()x x f g ,是凸函数,求证: ()()x x f g +也是凸函数五.确定21()1x f x x +=+的单调区间.(5分)六.()f x 在[,]a b 上连续,且[][],,()0,()x a b f x f x ∀∈≠则在a,b 上不变号(5分) 七.设对,x x R '''∀∈,()()()f x x f x f x ''''''+=+且()f x 在0x =连续,证明:()f x 在R 内一致连续.(5分)八.求证:f在区间(,)a b 内可微,(0)(0)f a f b +=-,则(,)a b ξ∃∈.()0f ξ'=使得 .(5分)。
数学分析1期末考试讲解
《数学分析Ⅰ》题目讲解一、 单项选择题(每小题2分,共14分)1、设数列{}n x 满足1112n n n x x x +⎛⎫=+ ⎪⎝⎭且lim nn x →∞=,则为【 】A 、0B 、1C 、12 D 、22、已知tan,0,()1,0,xxf x xx⎧≠⎪=⎨⎪=⎩则0x=是()f x的【】A、第一类不连续点B、第二类不连续点C、连续点D、可去不连续点3、已知1sin,0()0,0x xf x xx⎧>⎪=⎨⎪≤⎩,则()f x在0x=处【】A、左可导B、右可导C、可微D、不连续4、若0lim ()x x f x 存在,下列说法一定正确的是【】A 、()f x 在0x 的任一邻域内有界 B 、()f x 在0x 的某一邻域内无界 C 、()f x 在0x 的某一邻域内有界 D 、()f x 在0x 的任一邻域内无界5、若()f x 在0x =处连续,并且220()lim h f h c h→=,则【 】 A 、(0)0f =且(0)f -'存在 B 、(0)0f =且(0)f +'存在 C 、(0)f c =且(0)f -'存在 D 、(0)f c =且(0)f +'存在6、若()f x 在点0x 处存在左、右导数,则()f x 在点0x 处必然【 】A 、可导B 、不可导C 、连续D 、不连续7、下列叙述错误的是【 】A 、若()f x 在点0x 可导,则()f x 在点0x 可微;B 、若()f x 在点0x 可导,则()f x 在点0x 连续;C 、若()f x 在点0x 可导,则()0()0f x ′=; D 、设()f x 在点0x 可导,则0x 是极值点当仅当0()0f x =′.参考答案:1. B 2.C 3.A 4.C 5.B 6.C7.D二、填空题(每小题3分,共21分)1、33561lim 141x x x x x x →∞⎡⎤++⎛⎫+-=⎢⎥ ⎪+⎝⎭⎢⎥⎣⎦ 2、曲线ln y x =上平行于直线115y x =+的切线的方程为3、设()1f a '=,则 0(2)(3)lim h f a h f a h h→+--=4、曲线22x y x e -=+的斜渐近线为5、函数32()92415f x x x x =-+-的极小值点x =______ _6、已知当0x →时ln(1)ax +与1xe -等价,则a = 7、()()5n x=参考答案:1. 114e+;2. ()15ln55y x =-+;3. 5;4. 2y x =;5. 4;6. 1;7. ()ln 55nx三、计算题(每小题6分,共36分)1、计算111lim 1n n n n n →∞⎛⎫+++⎪+++⎝⎭.1、计算111lim 1n n n nn →∞⎛⎫+++⎪+++⎝⎭ 解:设1111n x n n n n=++++++,由于1n n nx n n ≤≤++,lim 1n n n →∞=+,lim 11n nn →∞=+ ,(4分) 由夹逼性,lim 1n n x →∞=,即原极限为1。
2010—2011 学年第一学期期末考试大学《数学分析 1》 试题及答案
五、证明题(3 小题,1,2 小题各题 6 分,3 小题 7 分,共 19 分)
1、设 an
=
sin1 2
+
sin 2 22
++
sin n 2n
,证明数列 an 收敛.
2、证明 f (x) = x2 在a,b上一致连续.
3、若函数
f
在 a,b上可导,且
f
+
(a
)
f
−
(b)
,
k
为介于
f
+
(a
)和f
−
(b)
( ) 1、已知 y = ln x + 1+ x2 ,求 dy ; dx
2、设
x y
= =
a(t a(1
− sin t) − cost)
,求
dy dx
;
3、设 y = xsin x ,求 y ;
4、设 y = arcsin 1− x2 ,求 dy .
5、求函数 f (x) = (2x − 5) 3 x2 的极值.
