火力发电机组深度调峰研究
火电机组参与深度调峰对电网频率特性的影响研究

火电机组参与深度调峰对电网频率特性的影响研究摘要:受到负荷功率需求低、外送能力弱、电网调节能力有限等因素影响,可再生能源发电的弃风、弃光现象严重,为了提高新能源的消纳能力,应对负荷出现的峰谷差,火电机组深度调峰势在必行。
新能源接入及渗透率的提高将导致传统火电机组的关停,进而对电网的转动惯量和调频过程造成影响。
分析了风电的频率特性,给出了不同频段内风电波动对电力系统调频的影响,提出了基于分频原理的火电机组一次调频控制方法,改善了系统频率特性。
文考虑了风机出力的随机性,从概率角度对风电系统进行建模,探讨了风电波动对电网频率特性的影响。
对风电的随机性给电网频率的稳定、电能品质及经济性带来的影响进行了综述。
提出了变速风电机组的频率综合控制方法,用于解决大规模风电场集中接入使电网惯性降低的问题。
提出了以火电调频为主、风电调频为辅的一次调频联合控制策略,有效规避了系统频率二次跌落的问题,提高了风电参与一次调频的安全性。
建立了简化的低惯性电力系统数学模型,从频域角度分析了新能源接入时频率特性发生的变化。
提出了风机控制器的模型,分析了控制参数及火电机组汽轮机工作点对孤岛系统中频率特性的影响。
虽然新能源具备调频能力,但在实际电力系统运行中,随着新能源的接入,整个系统惯量仍呈下降趋势。
不参与调频的新能源大量接入电网时,将不利于电网频率的稳定。
关键词:火电机组;深度调峰;电网频率特性;影响引言“十三五”期间,新能源风光发电装机规模迅猛发展,同时电力负荷中居民用电和第三产业用电比重持续快速增长。
不论是新能源发电出力,还是居民和第三产业的用电负荷,都具有很强的日内波动性,这些都对电力系统的灵活性运行造成很大挑战。
在碳达峰、碳中和“3060”目标的背景下,以新能源为主体的新型电力系统的提出对电力系统的灵活性提出了更高的要求。
而据中国电力企业联合会统计,我国发电装机以煤电为主,抽水蓄能、燃气发电等灵活调节电源装机占比不到 6%,比较而言,欧美等国灵活电源比重较高,西班牙、德国、美国占比分别为 34%、18%、49%。
600MW级火力发电机组深度调峰影响因素及对策

600MW级火力发电机组深度调峰影响因素及对策摘要:本文主要针对600MW级火力发电机组深度调峰影响因素及对策做出初步分析,希望对600MW级火力发电机组在电网调峰中的应用提出一些有效建议,使600MW火力发电机组既能安全经济的运行,又满足国际环保政策的可持续发展理念,同时还能适应电网的需求。
关键词:600MW级火力发电机组;深度调峰;影响因素及对策引言:600MW级火力发电机组在火力发电厂中的使用越来越多,经常会参与电网调峰,由于600MW火力发电机组利用小时数逐年降低,最低负荷只有额定容量的三分之一,所以600MW火力发电机组在电网深度调峰中经常会出现一些问题,导致600MW火力发电机组发生非计划停运,对电网的正常使用造成不利影响。
因此,在保证600MW级火力发电机组满足国家环保政策的需求下,使其能够正常的为电网发展做出贡献是每个火力发电机组厂都应该认真研究的课题,本文通过对600MW级火力发电机组的一些了解,希望能为600MW级火力发电机组深度调峰提出一些有效建议,为国家电网事业的发展做出一些贡献。
一、600MW级火力发电机组调峰的必要性由于600MW级火力发电机组经常在调峰中会有一些问题,使得600MW级火力发电机组的年利用小时逐年下降,造成600MW级火力发电机组年利用小时逐年降低的主要原因有:(一)随着科技的不断发展,近几年电网投产使用1000MW机组较多,1000MW火力发电机组相比于600MW火力发电机组煤耗较低,处于节能的考虑,电网调度时使用1000MW机组较多,这就导致600MW的使用时间变得较少。
(二)随着国家政策的改变,大量的风力发电、太阳能发电等新能源的投产应用,使得电网容量不断变大,处于环保的考虑,新能源发电优先使用,且不受限制,使电网的深度调峰就需要火力发电机组来参与完成。
