2《质点力学的运动定律、守恒定律》
练习册第2章《质点力学的运动定律守恒定律》答案(1)

练习册第2章《质点⼒学的运动定律守恒定律》答案(1)第2章质点⼒学的运动定律守恒定律⼀、选择题1(C),2(E),3(D),4(C),5(C),6(B),7(C),8(C),9(B),10(C),11(D),12(A),13(D)⼆、填空题(1). ω2=12rad/s ,A=0.027J (2). 290J (3). 3J (4). 18 N ·s(5). j t i t 2323+ (SI) (6). 16 N ·s , 176 J (7). 16 N ·s ,176 J (8). M k l /0,Mknm M Ml +0(9). j i5- (10).2m v ,指向正西南或南偏西45°三、计算题1. 已知⼀质量为m 的质点在x 轴上运动,质点只受到指向原点的引⼒的作⽤,引⼒⼤⼩与质点离原点的距离x 的平⽅成反⽐,即2/x k f -=,k 是⽐例常数.设质点在 x =A 时的速度为零,求质点在x =A /4处的速度的⼤⼩.解:根据⽜顿第⼆定律x m t x x m t m xk f d d d d d d d d 2vv v v =?==-= ∴ ??-=-=4/202d d ,d d A Ax mx kmx x k v v v v vk mAA A m k 3)14(212=-=v ∴ )/(6mA k =v2. 质量为m 的⼦弹以速度v 0⽔平射⼊沙⼟中,设⼦弹所受阻⼒与速度反向,⼤⼩与速度成正⽐,⽐例系数为K,忽略⼦弹的重⼒,求:(1) ⼦弹射⼊沙⼟后,速度随时间变化的函数式; (2) ⼦弹进⼊沙⼟的最⼤深度.解:(1) ⼦弹进⼊沙⼟后受⼒为-Kv ,由⽜顿定律tmK d d vv =- ∴ ??=-=-v v v v vv 0d d ,d d 0t t m K t m K∴ mKt /0e -=v v(2) 求最⼤深度解法⼀: t xd d =vt x mKt d ed /0-=vt x m Kt txd e d /000-?=v∴ )e 1()/(/0mKt K m x --=vK m x /0m ax v =解法⼆: x m t x x m t m K d d )d d )(d d (d d vvv v v ===- ∴ v d K mdx -=v v d d 000m a x ??-=K mx x∴ K m x /0m ax v =3. ⼀物体按规律x =ct 3在流体媒质中作直线运动,式中c 为常量,t 为时间.设媒质对物体的阻⼒正⽐于速度的平⽅,阻⼒系数为k ,试求物体由x =0运动到x =l 时,阻⼒所作的功.解:由x =ct 3可求物体的速度: 23d d ct tx==v 物体受到的阻⼒⼤⼩为: 343242299x kc t kc k f ===v ⼒对物体所作的功为:=W W d =-lx x kc 03432d 9 =7273732l kc -4. ⼀质量为2 kg 的质点,在xy 平⾯上运动,受到外⼒j t i F 2244-= (SI)的作⽤,t = 0时,它的初速度为j i430+=v (SI),求t = 1 s 时质点的速度及受到的法向⼒n F .解: j t i m F a 2122/-==t a d /d v = ∴ t j t i d )122(d 2-=v=?vv vd ?-t t j t i 02d )122(∴ j t i t 3042-=-v vj t i t j t i t )44()23(42330-++=-+=v v当t = 1 s 时, i51=v 沿x 轴故这时, j a a y n12-==j a m F n n24-== (SI)5.⼀辆⽔平运动的装煤车,以速率v 0从煤⽃下⾯通过,每单位时间内有质量为m 0的煤卸⼊煤车.如果煤车的速率保持不变,煤车与钢轨间摩擦忽略不计,试求:(1) 牵引煤车的⼒的⼤⼩;(2) 牵引煤车所需功率的⼤⼩;(3) 牵引煤车所提供的能量中有多少转化为煤的动能?其余部分⽤于何处?解:(1) 以煤车和?t 时间内卸⼊车内的煤为研究对象,⽔平⽅向煤车受牵引⼒F 的作⽤,由动量定理: 000)(v v M t m M t F -+=?? 求出: 00v m F = (2) 2000v v m F P ==(3) 单位时间内煤获得的动能: 2021v m E K =单位时间内牵引煤车提供的能量为 P E ===21/E E K 50%即有50%的能量转变为煤的动能,其余部分⽤于在拖动煤时不可避免的滑动摩擦损耗.6.⼀链条总长为l ,质量为m ,放在桌⾯上,并使其部分下垂,下垂⼀段的长度为a .设链条与桌⾯之间的滑动摩擦系数为µ.