实数的知识点总结

合集下载

数学实数知识点总结归纳

数学实数知识点总结归纳

数学实数知识点总结归纳一、实数的基本概念1.有理数有理数包括整数、分数和负数。

整数包括自然数和零,是没有小数部分的数;分数是一个整数除以另一个整数得到的数,可以用分数形式表示;负数是小于零的数,可以表示为“-”加上一个正数。

2.无理数无理数是不能表示为有理数的数,如根号2、圆周率π等。

这些数不能用有限小数表示,并且不能被表示为两个整数的比例。

3.实数的表示实数可以用小数表示,包括有限小数和无限循环小数。

有限小数是小数部分有限位数的实数,可以用有限位数的小数表示;无限循环小数是小数部分无限位数的实数,可以用循环小数形式表示。

二、实数的运算1.加法和减法实数的加法和减法规则和有理数的运算规则相同,即同号相加、异号相减。

加法和减法的结果仍然是实数。

2.乘法和除法实数的乘法和除法规则和有理数的运算规则相同,即同号相乘得正数,异号相乘得负数。

乘法和除法的结果仍然是实数。

3.乘方和开方实数的乘方和开方是实数的特殊运算,乘方是指一个数自身相乘若干次,开方是指一个数的平方根。

乘方和开方的结果仍然是实数。

三、实数的性质1.实数的代数性质实数包括有理数和无理数,它们满足代数运算的基本性质,如交换律、结合律、分配律等。

2.实数的比较性质实数可以进行大小比较,满足大小比较的基本性质,如传递性、反对称性、三角不等式等。

3.实数的稠密性质实数满足稠密性质,即在任意两个不相等的实数之间,都可以找到一个实数。

四、实数的应用1.实数在数学中的应用实数在数学中的应用非常广泛,涉及到各种数学问题和计算中,如代数、几何、概率、统计等。

2.实数在物理中的应用实数在物理中的应用也非常广泛,涉及到各种物理问题和计算中,如力学、热力学、光学、电磁学等。

3.实数在工程中的应用实数在工程中的应用也非常广泛,涉及到各种工程问题和计算中,如土木工程、机械工程、电子工程、通信工程等。

总之,实数是数学中的一个重要概念,包括有理数和无理数两个部分。

实数在数学、物理、工程等领域都有广泛的应用,掌握实数的相关知识对于提高数学水平和解决实际问题是非常重要的。

关于实数知识点总结

关于实数知识点总结

关于实数知识点总结一、实数的定义实数是指包括所有正数、负数、零,以及所有有理数和无理数的数集。

在数轴上,实数用来表示长度、面积、体积、温度等物理量。

1. 有理数:在有理数集中,包括整数和分数的集合。

例如,2,-5,3/4等都是有理数。

2. 无理数:无理数是指不能表示为两个整数的比值的实数。

例如,根号2,π,e等都是无理数。

二、实数的表示实数可以用数轴来表示,数轴是一个平直的线段,上面标有零点和正负无穷大。

在数轴上,实数可以用点来表示,点的位置与实数的大小对应。

1. 正数:在数轴上,正数表示为右边的点,如1、2、3等。

2. 负数:在数轴上,负数表示为左边的点,如-1、-2、-3等。

3. 零:零表示为数轴上的原点。

实数还可以用分数、小数等形式表示,例如1/3、0.5、-2.7等都是实数的一种表示方式。

三、实数的运算1. 实数的加法:实数的加法满足交换律和结合律,即对任意实数a、b、c,有a+b=b+a,(a+b)+c=a+(b+c)。

加法的逆元是减法,任意实数a,存在一个实数-b,使得a+(-b)=0。

2. 实数的减法:实数的减法可以看作加法的逆运算,即a-b=a+(-b)。

3. 实数的乘法:实数的乘法也满足交换律和结合律,即对任意实数a、b、c,有a*b=b*a,(a*b)*c=a*(b*c)。

乘法的逆元是除法,任意非零实数a,存在一个实数1/a,使得a*(1/a)=1。

4. 实数的除法:实数的除法可以看作乘法的逆运算,即a/b=a*(1/b)。

四、实数的性质1. 实数的稠密性:在实数轴上,任意两个不相等的实数之间都存在其他实数,即任意实数a、b,若a<b,则存在实数c,使得a<c<b。

2. 实数的有序性:实数可以按大小进行比较,任意两个实数a、b,满足且仅满足下列三种关系之一:a=b,a<b,a>b。

3. 实数的完备性:实数满足柯西收敛准则,任意柯西数列都收敛于某一实数。

实数知识点总结

实数知识点总结

实数知识点总结实数是指包括有理数和无理数的数的集合。

有理数是可以表示为两个整数的比的数,无理数是不能表示为两个整数的比的数。

实数具有以下性质和知识点:1. 实数的分类:- 有理数:可以表示为两个整数的比的数,如整数、分数等。

- 无理数:不能表示为两个整数的比的数,如根号2、圆周率π等。

2. 实数的运算:- 加法和减法:实数的加法和减法满足交换律、结合律和分配律。

- 乘法和除法:实数的乘法和除法满足交换律、结合律和分配律。

除数不能为0。

