斐波那契数列的来历

合集下载

斐波那契数列与帕斯卡三角形讲解

斐波那契数列与帕斯卡三角形讲解

小兔子 對數
1
0
1
1
23
5
8 13 21 34 55
89
大兔子 對數
0
1
1
2
3
5
8
13 21 34 55 89 144
兔子總 對數
1
1
2
3
5
8
13 21 34 55 89 144 233
一年後兔子的總數為 233 對
3.斐波那契數列
• 斐波那契数列指的是这样一个数列:1、1、2、3、 5、8、13、21、……
要正确创建斐波纳契通道必须
记住的是在当趋势线上升,基
本线限制住了通道最高点,
当趋势线向下,基本线限制
住了通道的最低点。
• (5)斐波纳契时间周期线
• 斐波纳契时间周期线是以斐波纳契的时间间隔1, 2, 3, 5, 8, 13, 21, 34等画出的许多垂直线。假定主要的 价格变化期望在这些线附近。 运用确定的单位时间间隔长 度的两点来创建此工具。根 据斐波纳契数列,全部其他 的线是在此单位间隔的基础 上确定的。
展开(1+a)n的代数式,n为正整数,其中 各项的系数必定与帕斯卡三角形中的数列 相同.
(5)帕斯卡三角形中的数字集
• 在帕斯卡三角形中沿 着对角线,可以找到各 种数字集.同时,对角 线的数字和,也会等于 下一条对角线中的下一 个数字.例如: 1+2+3+4+5=15 1+3+6+10=20 1+4+10=15
• (2)斐波那契弧线
斐波纳契弧线,第一,此趋势线以二个端点为准而画出, 例如,最低点反向到最高点线上的两个点。三条弧线均以 第二个点为中心画出,并在趋势线的斐波纳契水平: 38.2%, 50%和61.8%交叉。

斐波那契数列研究

斐波那契数列研究

斐波那契数列研究一、斐波那契生平斐波那契(1175年-1250年),意大利数学家,西方第一个研究斐波那契数,并将现代书写数和乘数的位值表示法系统引入欧洲。

有感使用阿拉伯数字比罗马数字更有效,斐波那契前往地中海一带向当时著名的阿拉伯数学家学习,约于1200年回国。

1202年, 27岁的他将其所学写进计算之书。

这本书通过在记帐、重量计算、利息、汇率和其他的应用,显示了新的数字系统的实用价值。

这本书大大影响了欧洲人的思想,可是在三世纪后印制术发明之前,十进制数字并不流行。

欧洲数学在希腊文明衰落之后长期处于停滞状态,直到12世纪才有复苏的迹象。

这种复苏开始是受了翻译、传播希腊、阿拉伯著作的刺激。

对希腊与东方古典数学成就的发掘、探讨,最终导致了文艺复兴时期(15~16世纪)欧洲数学的高涨。

文艺复兴的前哨意大利,由于其特殊地理位置与贸易联系而成为东西方文化的熔炉。

意大利学者早在12~13世纪就开始翻译、介绍希腊与阿拉伯的数学文献。

欧洲,黑暗时代以后第一位有影响的数学家斐波那契,其拉丁文代表著作《算经》、《几何实践》等也是根据阿拉伯文与希腊文材料编译而成的,斐波那契,早年随父在北非从师阿拉伯人习算,后又游历地中海沿岸诸国,回意大利后即写成《算经》。

《算经》最大的功绩是系统介绍印度记数法,影响并改变了欧洲数学的面貌。

现传《算经》是1228年的修订版,其中还引进了著名的“斐波那契数列”。

《几何实践》则着重叙述希腊几何与三角术。

斐波那契其他数学著作还有《平方数书》、《花朵》等,前者专论二次丢番图方程,后者内容多为菲德里克二世宫廷数学竞赛问题,斐波那契论证其根不能用尺规作出,他还未加说明地给出了该方程的近似解。