令链条由静⽌开始运动,则(1)到链条刚离开桌⾯的过程中,摩擦⼒对链条作了多少功?(2)链条刚离开桌⾯时的速率是多少?解:(1)建⽴如图坐标.某⼀时刻桌⾯上全链条长为y ,则摩擦⼒⼤⼩为 g lym f µ=摩擦⼒的功 ??--==0d d al al f y gy lmy f W µ=22al y lmg-µ =2)(2a l lmg--µ(2)以链条为对象,应⽤质点的动能定理 ∑W =222121v v m m - 其中 ∑W = W P +W f ,v 0 = 0 W P =?la x P d =la l mg x x l mg la 2)(d 22-=? 由上问知 la l mg W f 2)(2--=µal -a-a1)(22)(v m a l l mg l a l mg =---µ得 []21222)()(a l a l lg ---=µv7. 如图所⽰,在中间有⼀⼩孔O 的⽔平光滑桌⾯上放置⼀个⽤绳⼦连结的、质量m = 4 kg 的⼩块物体.绳的另⼀端穿过⼩孔下垂且⽤⼿拉住.开始时物体以半径R 0 = 0.5 m 在桌⾯上转动,其线速度是4 m/s .现将绳缓慢地匀速下拉以缩短物体的转动半径.⽽绳最多只能承受 600 N 的拉⼒.求绳刚被拉断时,物体的转动半径R 等于多少?解:物体因受合外⼒矩为零,故⾓动量守恒.设开始时和绳被拉断时物体的切向速度、转动惯量、⾓速度分别为v 0、J 0、ω0和v 、J 、ω.则ωωJ J =00 ①因绳是缓慢地下拉,物体运动可始终视为圆周运动.①式可写成R mR R mR //20020v v =整理后得: v v /00R R =②物体作圆周运动的向⼼⼒由绳的张⼒提供 R m F /2v = 1分再由②式可得: 3/12020)/(F mR R v =当F = 600 N 时,绳刚好被拉断,此时物体的转动半径为R = 0.3 m8.设两个粒⼦之间相互作⽤⼒是排斥⼒,其⼤⼩与粒⼦间距离r 的函数关系为3r k f =,k 为正值常量,试求这两个粒⼦相距为r 时的势能.(设相互作⽤⼒为零的地⽅势能为零.)解:两个粒⼦的相互作⽤⼒ 3r k f =已知f =0即r =∞处为势能零点, 则势能∞∞∞=?==r r P P r r kW E d d 3r f)2(2r k =1. 汽车发动机内⽓体对活塞的推⼒以及各种传动部件之间的作⽤⼒能使汽车前进吗?使汽车前进的⼒是什么⼒?参考解答:汽车发动机内⽓体对活塞的推⼒以及各种传动部件之间的作⽤⼒都是汽车系统的内⼒,内⼒只会改变内部各质点的运动状态,不会改变系统的总动量,所以不能使汽车前进。
湖南大学大学物理练习册答案(一、二两册全)

大学物理(一)练习册 参考解答第1章 质点运动学一、选择题1(D),2(D),3(B),4(D),5(D),6(D),7(D),8(D ),9(B),10(B), 二、填空题(1). sin 2t A ωω,()π+1221n (n = 0,1,… ),(2). 8 m ,10 m. (3). 23 m/s.(4). 16Rt 2 ,4 rad /s 2(5). 4t 3-3t 2 (rad/s),12t 2-6t (m/s 2). (6).331ct ,2ct ,c 2t 4/R .(7). 2.24 m/s 2,104o(8). )5cos 5sin (50j t i t+-m/s ,0,圆. (9). h 1v /(h 1-h 2) (10). 0321=++v v v三、计算题1. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度;(3) 第2秒内的路程.解:(1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2, v (2) =-6 m/s. (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m.2. 一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解: =a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt t v = 2t 2v d =x /d t 2=t 2t t x txx d 2d 02⎰⎰=x 2= t 3 /3+x 0 (SI)3. 质点沿x 轴运动,其加速度a 与位置坐标x 的关系为 a =2+6 x 2(SI),如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x 处的速度为v ,62d d d d d d 2x tx xta +=⋅==v v()x x xd 62d 02⎰⎰+=v v v() 2 213 x x +=v4. 