3. 实数的大小比较:- 实数的大小比较可以用小于号(<)、大于号(>)、小于等于号(≤)、大于等于号(≥)来表示。

- 实数的比较可以根据其对应的小数形式来进行。

4. 实数的绝对值:- 实数的绝对值表示实数到0的距离,用竖杠(|x|)来表示。

- 实数的绝对值满足非负性、正定性和三角不等式。

5. 实数的小数表示:- 实数可以通过小数的形式来表示。

- 小数可以分为有限小数和无限小数。

- 无限小数可以分为循环小数和非循环小数。

6. 实数的有理化:- 实数可以通过有理化的方法转化为有理数的形式。

- 有理化的方法有有理数的开方、通分等。

7. 实数的区间表示:- 实数可以用区间表示。

- 开区间表示为(a, b),表示实数大于a且小于b。

- 闭区间表示为[a, b],表示实数大于等于a且小于等于b。

8. 实数的数轴表示:- 实数可以用数轴表示。

- 数轴上的点与实数一一对应。

9. 实数的连续性:- 实数具有连续性。

- 对于任意两个实数a和b,存在一个实数c,使得a<c<b。

10. 实数的柯西收敛原理:- 实数具有柯西收敛原理。

- 一个实数列是收敛的当且仅当这个数列是柯西数列。

以上是关于实数的基本知识点的总结。

实数的概念与性质在数学的各个领域中都有广泛的应用,对于理解和应用数学知识都具有重要的作用。

实数知识点总结

实数知识点总结

第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现)判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16是有理数,而不是无理数。

3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。

考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。

(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

如果,那么x叫做a的平方根。

(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

如果,那么x叫做a的立方根。

2、运算名称(1)求一个正数a的平方根的运算,叫做开平方。

平方与开平方互为逆运算。

(2)求一个数的立方根的运算,叫做开立方。

开立方和立方互为逆运算。

3、运算符号(1)正数a的算术平方根,记作“a”。

(2)a(a≥0)的平方根的符号表达为。

(3)一个数a的立方根,用表示,其中a是被开方数,3是根指数。

4、运算公式4、开方规律小结(1)若a ≥0,则a 的平方根是a ±,a 的算术平方根a ;正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。

实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。

正数的立方根是正数,负数的立方根是负数,0的立方根是0。

(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。

实数知识点详细总结

实数知识点详细总结

第4章 实数知识结构:实数1.平方根(1)定义:如果x 2=a(a ≥0),那么x 叫做a 的平方根(1)一个正数有两个平方根,它们互为相反数(2)性质 (2)0的平方根是0(3)负数没有平方根 (3)开平方:求一个数的平方根的运算叫做开平方(4)算术平方根(1)定义:正数a 的正的平方根叫做a 的算术平方根(2)规定:0的算术平方根是0(3)性质:√a 具有双重非负性,即√a ≥0,a ≥0 (5)意义:(√a )2=a(a ≥0)a(a ≥0)√a 2=∣a ∣=-a(a <0)2.立方根(1)定义:如果x 3=a,那么x 叫做a 的立方根(2)性质(1)正数的立方根是正数 (2)0的立方根是0 (3)负数的立方根是负数(3)开立方:求一个数的立方根的运算叫做开立方(4)意义√a 33=a(√a 3)3=a3.实数(1)实数的分类1.按性质 (1)正实数 (2)0 (3)负实数2.按概念(1)有理数(2)无理数-----无限不循环小数(2)实数的性质实数范围内的相反数、倒数、绝对值意义与有理数范围内完全一样 实数与数轴上的点是一一对应关系有理数的大小比较方法在实数范围内仍然适用 与有理数的运算法则、运算律相同4.近似数定义:接近准确数而不等于准确数的数叫做近似数 精确度:常用四舍五入法对近似数进行精确4.1平方根一、平方根的概念及表示拓展延伸:(1)由平方根的意义可知,x=±√a,把x=±√a代入x2=a,得(±√a)2=a(a≥0).(2)当a≥0时,我们说式子√a有意义,当a<0时,式子√a无意义。