微积分的创立与解析几何的发明一起,标志着文艺复兴后欧洲近代数学的兴起。

微积分的思想根源部分(尤其是积分学)可以追溯到古代希腊、中国和印度人的著作。

在牛顿和莱布尼茨最终制定微积分以前,又经过了近一个世纪的酝酿。

二、《算盘原理》《算盘原理》中的“算盘”并非仅仅指罗马算盘或某种计算工具。

斐波那契数列

斐波那契数列

斐波那契数列说到斐波那契数列,很多人可能会皱皱眉,觉得这是什么复杂的数学概念。

其实,它可比那复杂多了。

斐波那契数列就像是一场魔法表演,简单又迷人。

每个数字都跟前两个数字有关,仿佛在诉说着一个个动人的故事。

一、斐波那契的起源1.1 古老的传说故事要追溯到13世纪。

意大利的数学家斐波那契,在他的书《算术之书》中首次提到了这个数列。

想象一下,那时的世界没有计算器,没有电脑。

人们如何计算?斐波那契通过简单的兔子繁殖问题,展示了这个数列的奇妙。

兔子,真是个有趣的起点。

1.2 数列的构成斐波那契数列的前两项是0和1,后面的每一项都是前两项的和。

0、1、1、2、3、5、8、13……这几个数字一看就有趣。

好像在告诉我们,生命的每一步都与过去紧密相连。

这种连锁反应,就像我们生活中的每一个选择。

每一次决定,都在塑造未来。

二、斐波那契数列的美2.1 自然中的奇迹走在大自然中,处处都能看到斐波那契数列的影子。

想想那些花瓣,很多花的花瓣数目都是斐波那契数。

比如,百合花有3片花瓣,菊花有21片。

还有那些螺旋形的贝壳,完美地展示了这个数列的优雅。

大自然总是用这种神秘的方式告诉我们:数学就在我们身边。

2.2 艺术中的应用不仅仅是自然,斐波那契数列在艺术中也大放异彩。

达芬奇的画作,古希腊的建筑,甚至现代的摄影,都能找到它的身影。

很多艺术家把这个数列作为构图的原则,创造出和谐美的作品。

那种比例,真是美得让人心醉。

看着这些作品,心中不禁感慨,原来美也是有规律可循的。

2.3 音乐的节奏音乐也是斐波那契数列的一处奇妙体现。

很多作曲家在创作时,会不自觉地用上这个数列的比例。

比如,贝多芬的某些作品,乐段的长度正好是斐波那契数。

这种节奏感,让音乐听起来更加动人,仿佛是在和我们的心跳共鸣。

三、斐波那契数列的实际应用3.1 计算机科学的魔法在计算机科学中,斐波那契数列也起到了关键的作用。

很多算法,尤其是在搜索和排序中,都会用到它。

它的高效性和简单性,使得程序员们得以更快速地解决问题。

《斐波那契数列》课件

《斐波那契数列》课件

特征方程
特征方程
对于斐波那契数列,其特征方程为x^2=x+1。通过解这个方程,可以得到斐波 那契数列的通项公式。
通项公式
斐波那契数列的通项公式为F(n)=((φ^n)-(-φ)^-n))/√5,其中φ=(1+√5)/2是黄 金分割比。这个公式可以用来快速计算斐波那契数列中的任意数字。
03
斐波那契数列的数学模型
在生物学中的应用
遗传学研究
在遗传学中,斐波那契数列可以用于 描述DNA的碱基排列规律,有助于深 入理解遗传信息的传递和表达。
生物生长规律
许多生物体的生长和繁殖规律可以用 斐波那契数列来描述,如植物的花序 、动物的繁殖数量等。
在计算机图形学中的应用
图像处理
在图像处理中,斐波那契数列可以用于生成复杂的图案和纹理,增加图像的艺术感和视觉效果。
斐波那契数列的递归算法
F(n) = F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。
03
递归算法的时间复杂度
O(2^n),因为递归过程中存在大量的重复计算。
迭代算法
迭代算法的基本思想
迭代算法的时间复杂度
从问题的初始状态出发,通过一系列 的迭代步骤,逐步逼近问题的解。
O(n),因为迭代过程中没有重复计算 。
实际应用价值
斐波那契数列在计算机科指导 意义。
对未来研究的展望
深入探索斐波那契数列的性质
01
随着数学研究的深入,可以进一步探索斐波那契数列的性质和
规律,揭示其更深层次的数学原理。
跨学科应用研究
02
未来可以将斐波那契数列与其他学科领域相结合,如生物学、
表示方法
通常用F(n)表示第n个斐波那契数 ,例如F(0)=0,F(1)=1,F(2)=1 ,F(3)=2,以此类推。