一物体悬挂在弹簧上作竖直振动,其加速度为-=a ky ,式中k 为常量,y 是以平衡位置为原点所测得的坐标. 假定振动的物体在坐标y 0处的速度为v 0,试求速度v 与坐标y 的函数关系式.解: yt yy t a d d d d d d d d vvv v===又 -=a ky ∴ -k =y v d v / d y⎰⎰+=-=-C kyy ky 222121, d d vv v已知 =y y 0 ,=v v 0 则 20202121ky C --=v)(220202y y k -+=v v5. 一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间.解: ct b t S +==d /d v c t a t ==d /d v ()R ct b a n /2+=根据题意: a t = a n 即 ()R ct b c /2+=解得 cb cR t -=6. 如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小.解:根据已知条件确定常量k()222/rad 4//sRttk ===v ω24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2= 8 m/s2s /168/m Rt dt d a t ===v 22s /32/m R a n ==v()8.352/122=+=n t a a a m/s 27. (1)对于在xy 平面内,以原点O 为圆心作匀速圆周运动的质点,试用半径r 、角速度ω和单位矢量i、j 表示其t 时刻的位置矢量.已知在t = 0时,y = 0, x = r , 角速度ω如图所示;(2)由(1)导出速度 v与加速度 a的矢量表示式; (3)试证加速度指向圆心.解:(1) j t r i t r j y i x rs i n c o s ωω+=+=(2) j t r i t r t rc o s s i nd d ωωωω+-==v j t r i t r tas i n c o s d d 22ωωωω--==v (3) ()r j t r i t r a s i n c o s 22ωωωω-=+-=这说明 a 与 r 方向相反,即a指向圆心8. 一飞机驾驶员想往正北方向航行,而风以60 km/h 的速度由东向西刮来,如果飞机的航速(在静止空气中的速率)为 180 km/h ,试问驾驶员应取什么航向?飞机相对于地面的速率为多少?试用矢量图说明.解:设下标A 指飞机,F 指空气,E 指地面,由题可知:v FE =60 km/h 正西方向 v AF =180 km/h 方向未知v AE 大小未知, 正北方向由相对速度关系有: FE AF AE v v v +=AE v 、 AF v 、EE v 构成直角三角形,可得 ()()k m /h 17022v v v =-=FEAFAE() 4.19/tg1==-AEFEv v θ(飞机应取向北偏东19.4︒的航向).西北θFEv vAF v vAEvv四 研讨题1. 在下列各图中质点M 作曲线运动,指出哪些运动是不可能的?参考解答:(1)、(3)、(4)是不可能的.(1) 曲线运动有法向加速度,加速度不可能为零;(3) 曲线运动法向加速度要指向曲率圆心; (4) 曲线运动法向加速度不可能为零.2. 设质点的运动方程为)(t x x =,)(t y y =在计算质点的速度和加速度时: 第一种方法是,先求出22yx r +=,然后根据 td d r =v 及 22d d tr a =而求得结果;第二种方法是,先计算速度和加速度的分量,再合成求得结果,即 22)d d ()d d (ty t x +=v 和 222222)d d ()d d (ty tx a +=.你认为两种方法中哪种方法正确?参考解答:第二种方法是正确的。
质点运动定律及力学中守恒定律.pptx

一、质点系的动量定理
(theorem of mometum of a system of particles
)tt11tt22 ((FF21
F12 )dt F21 )dt
m1v1 m2v2
m1v10 m2 v 20
F1
因为内力 F F 0 ,故:
12
21
F2
F12
m1
F21
m2
牛顿是英国伟大的物理学家、数学家、天文 学家。
恩格斯说: “ 牛顿由于发现了万有引力定律而创立了天文学,由于进行 光的分解而创立了科学的光学,由于创立了二项式定理和无限理论而创立了科 学的数学,由于认识了力学的本性而创立了科学的力学。”