1
( ) d 1− x2 , ……………………………………3 分
( )2
1− 1− x2
( ) = 1 d 1 − x2 = − 1 x dx ……………………………………………………5 分 x 2 1− x2 x 1− x2
5、解:定义域 (− ,+)
f
(x) = 23
x2
+
(2
x
−
5)
2
x
−
( ) 9、若在 x0 附近 f (x) = pn (x)+ o (x − x0 )n ,则 pn (x)是唯一的,其中
数分大一下期末考试知识点
数分大一下期末考试知识点数学分析是数学专业中的一门重要课程,也是大部分理工科专业的必修课之一。
对于大一学生来说,数分下学期末考试的内容通常是其中最为关键的一部分。
为了帮助大家复习和准备考试,下面将对数分大一下期末考试的知识点进行总结和归纳。
1. 无穷级数无穷级数是数学分析中的重要概念,有着广泛的应用。
在考试中,通常会涉及到级数的收敛与发散、级数的运算性质等方面的问题。
复习时需要掌握无穷级数各种判别法,例如比较判别法、比值判别法、根值判别法等。
2. 函数极限与连续性函数极限与连续性是数学分析的基础内容。
考试中可能出现求函数极限、证明函数连续性等类型的题目。
在复习过程中,需要熟练掌握函数极限的定义和性质,以及连续性的定义、判别方法和运算规则。
3. 导数与微分导数与微分是数学分析的核心内容,也是大家最常接触到的部分。
在考试中,通常会出现求导数、求高阶导数、应用导数等类型的题目。
复习时需要熟悉导数的定义、运算法则,以及常见函数的导数公式和基本性质。
4. 可积性与不可积性在数学分析中,可积性是一个重要的概念。
考试中可能会涉及到函数的可积性问题,需要掌握黎曼可积的判定条件和计算方法。
此外,还需要了解黎曼积分的性质和应用,如函数的积分中值定理等。
5. 序列与级数序列与级数是数学分析中的基本概念之一,也是数学分析的重要内容。
在考试中,通常会出现求序列极限、判别序列的收敛性、级数求和等类型的题目。
复习时需要掌握序列和级数的基本定义、性质和运算法则。
6. 多元函数的极限、连续性与偏导数多元函数是数学分析中一个较为复杂的知识点。
在考试中,可能会出现多元函数的极限、连续性、偏导数等问题。
复习时需要熟悉多元函数的极限、连续性的定义和判别方法,以及多元函数的偏导数的计算和性质。
7. 多元函数的积分多元函数的积分是数学分析中的重要内容之一。
在考试中,通常会出现多元函数的积分的计算和应用题。
复习时需要掌握多元函数的积分的计算方法,并了解应用题中的一些常见方法,如变量代换等。
大一数学分析期末知识点
大一数学分析期末知识点在大一数学分析的学习过程中,学生将接触到许多基础的数学知识点。
这些知识点在期末考试中占据重要的地位,对于学生来说是必须要熟练掌握的。
本文将着重介绍大一数学分析期末考试中常涉及的几个主要知识点。
1. 函数与极限在数学分析的学习中,函数与极限是一个非常重要的基础概念。
学生需要了解函数的定义、性质和图像表示方法。
同时,对于函数的极限也是非常重要的。
学生需要学会计算函数的极限,理解极限存在与否的条件,并能够应用极限理论解决相关问题。
2. 数列与级数数列与级数是数学分析中的另一个核心内容。
学生需要了解数列的定义、分类和性质,能够计算数列的极限。
对于级数,学生需要学会判断级数的敛散性,掌握级数求和的方法,并了解级数收敛的判定方法。
3. 微分学微分学是数学分析的重要内容之一。
学生需要熟练掌握函数的导数概念与计算方法,理解导数的几何与物理意义,并能够应用导数解决相关问题。
此外,学生还需要了解高阶导数、隐函数与参数方程的微分计算方法。
4. 积分学积分学是数学分析的另一个重要内容。
学生需要熟悉不定积分和定积分的定义与计算方法,了解换元积分法和分部积分法等积分技巧,并能够应用积分解决相关问题。
此外,对于柯西定理和牛顿-莱布尼茨公式的理解也是必要的。
5. 常微分方程常微分方程是数学分析的一门重要的应用课程。
学生需要了解一阶和二阶常微分方程的基本概念、解的存在唯一性以及一些特殊类型的微分方程解法,并能够应用常微分方程解决实际问题。
以上所列举的知识点只是大一数学分析期末考试中的主要内容,还有其他相关知识点也是需要学生积极掌握的。
学生在备考期末考试时,应该注重理解概念,熟练掌握运算方法,并进行大量的练习,加强对知识点的理解与应用能力。