二、平方根的性质1.正数有两个平方根,它们互为相反数。

如果a>0,那么a的平方根为±√a2.0有一个平方根,就是0,即√0=03.负数没有平方根三、开平方注意:开平方是求一个非负数的平方根的运算,开平方与平方互为逆运算,只不过一个数的平方是一个数,而一个数(正数)的平方根是一对相反数。

实数基础知识点总结

实数基础知识点总结

实数基础知识点总结一、实数的定义实数是包括有理数和无理数的数集。

有理数是可以表示为两个整数的比的数,例如1/2、2、-3等。

无理数是无法表示为有理数的数,例如π、√2等。

实数包括所有有理数和无理数,用符号R表示。

二、实数的分类1. 有理数有理数包括整数、正整数、负整数、分数等。

整数包括所有的正整数、负整数和0。

有理数可以用分数形式表示,并且有限位或者无限循环小数。

2. 无理数无理数是无法表示为有理数的数。

无理数通常用小数形式表示,且不会出现循环。

典型的无理数包括圆周率π、自然对数底e、开方2、开方3等。

三、实数的性质1. 传递性:对于任意的实数a、b、c,如果a小于b,b小于c,则有a小于c。

2. 对称性:对于任意的实数a、b,如果a等于b,则b等于a。

3. 传统性:对于任意的实数a、b,如果a小于b,则a加上一个正数得到的结果小于b加上这个正数得到的结果。

4. 密度性:在任意两个不相等的实数a、b之间,必然存在有理数和无理数。

四、实数的运算1. 加法运算:实数a与实数b的和等于a加b。

2. 减法运算:实数a与实数b的差等于a减b。

3. 乘法运算:实数a与实数b的积等于a乘b。

4. 除法运算:实数a与实数b的商等于a除b。

5. 幂运算:实数a的n次方等于a自乘n次。

五、实数的绝对值实数a的绝对值是a到原点的距离,记作|a|。

如果a大于0,则|a|等于a;如果a小于0,则|a|等于-a。

六、实数的有序性实数有序,任意两个实数a、b之间可以进行大小比较,即a小于b、a等于b或者a大于b。

七、实数的计算规律1. 加法交换律:对于任意的实数a、b,有a加b等于b加a。

2. 乘法交换律:对于任意的实数a、b,有a乘b等于b乘a。

3. 加法结合律:对于任意的实数a、b、c,有a加b加c等于a加(b加c)。

4. 乘法结合律:对于任意的实数a、b、c,有a乘b乘c等于a乘(b乘c)。

5. 分配律:对于任意的实数a、b、c,有a乘(b加c)等于a乘b加a乘c。

实数常识知识点归纳总结

实数常识知识点归纳总结

实数常识知识点归纳总结一、有理数有理数是可以表示为两个整数的比值的数,包括整数、分数和循环小数。

有理数的性质包括:1. 有理数的加减乘除运算规律;2. 有理数的乘方和开方运算规律;3. 有理数的大小比较和大小关系;4. 有理数的取整和绝对值等基本运算。

二、无理数无理数是不能由两个整数的比值来表示的数,它们是无限不循环的小数。

无理数的性质包括:1. 无理数与有理数的加减乘除运算规律;2. 无理数的乘方和开方运算规律;3. 无理数的大小比较和大小关系;4. 无理数的取整和绝对值等基本运算。

三、实数实数是有理数和无理数的总称,实数的性质包括:1. 实数与实数的加减乘除运算规律;2. 实数的乘方和开方运算规律;3. 实数的大小比较和大小关系;4. 实数的取整和绝对值等基本运算。