1
第2页/共58页
牛顿在自然科学领域里作了奠基的贡献,堪称科学巨匠。 牛顿出生于英国北部林肯郡的一个农民家庭。 1661年考上剑桥大学特里尼蒂学校, 1665年毕业。 这年正赶上鼠疫,牛顿回家避疫两年。在这期间他几乎考虑了一生中所研 究的各个方面,特别是他一生中的几个重要贡献: 万有引力定律、经典力学、微积分和光学。
(物体间相互作用规律)
明确: 力的作用是相互的 (同时存在,同时消失)
T' T
m P P'
m
第9页/共58页
地球
8
二、牛顿运动定律的应用
1、牛顿运动定律的适用范围
1)牛顿运动定律仅适用于惯性系;
2)牛顿运动定律仅适用于速度比光速低得 多的物体;
3)牛顿运动定律一般仅适用于宏观物体。
4)牛顿第二定律只适用于质点或可看作质 点的物体;
质点系总动量的增量等于作用于该 系统合外力的冲量
强调:只有外力才能引起质点系总动量的改变。
质点系内力的矢量合为0,对系统总动量的改
质点动力学的三个基本定律

质点动力学的三个基本定律
质点动力学的三个基本定律分别是:牛顿运动定律,动量定理和动量守恒定律,角动量定理和角动量守恒定律。
牛顿运动定律第一定律(惯性定律):任何质点如不受力的作用,则将保持原来静止或匀速直线运动状态。
第二定律:质点的质量与加速度的乘积等于作用于质点的力的大小,加速度的方向与力的方向相同。
第三定律:对应每个作用力必有一个与其大小相等、方向相反且在同一直线上的反作用力。
物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量(用字母I表示),即力与力作用时间的乘积,数学表达式为:
I=FΔt=Δp=mΔv=mv2-mv1
式中F指物体所受的合外力,mv1与mv2为发生Δt的初末态动量。
该式为矢量式,列式前一定要规定正方向!
动量守恒定律是现代物理学中三大基本守恒定律之一,若一个系统不受外力或所受合外力为零时,该系统的总动量保持不变。
角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律;反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质
点和质点系围绕该点(或轴)运动的普遍规律。
角动量守恒定律是对于质点,角动量定理可表述为质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。
质点力学4

例1、一炮弹发射后在其运行轨道上的最高点
h=19.6 m处炸裂成质量相等的两块。其中一
块在爆炸后1秒钟落到爆炸点正下方的地面上,
设此处与发射点的距离S1=1000 m,问另一 块落地点与发射点的距离是多少?(空气阻
力不计,g=9.8 m/s2)
y
解:知第一块方向竖直向下
v2
y
h
v1t1
1 2
gt12
1、质点角动量定理 L r p
dL d (r p) dr p r d p
dt dt
dt
dt
p mv
dr v dt
dp F dt
dL v mv r F dt
dL r F dt
令: M r F 为合外力对同一固定点的力矩
大小:M=rFsin (为矢径与力之间的夹角)
I x mv2x mv1x I y mv2 y mv1y I z mv2z mv1z
平均力
F
t2 Fdt
t1
=
I
P
t2 t1 t t
例1、质量为2.5g的乒乓球以 10m/s的速率飞来,被板推 挡后,又以20m/s的速率飞 出。设两速度在垂直于板面 的同一平面内,且它们与板 面法线的夹角分别为45o和 30o,求:(1)乒乓球得到 的冲量;(2)若撞击时间 为0.01s,求板施于球的平均 冲力的大小和方向。
作业: 1.35、1.36、1.38
三、质心、 质心运动定律
1、质心:质点系的质量中心 质点系 N个质点 质量:m1 m2 m3 … mi … mN
位矢:r1, r2 , r3 , , ri , , rN
质心的位矢:
mi ri
(m为总质量)
rc i m
大学物理第二章习题质点力学的基本规律 守恒定律

基本要求
掌握经典力学的基本原理及会应用其分析和处理质点动力学问题,理 解力学量的单位和量纲。掌握动量、冲量、动量定理,动量守恒定律。并 能分析和计算二维平面简单力学问题。理解惯性系概念及经典力学的基本 原理的适用范围。掌握功与功率、动能、势能(重力势能、弹性势能、引 力势能)概念,动能定理、功能原理、机械能守恒定律。
教学基本内容、基本公式
1.牛顿定律
解牛顿定律的问题可分为两类: 第一类是已知质点的运动,求作用于质点的力; 第二类是已知作用于质点的力,求质点的运动.