通过以上可以看出,600MW级火力发电机组参与电网调峰势在必行,特别是在节假日期间,电网负荷较低时,600MW级火力发电机组参与深度调峰越来越频繁。
660MW超临界火力发电机组深度调峰试验的实施方案

660MW超临界火力发电机组深度调峰试验的实施方案发布时间:2023-02-21T05:11:05.111Z 来源:《福光技术》2023年2期作者:杨世界[导读] 本试验以机组最低稳燃负荷试验为基础,新协调全程投入,进行机组负荷变动试验,然后对各系统、新协调性能、和设备适应性进行评估。
大唐长山热电厂吉林松原 131109摘要:随着我国新能源装机规模不断扩大,新能源受制于时间、气候影响,对电网影响较大,电网为确保其稳定性,在新能源电量上网较大时,要求传统煤电机组进行调峰。
以前300MW级以下机组做为调峰主力机组,近年600MW级火力发电机组也开始进入深度调峰。
完成深度调峰试验对深度调峰后机组的稳定性、安全性、经济性都有及其重要的影响,故制定深度调峰试验实施方案,保证深度调峰试验顺利进行。
600MW火力发电机组并网后进行深度调峰调试工作且保证10日内完成,达到深度调峰要求,编制以下深调方案按计划实施。
关键词:660MW;超临界;发电机组;实施方案一、试验目的本试验以机组最低稳燃负荷试验为基础,新协调全程投入,进行机组负荷变动试验,然后对各系统、新协调性能、和设备适应性进行评估。
二、试验过程1、机组并网后1-2天,INFIT新协调厂家调整建模参数及对50%-100%负荷段新协调进行维护。
2、并网后第3天,厂家重点进行300MW-250MW 负荷区间调试。
3、并网后第4天,厂家重点进行250MW-220MW 负荷区间调试。
4、并网后第5天,厂家重点进行220MW-190MW 负荷区间调试。
5、并网后第6-7天,厂家对各负荷段协调出现问题的区域重新调试,再优化。
6、值长每天协调好调峰时间段,且应在白班进行油枪试投工作,发现缺陷及时联系维护人员处理。
7、值长根据运行制粉方式对煤斗上煤,在2号煤场70-120货位取顺兴煤种,保证所有煤斗顺兴煤比例大于75%,每日对入炉煤化验监督,保证煤质灰分、硫分、热值均在设计范围内,严禁混入经济煤种。
火电机组深度调峰的难点分析和运行优化建议

火电机组深度调峰的难点分析和运行优化建议摘要:由于特高压输送电量逐年增加、新能源占比逐渐加大,造成电网峰谷差加大,火电机组需成为电网调峰的重要力量。
但火电机组深度调峰普遍存在机组调峰能力不足、负荷响应速率较低、系统自动投入率低、人员手动操作量大等问题。
为深挖火电机组调峰能力,提高调峰安全性,本文就火电机组深度调峰难点进行分析,并提出运行优化建议。
关键词:火电机组;深度调峰;难点分析;运行优化建议一、难点分析1、机组不投油稳燃负荷高,不能满足调峰至30%需求某电力集团有30万等级以上机组70台,只有4台机组能达到调峰至30%额定负荷,剔除因供热制约未进行调峰运行的8台机组外,58台机组稳定调峰运行负荷不能满足调峰至30%额定负荷需求,占比82.8%。
其中32台机组需投油稳燃。
2、调峰期间自动投入率低某电力集团46台机组提出需对调峰负荷段的协调控制系统开展优化,以适应快速调峰的要求。
主要集中在以下六个方面:1)协调控制只能控制40%负荷以上工况;2)给水泵汽源自动切换;3)自动转态;4)减温水自动;5)给水泵自动切除、自动并泵;6)给水主、旁路自动切换。
3、深度调峰影响经济性梳理某电力集团70台煤电机组,截至目前参与深度调峰共52台煤电机组,其中百万机组11台,60万等级机组20台,30万等级机组21台。
依据这52台煤电机组参与深度调峰期间的DCS数据,计算机组的锅炉效率、汽轮机热耗率、厂用电率影响如下:(1)锅炉效率表1:50%调峰至40%额定负荷工况下锅炉效率变化表1为参考深度调峰的52台机组锅炉效率变化结果,百万机组从50%调峰到40%额定负荷,锅炉效率下降0.15~2.33%,平均下降1.02%。
60万机组从50%调峰到40%额定负荷,锅炉效率下降0.0~1.0%,平均下降0.39%。