四、实数的表示实数可以用各种方式来表示,包括有限小数、循环小数、无限不循环小数和根式等形式。

在表示实数时,需要注意保留足够的有效数字和小数点后的位数。

五、实数的运算实数的加减乘除运算是数学中最基本的运算,要掌握实数的运算规律,包括正负数相加减、乘法法则、除法运算。

另外还有实数的乘方和开方运算,这也是实数的重要运算。

六、实数的大小比较实数的大小比较是数学中的一个重要概念,掌握了实数的大小比较,才能够更好地理解和运用实数。

实数的大小比较包括有理数和无理数的大小比较,以及实数的大小关系。

七、实数的应用实数在数学中有着广泛的应用,包括代数计算、几何运算、函数图像和方程求解等方面。

实数的应用可以帮助我们解决各种数学问题,提高数学运算能力和解题能力。

总结:实数是数学中的一个重要概念,掌握了实数的常识知识点,才能够更好地理解和运用数学知识。

实数的常识知识点包括有理数、无理数、实数的性质、表示、运算、大小比较和应用等方面,需要不断地进行学习和实践,才能够掌握实数的知识,提高数学运算能力。

总结整理实数知识点

总结整理实数知识点

总结整理实数知识点一、实数的定义实数是可以用来表示实际物理量的数。

实数包括有理数和无理数两种类型。

有理数是可以表示为两个整数之比的数,而无理数是不能表示为有理数的数。

二、实数的性质1. 实数的大小比较实数有一个非常重要的性质,就是可以比较大小。

实数可以按照大小顺序进行比较,任意两个实数可以进行大小比较,可以判断哪一个大哪一个小。

2. 实数的运算实数可以进行加法、减法、乘法和除法运算。

实数的运算满足交换律、结合律和分配律等基本性质。

任意两个实数的和、差、积和商也是实数。

3. 实数的绝对值实数的绝对值是实数到零点的距离,可以表示为非负数。

任意实数的绝对值是其本身或者其相反数。

4. 实数的平方实数的平方是实数乘以自己,结果也是实数。

实数的平方一定大于等于零。

5. 实数的开方非负实数的开方是唯一确定的非负实数。

负实数的开方是虚数。

6. 实数的范围无限范围不可数的实数非常多,它们可以两两进行大小的比较,任意两个实数之间都存在无穷个实数。

但是,实数的范围是有限的,任意有限范围的实数之间不存在无穷个实数。

7. 实数的连续性实数是连续的,任意两个实数之间都存在无穷个实数,实数形成了一条连续的数轴。

三、实数的表示方式1. 实数的小数表示实数可以表示为小数,小数是实数的一种常见表示方式。

小数可以是有限小数,也可以是无限小数,有限小数可以用有限位数的小数点表示,而无限小数需要使用循环符号或者无限位数的小数点表示。

2. 实数的分数表示实数可以表示为分数,分数是实数的另一种常见表示方式。

分数是有理数的一种,可以表示为两个整数之比。

3. 实数的根式表示实数可以表示为根式,根式是无理数的一种。

无理数是不能表示为有理数的数,它们通常用根式表示,如开方的形式表示。

四、实数的应用实数是数学中的基本概念,任何其他数学分支都要用到实数的概念。

实数的应用非常广泛,可以用来表示实际物理量,如长度、面积、体积、速度、质量等等,还可以用来表示实际经济量,如货币、价格、利率、利润等等,还可以用来表示实际科学量,如时间、温度、压力、密度等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数的知识点总结
实数的知识点总结篇1
一、实数的有关概念
1、无理数:无限不循环小数叫做无理数,这说明无理数有两个基本特征:一是小数位数无限多,二是不循环。

2、无理数的表现形式
在中学阶段,无理数的表现形式有几下三种:
①开方开不尽而得到的数,如、、等
②含有π的数,如π、等
③无限不循环的小数,如1.1010010001······(每二个1之间依次多一个0)
二、实数的分类
有理数、无理数统称实数;它可以按以下两种方式分类
实数或实数
三、实数的重要性质
1、有理数范围内的一些定义,概念和性质在实数范围内仍旧适用,如绝对值、相反数、倒数等。

2、两个实数大小的比较;正数大于0;0大小一切负数;二个负实数,绝对值大的反而小
3、在实数范围内,加、减、乘、除(除数不能为0)、乘方五种运算畅通无阻,在开方运算中,正实数和0总能进行
开方运算,负实数只能开立方,不能开平方,
4、在有理数范围内的运算顺次和运算律在实数范围内仍旧适用。