2.基本定理 动量定理
动能定理
I
t2 t1
F (t )dt
mv
mv0
A12
2
F
(r)
dr
1
1 2
mv
2 2
1 2
解:根据牛顿第二定律
f
k x2
m dv dt
m dv d x dx dt
mv
dv dx
k x2
mv
dv dx
v
dv
k
dx mx2
v
v
0
dv
A/4
A
k mx2
d
x
1v2 k (4 1) 3 k 2 m A A mA
另解:根据动能定理
v 6k /(mA)
(2)写出初末态系统的动量
t 时刻水平方向动量
dm m
t+dt时刻水平方向动量
O
x
(3)求出系统水平方向动量的增量
质点系角动量守恒定律

dL τ ,再考虑诸质点所受惯性力的力矩,即得 dt
dL τ i外 ri (mi ac ) dt 式中惯性力矩又可写作 mi ri dL ( mi ri) ac ( ) mac τ i外 m dt
此即质点系对质心的角动量定理,与惯性系中角动量定理具有完 全相同的形式。是表明质心系特殊和重要性的又一个例子。
第五章 角动量•关于对称性
前言 质点的角动量 质点系的角动量定理及角动量守恒定律 质点系对质心的角动量定理和守恒定律 对称性 • 对称性与守恒律 经典动力学的适用范围
§5.1 前
一、本章的基本内容及研究思路
言
角动量概念的建立和转动有密切联系,在研究物体的运动 时,人们经常可以遇到质点或质点系绕某一确定点或轴线运动 的情况,并且在这类运动中也存在着某些共同的重要规律。例 如,天文观测表明,行星绕日运动遵从开普勒第二定律,在近 日点附近绕行速度较快,远日点速度较慢,这个特点如果用角 动量及其规律很容易说明。特别是在有些过程中动量和机械能
当τ iz 0时,
Lz 常量.
§5.4 质点系对质心的角动量定理和 守 恒 定 律
前面给出的角动量定理和角动量守恒定律都相对于惯性系 而言,现在研究质心参考系中质点系角动量的变化规律。如图 (a),C xyz 即质心参考系。C 为质心,x ' , y ' 和 z 坐标轴
与惯性参考系 O xyz 的 x, y 和 z 轴总保持平行,而质心具有 加速度 ac 。 z
四、质点对轴的角动量定理和守恒定律(自阅)
§5.3 质点系的角动量定理及角动量守恒定 律
一、质点系角动量定理
设质点系由 N 个质点组成,对选定的某固定参考点,第 i 个 质 点的角动量定理的表达式为τ dLi
《大学物理》第2章 质点动力学

TM
Tm
2Mm M m
g
a
ar
M M
m m
g
a
FM
TM
ar
F m
Tm m
a
M PM
ar
Pm
注:牛顿第二 定律中的加速 度是相对于惯 性系而言的 。
例2 在倾角 θ 30 的固定光滑斜面上放一质量为
M的楔形滑块,其上表面与水平面平行,在其上 放一质量为m的小球, M 和m间无摩擦,
且 M 2m 。
解:以弹簧原长处为坐标原点 。
Fx kx
F Bm A
元功:
O xB x
xA x
dW Fx dx kxdx
dx
弹力做功:W
xB xA
kxdx
1 2
kxA2
1 2
kxB2
2.3.4 势能 Ep
W保 Ep Ep0 Ep
Ep重 mgh
牛顿 Issac Newton(1643-1727) 杰出的英国物理学家,经 典物理学的奠基人.他的 不朽巨著《自然哲学的数 学原理》总结了前人和自 己关于力学以及微积分学 方面的研究成果. 他在光 学、热学和天文学等学科 都有重大发现.