30万机组从50%调峰到40%额定负荷,锅炉效率下降0.4~0.9%,平均下降0.48%。
(2)汽轮机热耗率表2:50%调峰至40%额定负荷工况下汽轮机热耗率变化表2为参考深度调峰的52台机组汽轮机热耗率变化结果,百万机组从50%调峰到40%额定负荷,汽轮机热耗率上升137~343kJ/kWh,平均上升213kJ/kWh;60万机组从50%调峰到40%额定负荷,汽轮机热耗率上升82~390kJ/kWh,平均上升256kJ/kWh;30万机组从50%调峰到40%额定负荷,汽轮机热耗率上升80~368kJ/kWh,平均上升198kJ/kWh。
1000MW超超临界火电机组深度调峰研究_1

1000MW超超临界火电机组深度调峰研究发布时间:2023-02-03T07:37:15.286Z 来源:《中国电业与能源》2022年第18期作者:孙延刚[导读] 华东地区的电力系统在假日时段的负载特征与日用功率曲线存在着很大的差异孙延刚华电莱州发电有限公司山东省烟台市 261400摘要:华东地区的电力系统在假日时段的负载特征与日用功率曲线存在着很大的差异。
为了满足电力市场的需求,需要对大型燃煤电厂进行深度调峰。
在煤炭机组中,锅炉的燃油性质和最小稳定燃烧性能是其重要的参数。
句容电力公司按照华东电力公司的调峰需求,对1号机组进行了深入的调峰试验,并进行了深入的调峰,采用1000 MW套筒燃用方案,在深部调峰阶段,其最小稳燃负载可达250 MW,并能保证脱硝、脱硫、除尘设备的安全稳定。
关键词:超超临界机组;深度调峰;锅炉;负荷引言根据目前我国燃煤发电系统的调峰能力,尤其是在百万千瓦级风电和太阳能发电基地的建成后,我国目前的风电、太阳能发电装置的调峰情况日益严重。
中国电信网《2016年全国电力行业供需形势报告》显示,2015年我国燃煤发电总量年均下降2个百分点。
今年是3%,已经是第二个月的负值了。
今年,燃煤机组使用时间达到了自1969年来的最低水平,达到4329个小时。
一、机组概况该机组采用东方电力公司DG3024/28型1000 MW超临界机组。
35-Ⅲ1型,为一次中间再热、单炉膛和前后墙对冲燃烧的直流炉型;神华煤矿的设计煤种和大同优质的校核煤种。
锅炉使用的燃料为0#轻质柴油,使用的是一种微型燃料。
SCR脱硫系统的脱硫设备在两个机组同时进行。
句容电厂1000 MW级超超临界 HMN级水轮发电机组是由上海电气和西门子共同研制的。
该装置类型为超超临界、中间再热、单轴;四排汽,凝蒸汽模式,其进气温度为27 MPa/600摄氏度/600摄氏度,其最大蒸汽流量可达到27 MPa/600℃/610℃,最大出力可达1030 MW。
火电机组功率快速调节及深度调峰技术分析

火电机组功率快速调节及深度调峰技术分析摘要:对于亚临界锅炉而言,其中的电站锅炉在制造过程中需要开展监督及检测工作,而为满足锅炉的供需要求,需要通过火电机组功率的快速调节来保证火电机组的运行效能,以控制发电质效,使该区域内的电力资源需求得到满足。
文章分析了火电机组功率快速调节及深度调峰技术的重要性,并提出了火电机组功率快速调节及深度调峰技术的应用措施。
关键词:火电机组;功率;快速调节;深度调峰技术引言为辅助亚临界锅炉的运维,应加强对火电机组功率方面的思考,利用煤炭来代替可燃物进行燃烧,使锅炉的热能需求能够得到满足,而采用深度调峰技术,可不受外界干扰因素的影响,让锅炉的功率不会发生调节不当的问题,增设发电机设备并实现能源的转换,促使电力能够进行持续性地输出,确保电力的并网质效有所提升。
一、火电机组功率快速调节及深度调峰技术的重要性对于亚临界锅炉而言,其在电蓄热的调峰领域内,会依靠三相电极,采用水资源完成高热阻的操作,促使设备的电导率能够提高,让锅炉中的水进行加热,放电并将其中的99%的电能进行转换,让其转变成热能,进而形成热水及蒸汽。
在此基础上,自“碳达峰”及“碳中和”目标提出后,电力企业当前的结构也进行了调整,使光伏发电的比重增加,提高了火电机组的实际占比。