四、实数和数轴的关系
实数和数轴上的点存在着一一对应关系,即:任何一个实数都可以用数轴上的一个点表示,反之,数轴上的任何一个点都表示一个实数。

因此,我们不但可以将一个有理数用数轴上的一个点表示,同时,也可以将一个无理数用数轴上的点表示出来。

实数的知识点总结篇2
实数:—有理数与无理数统称为实数。

有理数:整数和分数统称为有理数。

无理数:无理数是指无限不循环小数。

自然数:表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。

数轴:规定了圆点、正方向和单位长度的直线叫做数轴。

相反数:符号不同的两个数互为相反数。

倒数:乘积是1的两个数互为倒数。

绝对值:数轴上表示数a的点与圆点的距离称为a的绝对值。

一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

实数的知识点总结篇3
一、实数的概念及分类
1、实数的分类
正有理数
有理数零有限小数和无限循环小数负有理数
正无理数
无理数无限不循环小数
负无理数
整数包括正整数、零、负整数。

正整数又叫自然数。

正整数、零、负整数、正分数、负分数统称为有理数。

2、无理数
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
〔1〕开方开不尽的数,如7,2等;
π〔2〕有特定意义的数,如圆周率π,或化简后含有π的数,如+8等; 3
〔3〕有特定结构的数,如0。

1010010001等;
二、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数时一对数〔只有符号不同的两个数叫做互为相反数,零的相反数是零〕,从数轴上看,互为相反数的两个数所对应的点关于原点对称,假如a与b互为相反
数,那么有a+b=0,a=—b,反之亦成立。

2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,假设|a|=a,那么a≥0;假设|a|=—a,那么a≤0。

正数大于零,负数小
于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数
假如a与b互为倒数,那么有ab=1,反之亦成立。

倒数等于本身的数是1和—1。

零没有倒数。

三、平方根、算数平方根和立方根
1、平方根
假如一个数的平方等于a,那么这个数就叫做a的平方
根〔或二次方跟〕。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a的平方根记做“a”。

2、算术平方根
正数a的正的平方根叫做a的算术平方根,记作“a”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a〔a0〕
a2a ;留意aa0
—a〔a0〕a0
3、立方根
假如一个数的立方等于a,那么这个数就叫做a 的立方根〔或a 的三次方根〕。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

留意:aa,这说明三次根号内的负号可以移到根号外面。

四、科学记数法和近似数
1、有效数字
一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的全部数字,都叫做这个数的.有效数字。

2、科学记数法
把一个数写做a10n的形式,其中1a10,n是整数,这种记数法叫做科学记数法。

五、实数大小的比较
1、数轴
规定了原点、正方向和单位长度的直线叫做数轴〔画数轴时,要留意上述规定的三要素缺一不可〕。

解题时要真正掌控数形结合的思想,理解实数与数轴的点是一一对应的,并能敏捷运用。

2、实数大小比较的几种常用方法
〔1〕数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

〔2〕求差比较:设a、b是实数,
ab0ab,
ab0ab,
ab0ab
〔3〕求商比较法:设a、b
aaa1ab;1ab;1ab; bbb是两正实数,
〔4〕绝对值比较法:设a、b是两负实数,那么abab。

〔5〕平方法:设a、b是两负实数,那么a2b2ab。

六、实数的运算
1、加法交换律abba
2、加法结合律〔ab〕ca〔bc〕
3、乘法交换律abba
4、乘法结合律〔ab〕ca〔bc〕
5、乘法对加法的安排律 a〔bc〕abac
6、实数混合运算时,对于运算顺次有什么规定?
实数混合运算时,将运算分为三级,加减为一级运算,乘除为二能为运算,乘方为三级运算。

同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺次进行。

7、有理数除法运算法那么就什么?
两有理数除法运算法那么可用两种方式来表述:第一,
除以一个不等于零的数,等于乘以这个数的倒数;第二,两
数相除,同号得正,异号得负,并把绝对值相除。

零除以任
何一个不为零的数,商都是零。

8、什么叫有理数的乘方?幂?底数?指数?
相同因数相乘积的运算叫乘方,乘方的结果叫幂,相同
因数的个数叫指数,这个因数叫底数。

记作: a。

9、有理数乘方运算的法那么是什么?
负数的奇次幂是负数,负数的偶次幂是正数。

正数的任
何次幂都是正数。

零的任何正整数幂都是零。

10、加括号和去括号时各项的符号的改变规律是什么?
去〔加〕括号时假如括号外的因数是正数,去〔加〕括
号后式子各项的符号与原括号内的式子相应各项的符号相同;括号外的因数是负数去〔加〕括号后式子各项的符号与原括
号内式子相应各项的符号相反。

相关文档
最新文档