第2章 质点动力学
2.1 牛顿运动定律 2.1.1 牛顿运动定律
1 牛顿第一定律(惯性定律) • 内容:一切物体总保持静止状态或匀速直线运动 状态,直到有外力迫使它改变这种状态为止。 • 内涵: 任何物体都有保持静止或匀速直线运动状态的趋势。 给出了力的定义 。 定义了一种参照系------惯性参照系。
非惯性参照系:相对于已知的惯性系作变速运动 的参照系。
惯性定律在非惯性系 中不成立。
2.2 动量定理 动量守恒定律
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 质点力学的运动定律 守恒定律 2.1直线运动中的牛顿运动定律1. 水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F如图所示.欲使物体A 有最大加速度,则恒力F与水平方向夹角θ 应满足 (A) sin θ =μ. (B) cos θ =μ.(C) tg θ =μ. (D) ctg θ =μ. 答案: (C)参考解答:按牛顿定律水平方向列方程:,)sin (cos a m F g m F A A =--μθθ显然加速度a 可以看作θ 的函数,用高等数学求极值的方法, 令,0d d =θa ,有.μθ=tg分支程序:凡选择回答错误的,均给出下面的进一步讨论:1.一质量为m 的木块,放在木板上,当木板与水平面间的夹角θ由00变化到090的过程中,画出木块与木板之间摩擦力f 随θ变化的曲线(设θ角变化过程中,摩擦系数μ不变).在图上标出木块开始滑动时,木板与水平面间的夹角θ0 ,并指出θ0与摩擦系数μ的关系.(A) 图(B)正确,sin θ0 =μ. (B) 图(A)正确,tg θ 0=μ.答案: (B)参考解答:(1) 当θ较小时,木块静止在木板上,静摩擦力;sin θmg f =(正确画出θ为0到θ 0之间的f -θ 曲线)(2) 当θ=θ 0时 (tg θ 0=μ),木块开始滑动; (3) 0θθ>时,滑动摩擦力,cos θμmg f =(正确画出θ为θ 0到90°之间的f -θ曲线) .2.2曲线运动中的牛顿运动定律1. 如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的,在从A 至C 的下滑过程中,下面哪个说法是正确的?(A) 它的加速度大小不变,方向永远指向圆心.(B) 它的速率均匀增加. (C) 它的合外力大小变化,方向永远指向圆心. (D) 它的合外力大小不变. (E) 轨道支持力的大小不断增加. 答案: (E)参考解答:根据牛顿定律法向与切向分量公式:.dtd ,2υυmF RmF t n == .cos ,sin θθmg F mg N F t n =-= 物体做变速圆周运动,从A 至C 的下滑过程中速度增大,法向加速度增大。
由轨道支持力提供的向心力增大。
凡选择回答错误的,均给出下面的进一步讨论:1.1质点作圆周运动时,所受的合外力一定指向圆心.这种说法 (A) 正确. (B) 不正确.答案: (E)参考解答:作圆周运动的质点,所受合外力有两个分量,一个是指向圆心的法向分量,另一个是切向分量,只要质点不是作匀速率圆周运动,它的切向分量就不为零,所受合外力就不指向圆心. AR2.3动量与动量守恒1. 用一根细线吊一重物,重物质量为5kg ,重物下面再系一根同样的细线,细线只能经受70N 的拉力.现在突然向下拉一下下面的线.设力最大值为50N ,则(A)下面的线先断. (B)上面的线先断. (C)两根线一起断. (D)两根线都不断. 答案: (D) 参考解答:由于作用时间短,对上端细线影响可以忽略,突然向下拉力最大值为50 N<70 N(细线能经受的拉力),下面的线不会断,故两根线都不断。