费波那契数列

费波那契数列

斐波拉契数列(又译作“斐波那契数列”或“斐波那切数列”)是一个非常美丽、和谐的数列,它的形状可以用排成螺旋状的一系列正方形来说明(如右词条图),起始的正方形(图中用灰色表示)的边长为1,在它左边的那个正方形的边长也是1 ,在这两个正方形的上方再放一个正方形,其边长顺次加上边长为3、5、8、13、21……等等的正方形。

这些数字每一个都等于前面两个数之和,它们正好构成了斐波那契数列。

斐波拉契数列的简介:“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年。

籍贯大概是比萨)。

他被人称作“比萨的列昂纳多”。

1202年,他撰写了《珠算原理》(Liber Abaci)一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。

他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。

他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。

斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21,34……这个数列从第三项开始,每一项都等于前两项之和。

它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(√5表示5的算术平方根)(19世纪法国数学家敏聂(Jacques Phillipe Marie Binet 1786-1856) 很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

斐波拉契数列之闻名,可能还跟美国悬疑作家丹·布朗有关,他在他的小说《达芬奇密码》之中巧妙地运用了该数列。

其实,我国现行的高中教材中提及了杨辉三角,斐波拉契数列可在其中寻得。

13世纪初,欧洲最好的数学家是斐波拉契;他写了一本叫做《算盘书》的著作,是当时欧洲最好的数学书。

书中有许多有趣的数学题,其中最有趣的是下面这个题目:“如果一对兔子每月能生1对小兔子,而每对小兔在它出生后的第3个月裏,又能开始生1对小兔子,假定在不发生死亡的情况下,由1对初生的兔子开始,1年后能繁殖成多少对兔子?”斐波拉契把推算得到的头几个数摆成一串:1,1,2,3,5,8……这串数里隐含着一个规律:从第3个数起,后面的每个数都是它前面那两个数的和。

斐波拉契数列

斐波拉契数列

斐波拉契数列13世纪初,欧洲最好的数学家是斐波拉契;他写了一本叫做《算盘书》的著作,是当时欧洲最好的数学书。

书中有许多有趣的数学题,其中最有趣的是下面这个题目:“如果一对兔子每月能生1对小兔子,而每对小兔在它出生后的第3个月裏,又能开始生1对小兔子,假定在不发生死亡的情况下,由1对初生的兔子开始,1年后能繁殖成多少对兔子?”斐波拉契把推算得到的头几个数摆成一串:1,1,2,3,5,8……这串数里隐含着一个规律:从第3个数起,后面的每个数都是它前面那两个数的和。

而根据这个规律,只要作一些简单的加法,就能推算出以后各个月兔子的数目了。

于是,按照这个规律推算出来的数,构成了数学史上一个有名的数列。

大家都叫它“斐波拉契数列”,又称“兔子数列”。

这个数列有许多奇特的的性质,例如,从第3个数起,每个数与它后面那个数的比值,都很接近于0.618,正好与大名鼎鼎的“黄金分割律”相吻合。

人们还发现,连一些生物的生长规律,在某种假定下也可由这个数列来刻画呢。

斐氏本人对这个数列并没有再做进一步的探讨。

直到十九世纪初才有人详加研究,1960年左右,许多数学家对斐波拉契数列和有关的现象非常感到兴趣,不但成立了斐氏学会,还创办了相关刊物,其后各种相关文章也像斐氏的兔子一样迅速地增加。