通过系统的学习与反复的训练,相信大家能够在大一数学分析期末考试中取得优异的成绩!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学分析Ⅰ》题目讲解更多精品文档更多精品文档一、 单项选择题(每小题2分,共14分)1、设数列{}n x 满足1112n n n x x x +⎛⎫=+ ⎪⎝⎭且lim n n x →∞=,则为【 】A、0B、1C、12D、22、已知tan,0,()1,0,xxf x xx⎧≠⎪=⎨⎪=⎩则0x=是()f x的【】更多精品文档A、第一类不连续点B、第二类不连续点C、连续点D、可去不连续点3、已知1sin,0()0,0x xf x xx⎧>⎪=⎨⎪≤⎩,则()f x在0x=处更多精品文档更多精品文档【 】A 、左可导B 、右可导C 、可微D 、不连续4、若0l i m ()x x f x 存在,下列说法一定正确的是更多精品文档【 】A 、()f x 在0x 的任一邻域内有界B 、()f x 在0x 的某一邻域内无界C 、()f x 在0x 的某一邻域内有界D 、()f x 在0x 的任一邻域内无界更多精品文档5、若()f x 在0x =处连续,并且220()lim h f h c h→=,则【 】A 、(0)0f =且(0)f -'存在B 、(0)0f =且(0)f +'存在C 、(0)f c =且(0)f -'存在D 、(0)f c =且(0)f +'存在更多精品文档6、若()f x 在点0x 处存在左、右导数,则()f x 在点0x 处必然【 】A 、可导B 、不可导C 、连续D 、不连续更多精品文档7、下列叙述错误的是【 】A 、若()f x 在点0x 可导,则()f x 在点0x 可微;B 、若()f x 在点0x 可导,则()f x 在点0x 连续;C 、若()f x 在点0x 可导,则()0()0f x ′=; D 、设()f x 在点0x 可导,则0x 是极值点当仅当更多精品文档0()0f x =′.参考答案:1. B 2.C 3.A 4.C 5.B 6.C 7.D二、填空题(每小题3分,共21分)1、33561lim 141xx x x x x →∞⎡⎤++⎛⎫+-=⎢⎥ ⎪+⎝⎭⎢⎥⎣⎦更多精品文档2、曲线ln y x =上平行于直线115y x =+的切线的方程为3、设()1f a '=,则 0(2)(3)lim h f a h f a h h→+--=更多精品文档 4、曲线22x y x e -=+的斜渐近线为5、函数32()92415f x x x x =-+-的极小值点x = ______ _6、已知当0x →时ln(1)ax +与1x e -等价,则a =更多精品文档7、()()5n x =参考答案: 1. 114e+; 2. ()15ln55y x =-+;3. 5;4. 2=;y x5. 4;6. 1;n x7. ()ln55三、计算题(每小题6分,共36分)更多精品文档更多精品文档1、计算111lim 1n n n n n →∞⎛⎫+++ ⎪+++⎝⎭.更多精品文档1、计算111lim 1n n n n n →∞⎛⎫+++ ⎪+++⎝⎭ 解:设1111n x n n n =+++++1n n n x n n ≤≤++, l i m 1n n n →∞=+,lim 11n n n →∞=+ ,(4分)更多精品文档由夹逼性,lim 1n n x →∞=,即原极限为1。
(6分)2. 求极限2011lim tan x x x x →⎛⎫- ⎪⎝⎭更多精品文档 220020011tan lim lim (1)tan tan sin coslim (2)sin sinlim 2sin x x x x x x x x x x x x x x x x x x x x →→→→-⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭-⎛⎫= ⎪⎝⎭=+解:分分20 (4)cos 1lim (5)2cos sin 1(6)x x x x x x →⎛⎫ ⎪⎝⎭⎛⎫ ⎪= ⎪+ ⎪⎝⎭=分分分更多精品文档3. 已知()f u 任意次可微,求(ln )y f x 的二阶微分2d y .更多精品文档 3. 已知()f u 任意次可微,求(ln )y f x =的2d y . 解:令ln u x =,则d 1()d y f u x x=', (2分)学习-----好资料更多精品文档[]2222222d ()d 11() (3)d d 11()()()()(ln )(ln )(5)f u y f u x x x xf u f u x x f u f u xf x f x x'-=⋅+'=''⋅-'⋅''-'=''-'=分分 所以,222(ln )(ln )d =d f x f x y x x''-' (6分)更多精品文档更多精品文档4. 求方程2ln(1)y t ⎧⎨=+⎩所确定的函数的导数2d d xy .更多精品文档4.求方程2ln(1)y t ⎧⎨=+⎩所确定的函数的导数2d d xy . 22222232d 1d ()1d 1 (3)d 2d ()2d 11d d d 12 (6)2d d d 41x x x t t t y t y y t t t tx x t t t y y y t t+====+-⎡⎤+===-⎢⎥⎣⎦+解:分分′′5. 