凡选择回答错误的,均给出下面的进一步讨论:1.1用细线把球挂起来,球下系一同样的细线,拉球下细线,逐渐加大力量,哪段细线先断?为什么?如用较大力量突然拉球下细线,哪段细线先断,为什么?参考解答:拉球下细线逐渐加大力量时,上面那段细线先断;突然拉球下细线时,下面那段细线先断。
因为,两种情况都应引起系统动量改变,但前一种情况作用时间长,冲量较大(t F ∆⋅),引起系统动量变化大,故细线和球同时被拉下;后一种情况由于作用时间短,故冲力很大,冲力大于绳子张力,故细线立即被拉断.2.4角动量与角动量守恒1. 一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变. (B) 它的动量不变,对圆心的角动量不断改变. (C) 它的动量不断改变,对圆心的角动量不变. (D) 它的动量不断改变,对圆心的角动量也不断改变. 答案: (C) 参考解答:动量是矢量,方向与速度方向相同;角动量也是矢量,方向与角速度ω方向相同。
而动量守恒与角动量守恒都是矢量守恒,是指其大小与方向均保持不变。
如图所示:质点作匀速率圆周运动时,速度方向变化,但角速度方向不变;另外,质点角动量定理:,vm r P r L ⨯=⨯=匀速率圆周运动时:ω2mR R m L ==v ,角动量的大小也不变。
所以一质点作匀速率圆周运动时,它的动量不断改变,对圆心的角动量不变。
凡选择回答错误的,均给出下面的进一步讨论:1.1 在匀速圆周运动中,质点的动量是否守恒?角动量呢?(A) 动量不守恒,角动量守恒. (B) 动量守恒,角动量不守恒.答案: (A) 参考解答:在匀速圆周运动中,质点受力、动量不守恒,但对于中心轴,质点所受合力矩为零,角动量守恒.如果继续回答错误的,给出下面的进一步讨论:1.1.1 一个系统的动量守恒和角动量守恒的条件有何不同?答:动量守恒定律为:系统所受的合外力为零时,系统的总动量不变。
角动量守恒定律为:对于某定点(或某轴),系统所受的合外力矩为零时,则对同一定点(或同一轴),系统的总角动量不变。
总结上述两定律,可知系统动量守恒的条件是0=∑i i F 外角动量守恒的条件是0=∑i i M 外要注意的是,系统的合外力为零时,其合外力矩不一定为零;反之,系统的合外力矩为零时,其合外力也不一定为零。
条件不同,所对应的守恒量自然就不相同。
2. 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是 (A)甲先到达. (B)乙先到达. (C)同时到达. (D)谁先到达不能确定. 答案: (C)参考解答:同时到达。
若重量不等,较轻者先到达.以滑轮轴为参考点,把小孩, 滑轮和绳看作一系统,合外力矩为零,系统角动量守恒.设两小孩质量分别是m 1、m 2,当m 1= m 2时, 由 R m R m 2211v v =, 得 21v v =. 同时到达.若m 1与m 2不等,合外力矩不为零,由角动量定理可以解出:若重量不等,较轻者先到达.凡选择回答错误的,均给出下面的进一步讨论:2.1如何理解质点系角动量定理和角动量守恒定律?参考解答:在实际物体的运动中,存在大量的旋转运动,即对某一位置的绕行运动。
例如质点作圆周运动和行星绕太阳的运动;原子中电子绕原子核的运动等。
对于旋转运动,可引入一个称之为角动量的物理量L。
质点对某一参考点的角动量定义为vm r P r L ⨯=⨯=r是质点相对于参考点的位置矢量,P 为质点动量。
如图所示,角动量又称动量矩。
圆周运动时,由于v⊥r ,质点对圆心的角动量大小为R m m L v vr == )(R r =质点系角动量(或动量矩)定理(微分形式):质点系统合外力矩等于系统总角动量对时间的变化率。
即td d LM =.质点系角动量(或动量矩)定理(积分形式):质点系统合外力矩的冲量矩等于系统总角动量(或总动量矩)的增量。
即⎰∆=21t d t tLM如果质点系统合外力矩等于零,则系统总角动量(或称总动量矩)守恒。