斐波拉契(Fibonacci)数列来源于兔子问题,它有一个递推关系,f(1)=1f(2)=1f(n)=f(n-1)f(n-2),其中n>=2{f(n)}即为斐波拉契数列。

斐波拉契数列的公式它的通项公式为:{[(1+√5)/2]^n-[(1-√5)/2]^n}/√5 (注:√5表示根号5)斐波拉契数列的某些性质■1),f(n)f(n)-f(n1)f(n-1)=(-1)^n;■2),f(1)f(2)f(3)……f(n)=f(n2)-1■3),arctan[1/f(2n1)]=arctan[1/f(2n2)]arctan[1/f( 2n3)]比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887……(后一项与前一项之比1.6180339887……)还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。

斐波那契数列

斐波那契数列

斐波那契数列百科名片“斐波那契数列”是意大利数学家列昂纳多·斐波那契首先研究的一种递归数列,它的每一项都等于前两项之和。

此数列的前几项为1,1,2,3,5等等。

在生物数学中,许多生物现象都会呈现出斐波那契数列的规律。

斐波那契数列相邻两项的比值趋近于黄金分割数。

此外,斐波那契数也以密码的方式出现在诸如《达芬奇密码》的影视书籍中。

目录[隐藏]【奇妙的属性】【影视链接】【相关的数学问题】【斐波那契数列别名】斐波那契数列公式的推导【C语言程序】【C#语言程序】【Java语言程序】【奇妙的属性】【影视链接】【相关的数学问题】【斐波那契数列别名】斐波那契数列公式的推导【C语言程序】【C#语言程序】【Java语言程序】∙【JavaScript语言程序】∙【Pascal语言程序】∙【PL/SQL程序】∙【数列与矩阵】∙【数列值的另一种求法】∙【数列的前若干项】∙【斐波那契数列的应用】“斐波那契数列(Fibonacci)”的发明者,是意大利数学家列昂纳多·斐波那契(Leo nardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨)。

他被人称作“比萨的列昂纳多”。

1202年,他撰写了《珠算原理》(Liber Abaci)一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。

他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。

他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。

斐波那契数列通项公式斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……这个数列从第三项开始,每一项都等于前两项之和。

它的通项公式为:(见图)(又叫“比内公式”,是用无理数表示有理数的一个范例。

)有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

[编辑本段]【奇妙的属性】随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.61803 39887……从第二项开始,每个奇数项的平方都比前后两项之积少1,每个偶数项的平方都比前后两项之积多1。

斐波那契的原理

斐波那契的原理

斐波那契的原理斐波那契数列是一个非常经典的数列,其原理可以用数学方法来解释。

斐波那契数列的前两个数是0 和1,后续的每个数都是前两个数之和。

例如,斐波那契数列的前几个数是:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...这个数列的神奇之处在于,它包含了许多有趣的数学性质和规律。