因此,为衔接输电、发电、变电以及配电环节的各类工作内容,需将电力进行转换,增加绿色能源的应用,控制当前的调峰难度,运用电网调配的方式,补充风电中的不足,以创建出完整的电力网络,辅助亚临界锅炉的运维[1]。
例如:运用深度调峰技术,使电网中产生负荷变化能够被记录,使发电机组能够完成曲线的控制操作,使该部分的负荷率能够控制在30%-40%之间,以保证火电机组的顺利运行。
凭借锅炉与火电机组的接触,使机组能够提高自身的发电效率,强化在工作模式中的灵活性,促使火电机组能够满足电力供给需求[2]。
二、火电机组功率快速调节及深度调峰技术的应用措施(一)实行火电机组的DEB控制方案为实现对火电机组功率的调节,应重视其中的调峰能力,采用增强功率的方式,实行非线性的控制操作,也可运用模糊算法,实现对火电机组中具体负荷的计算,实时监测其中的压力变化值,以确认火电机组的特征。
火电机组深度调峰控制技术

火电机组深度调峰控制技术摘要:随着社会的发展以及时代的进步,我们国家近几年的经济水平有了很大程度的提升,在实际的发展过程当中人们对于社会当中各个行业的发展提出了更高的要求。
就电力行业的发展来说,其在近几年的发展当中取得了长足的进步。
但是电力市场需求量的进一步增加,让电力企业的电力生产以及电力传输受到了极大程度的冲击。
火电机组是现阶段电力系统当中的一个常见组成部分,而调峰控制技术是维护地电力生产以及安全运输的重要手段。
藉此,本文对调峰控制技术进行了简要的研究。
关键词:火电机组;深度调峰;控制技术1 引言随着我们国家经济的进一步发展,人民的生活水平有了很大程度的提升。
在现阶段的发展过程当中,我国电网装机容量逐渐增加,这在一定程度之上促进了我们国家的电网结构进一步改革。
第一产业用电量的逐渐降低与二三产业用电量的逐渐增加使得电网峰谷差进一步扩大。
基于此种现象,火电机组参与调峰工作成为了一种必然现象。
因此,对火电机组深度调峰控制技术的研究有着鲜明的现实意义。
2 国内外研究现状2.1国内研究现状随着我们国家额的电网峰谷差逐渐扩大,原有电力结构表现出的适应性问题受到了社会各界的广泛关注。
现阶段我们国家的蓄能电站所占全国的比例为2%。
与基本要求10%之间仍然相差较多。
就我们国家的华中电网来说,其面临的调峰形势十分严峻。
为了可以更好的解决现阶段额的调峰问题,华中电网提出通过建完善的电力系统来达到最终的目的。
目前东中部电网提出了建立风抽水电形式的调峰电源,以解决所面临的发展问题。
2.2国外研究现状现阶段全世界都在面临着同样的一个问题那就是资源短缺。
所以一系列的新型的可再生发电项目出现在了人们视野当中,但是新型电力生产为电网的调峰问题带来了新的挑战。
为了可以进一步解决这个问题,各个国家都做出了积极的应对。
例如日本的东京电力公司在实际的建设过程当中应用了超临界压力35万千瓦的机组。
法国作为一个核电大国,通过优化电站结构,建立抽水蓄能电站来解决调峰问题。
火电机组深度调峰存在问题分析

火电机组深度调峰存在问题分析摘要:随着我国“双碳”目标的进一步推进,风电、光伏建设如火如荼,火电机组逐渐沦为保供电源。
为满足电网公司能源结构优化的要求,火电机组深度调峰提上日程。
关键词:深度调峰;水动力差;脱硝效率低;空气预热器堵塞;烟气流场不畅;0引言随着我国碳达峰、碳中和目标的推进,电力系统清洁低碳转型的步伐进一步加快,火电装机和发电量占比不断降低,灵活调节能力要继续提升。
当前电力需求刚性增长、能源结构优化难度增大、国际形势变化都给电力行业带来新的挑战。
对于很多火电机组来说,机组深调将成为今后的常态,未来火电机组的一大部分收入将来源于调峰和辅助服务。
随着大量火电机组深调的推进,机组深调运行暴露的问题也越来越多。
1锅炉侧问题锅炉深度调峰存在问题突出表现在锅炉燃烧不稳、水冷壁水动力差、局部受热面超温、设备可靠性下降、烟道积灰、脱硝入口烟温低等。
1)锅炉燃烧不稳煤电机组在进行深度调峰时,锅炉总给煤量小,炉膛温度下降,燃烧状况恶化,燃烧稳定性变差。