这一结论称为质点系角动量守恒定律。
即使M 不为零,质点系总角动量不守恒,但若M 在某方向的分量为零,则质点系在该方向的角动量仍然守恒。
t 2.5动能定理、功能原理1. 一个作直线运动的物体,其速度v 与时间t 的关系曲线如图所示.设时刻t 1至t 2间外力作功为W 1 ;时刻t 2至t 3间外力作功为W 2 ;时刻t 3至t 4间外力作功为W 3 ,则 (A) W 1>0,W 2<0,W 3<0. (B) W 1>0,W 2<0,W 3>0. (C) W 1=0,W 2<0,W 3>0. (D) W 1=0,W 2<0,W 3<0答案: (C)参考解答: 根据动能定理:,2121d 2122v v m m x F W-==⎰t 1至t 2间物体速度不变,外力作功W 1=0,t 2至t 3间物体速度减小,外力作功W 2<0,时刻t 3至t 4间物体速度(绝对值)增大,外力作功W 3>0。
凡选择回答错误的,均给出下面的进一步讨论:1.1 当重物加速下降时,合外力对它做的功(A)为正值. (B)为负值. 答案: (A)参考解答:根据动能定理:,d k E x F W ∆==⎰ .0,0>∴>∆W E k 2. 对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 合外力为0.(B) 合外力不作功.(C) 外力和非保守内力都不作功. (D) 外力和保守内力都不作功.答案: (C) 参考解答: 根据功能原理:))001111ip ni ik ip ni n i n i ik i i E E E E A A +-+=+∑∑∑∑====((内非外其中)(ik iip E E +∑表示动能与势能的总和,称为机械能。
一切外力和所有非保守内力作功的代数和等于系统机械能的增量。
对于本题外力和非保守内力都不作功,当然有系统的机械能守恒。
凡选择回答错误的,均给出下面的进一步讨论:2.1请写出质点系的机械能守恒的条件.参考解答:机械能守恒条件:外力对质点系做的功和系统内非保守内力做的功分别为零或其和为零.2.6 机械能守恒定律1. 对质点组有以下几种说法:(1) 质点组总动量的改变与内力无关.(2) 质点组总动能的改变与内力无关.(3) 质点组机械能的改变与保守内力无关.在上述说法中:(A) 只有(1)是正确的.(B) (1)、(3)是正确的.(C) (1)、(2)是正确的.(D) (2)、(3)是正确的.答案:(B)参考解答:由质点组动量定理:n个质点组成的力学系统所受合外力的冲量等于系统总动量的增量;和由功能原理:系统外力与非保守内力作功之和等于系统机械能的增量;所以质点组总动量的改变与内力无关,质点组机械能的改变与保守内力无关。
凡选择回答错误的,均给出下面的进一步讨论:1.1请分别写出质点系的动量守恒、动能守恒和机械能守恒的条件.参考解答:动量守恒条件:质点系所受的合外力为零.动能守恒条件:外力和内力对质点系的各质点做的功之和为零.机械能守恒条件:外力对质点系做的功和系统内非保守内力做的功分别为零或其和为零.2. 关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是 (A) 不受外力作用的系统,其动量和机械能必然同时守恒.(B) 所受合外力为零,内力都是保守力的系统,其机械能必然守恒.(C) 不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒.(D) 外力对一个系统做的功为零,则该系统的机械能和动量必然同时守恒. 答案: (C) 参考解答:当系统不受外力或所受合外力为零时,系统的总动量保持不变. 这就是动量守恒定律;当外力对系统所作的总功和系统内成对非保守内力的总功之和恒为零时,系统在此过程中机械能守恒。