设()cos=,求y'.y xsin x更多精品文档解:对等式两端取对数,()ln cos lnsiny x x=,(1分)再对上式两端分别求导,()() sincos ln sin cossin xyx x xy x ''='+(4分)更多精品文档更多精品文档()2cos sin lnsin sin xx x x=-+ (5分)所以,()()2cos cos sin sin lnsin (6)sin xx y x x x x ⎡⎤'=-⎢⎥⎣⎦分 6. 求由方程32xye x y =+所确定的函数()y y x =的微分d y .解:在方程两端对x 求导,得学习-----好资料更多精品文档()223xye y xy y y+'=+'. (3分)解此方程,得223xyxyyeyxe y-'=-。
(4分)所以,22d d3xyxyyey xxe y-=-。
(6分)四、综合题(3小题,共29分)1. 叙述证明题(4小题,共14分)更多精品文档(1)叙述lim n n x A →∞=(A 有限)的N ε-定义;(3分)(2)叙述数列的柯西(Cauchy )收敛原理;(3分) (3)叙述()f x 在区间I 内一致连续的εδ-定义;(3分)(4)证明()sin f x x =在(,)-∞+∞上一致连续。
(5分)更多精品文档解:(1)lim n n x A →∞=(A 有限)的N ε-定义:对任意给定的0ε>,存在正整数N ,当n N >时,有n x A ε-<。
(3分)(2)数列的柯西(Cauchy )收敛原理:数列{}n x 收敛的充要条件是{}n x 是一个基本数列。
(3分)更多精品文档(3)()f x 在区间I 内一致连续的εδ-定义:若()f x 在区间I 内满足对任意的0ε>,存在()0δδε=>,使得对I 内任意两点1x 与2x ,当12x x δ-<时,总有12()()f x f x ε-<,则称()f x 在区间I 内一致连续。
(3分)更多精品文档(4)证明:对任意12,x x R ∈,由于 1212121212()()sin sin 2cos sin 22 3f x f x x x x x x x x x -=-+-=≤-(分)更多精品文档故对任意的0ε>,取δε=,则对(,)-∞+∞内任意两点1x 与2x ,当12x x δ-<时,总有12()()f x f x ε-<,即()f x 在(,)-∞+∞上一致连续。
(5分)2. 证明:当0x >时,2ln(1)2x x x x -<+<.(7分) 证明:(1)证明ln(1)x x +<.根据Lagrange 中值定理,更多精品文档 ()ln(1)ln(1)ln11001x x x x x ξξ++-==<<-+这里(2分)由于111ξ<+,所以l n (1)x x +<。
(3分)(2)证明2ln(1)2xx x -<+. 令2()ln(1)2xf x x x =--+,则更多精品文档21()111x f x x x x -'=--=++,(2分)当0x >时,()0f x '<,()f x 严格单调递减,由(0)0f =,知()()00f x x <>,从而2ln(1)2x x x -<+。
(4分)更多精品文档 3. 设()f x 在区间[,]a b 可导,且()0,()0f a f b +->>′′,()()f a f b A ==,证明:(1)存在(,)a b ξ∈使得()f A ξ=;(5分)(2)()f x ′在(,)a b 内至少有两个零点。
(3分)更多精品文档证明:(1)由()()()lim 0x a f x f a f a x a++→-=>-′,存在10δ>,使当1(,)x a a δ∈+时,有()()0f x f a x a->-,此时,()()f x f a A >=。
在1(,)a a δ+中去一点1x ,有更多精品文档1()f x A >;由()()()l i m 0x b f x f b f b x b--→-=>-′,存在20δ>,使当2(,)x b b δ∈-时,有()()0f x f b x b->-,此时,()()f x f b A <=。
在2(,)b b δ-中去一点2x ,有2()f x A <。
(3分)于是,12()()f x A f x >>。
由()f x 在[,]a b 可导,()f x 在[,]a b 连续,由中间值定理,存更多精品文档在12(,)[,]x x a b ξ∈⊂,使得()f A ξ=。
(5分)更多精品文档 (2)由罗尔(Rolle )定理,在(,)a ξ内至少存在一点1ξ使得1()0f ξ=′,在(,)b ξ内至少存在一点2ξ使得2()0f ξ=′。
故()f x ′在(,)a b 内至少有两个零点。
(8分)。