例如,从第三个数开始,每个数都等于前两个数之和;前两个数的比例逐渐趋近于黄金分割比例(约为0.618)等等。

斐波那契数列在自然界和人类社会中也有许多应用。

例如,在植物学中,许多植物的花瓣数量、叶子排列方式等都遵循斐波那契数列的规律;在金融学中,斐波那契数列也被用于预测股票价格走势等。

总之,斐波那契数列是一个非常有趣和神秘的数列,其原理涉及到数学、自然界和人类社会等多个领域。

对于对数学和自然科学感兴趣的人来说,研究斐波那契数列的原理和应用是一件非常有意义的事情。

在数学领域,斐波那契数列与许多其他数学概念和理论有着紧密的联系。

例如,它与黄金分割、复数、矩阵等都有深刻的数学联系。

黄金分割是指将一条线段分为两部分,使其中一部分与全长之比等于另一部分与这部分之比。

这个比例约为0.618,被广泛认为是一种美学上的理想比例。

斐波那契数列中相邻两个数的比值逐渐趋近于黄金分割,这也是斐波那契数列的一个重要数学性质。

此外,斐波那契数列还可以通过复数的形式进行表示和计算。

复数是由实数和虚数组成的数,可以用平面上的点来表示。

通过将斐波那契数列中的每个数表示为复数形式,可以发现它们在复平面上形成了一个螺旋形状,这也为斐波那契数列的研究提供了新的视角。

矩阵是数学中的一个重要概念,用于表示线性变换和线性方程组等。

斐波那契数列也可以通过矩阵乘法的方式进行计算和表示。

通过建立斐波那契矩阵,可以利用矩阵乘法的性质来快速计算出斐波那契数列的后续数值。

总之,斐波那契数列的原理涉及到数学的多个领域和概念,通过深入研究这些联系,可以更深入地理解斐波那契数列的本质和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

斐波那契是意大利的数学家.他是一个商人的儿子.儿童时代跟随父亲到了阿尔及利亚,在那里学到了许多阿拉伯的算术和代数知识,从而对数学产生了浓厚的兴趣.
长大以后,因为商业贸易关系,他走遍了许多国家,到过埃及,叙利亚,希腊,西西里和法兰西.每到一处他都留心搜集数学知识.回国后,他把搜集到的算术和代数材料,进行研究,整理,编写成一本书,取名为《算盘之书》,于1202年正式出版.
这本书是欧洲人从亚洲学来的算术和代数知识的整理和总结,它推动了欧洲数学的发展.其中有一道"兔子数目"的问题是这样的:
一个人到集市上买了一对小兔子,一个月后,这对小兔子长成一对大兔子.然后这对大兔子每过一个月就可以生一对小兔子,而每对小兔子也都是经过一个月可以长成大兔子,长成大兔后也是每经过一个月就可以生一对小兔子.那么,从此人在市场上买回那对小兔子算起,每个月后,他拥有多少对小兔子和多少对大兔子?
这是一个有趣的问题.当你将小兔子和大兔子的对数算出以后,你将发现这是一个很有规律的数列,而且这个数列与一些自然现象有关.人们为了纪念这位兔子问题的创始人,就把这个数列称为"斐波那契数列".
你能把兔子的对数计算出来吗?
解:
可以这么推算:
第一个月后,小兔子刚长成大兔子,还不能生小兔子,所以只有一对大兔子.
第二个月后,大兔子生了一对小兔子,他有了一对小兔子和一对大兔子.
第三个月后,原先的大兔子又生了一对小兔子,上月出生的小兔子也长成了大兔子,他共有一对小兔子和两对大兔子.
第四个月后,两对大兔子各生一对小兔子,上月出生的小兔子又长成了大兔子,他共有两对小兔子和三对大兔子.
第五个月后,三对大兔子各生一对小兔子,上月出生的两对小兔子也长成了大兔子,他共有三对小兔子和五对大兔子.
……
以此类推,可知:
每月的小兔子对数等于上月大兔子的对数,每月大兔子的对数等于上月大兔子与小兔子的对数之和.
我们把大小兔子的对数写成上下两行,从买回小兔子算起,每个月后他所拥有的兔子对数便是:
仔细观察两行数发现它们是很有规律的:
每行数,相邻的三项中,前两项的和便是第三项.
有趣的是:
雏菊花花蕊的蜗形小花,有21条向右转,有34条向左转,而21和34,恰是斐波那契数列中相邻的两项;松果树和菠萝表面的凸起,它们的排列也分别成5:8和8:13这样的比例,也是斐波契数列中相邻两项的比.
这个数列不仅在数学,生物学中,还在物理,化学中经常出现,而且它还具有很奇特的数学性质,真是令人叫绝!。

相关文档
最新文档