受限于风机最低出力,为保证粉管最低风速(防止堵粉),低负荷下煤粉浓度下降,加剧了燃烧状况的恶化。
各大电厂为降低成本,入厂煤种杂,煤质掺烧导致燃烧着火特性差,加大了低负荷炉膛稳燃难度。
2)水冷壁水动力差当机组负荷低于30%额定工况时,锅炉水冷壁流量接近最低流量,水循环出现恶化,管内工质流量偏差增大,低负荷下二次风压较低,射流刚性差,致使烟气侧燃烧热负荷均匀性变差,水冷壁换热失去平衡,造成水冷壁局部超温或壁温偏差增大,热应力增加,导致水冷壁开裂。
尾部受热面通常不装壁温测点,无法监视壁温差,同样存在类似问题。
对于超超临界机组,深调还存在锅炉干、湿态转换问题。
通常机组在负荷30%左右锅炉干、湿态转换,当深调至额定负荷30%以下时,锅炉有可能转入湿态运行。
锅炉因频繁干、湿态转换,水冷壁应力将会增加,受热面使用寿命进一步缩短,爆管风险也会增加。
3)爆磨、风机喘振风险增加机组深调时,给煤量偏低,受最低一次风量限制,磨煤机煤粉浓度有所下降,进入爆炸浓度范围,显著增加了磨煤机的爆磨风险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
火力发电机组深度调峰研究
摘要:近年来,风电、光伏等新能源装机比例不断提高,电力系统调峰能力严重削弱,电网辅助调峰服务需求不断增加。
作为调峰辅助服务的主要承担者,火力发电机组的调峰能力能否充分发挥作用至关重要。
关键词:火力发电机组;深度调峰;大数据
前言
新能源大规模接入给电网的调峰调频等带来了极大挑战,例如2017年,河北南网统调最大负荷34570MW,出现在7月20日,同比增长5.84%;年度最小负荷11800MW,同比增长14.56%。
2018年,河北南网统调负荷最低点首次出现在农历初一中午,春节当日负荷曲线午后大幅低于凌晨,通过安排3台机组启停调峰、纯凝机组深度调峰、供热机组压降出力、4台机组抽水蓄能等手段,才保障了风、光等新能源的全额消纳,大量新能源并网同时也降低了电网转动惯量。
1火电厂参与辅助服务策略
火电厂参与调峰辅助服务时,针对电网不同的调峰要求,尤其是正常调峰与有偿调峰的临界点设置、不同档的报价以及报价上下限设置等重要参数,电网会根据调峰实际需求及调峰能力进行调整,火电机组也要随时根据调整后的参数进行边际效益分析。
在此,建议火电机组积极做好调峰辅助服务准备的同时,采取如下策略。
a).当目前调峰矛盾不是特别明显时,深度调峰需求不是特别大,各电源企业进行火电灵活性改造时,应适度控制投资规模,同时,为防止后期调峰能力过剩,竞争过度,不宜大面积蜂拥而上,应有序进行。
b).投油调峰成本较高,为降低投油调峰成本,可以通过煤种变化、掺烧或增加等离子点火系统等措施来实现机组的深度调峰。
c).调峰需求最大的时段集中在节假期,在非节假日的小风天,仅需要火电机组参与基本调峰的阶段,火电机组尽量在系统收益最大的调峰幅度下运行。
d).未进行火电灵活性改造和热电解耦措施的热电联产机组,在供热期间,应充分利用热网及建筑物的热惯性,应在低谷或系统调峰最困难时间即调峰补偿价格和分摊价格很高之前提前供热,而在低谷到来之时不供热或少供热,以便最大限度参与系统调峰,获得最大调峰收益。
e).由于实行电力调峰辅助服务以后,政策变化较大,报价机制复杂,由此带来的最优运行方式需要通过经济效益分析对比来得到,经济运行部门应及早熟悉运营规则,并建立相关计算模型。
2深度调峰操作
2.1准备阶段
接调度预发有深度调峰计划(一般提前8h)后,深度调峰长时间低负荷,烟温逐渐降低,会造成脱硝系统催化剂失效,甚至退出运行。
因此,对各受热面要降低吹灰频率,从而来提高烟温。
检查锅炉启动系统处于热备用状态。
为防止深度调峰过程中锅炉出现燃烧不稳的情况,试投AB层油枪和CD层微油枪正常,必要时投油;以及等离子系统试拉弧正常。
及时切除调峰机组的供热,切至冷备用状态。
对于汽机高、低加危急疏水调阀活动良好、无卡涩。
投入1C电泵倒暖,启动前检查完成,具备启动条件。
确认机组冷再至轴封管路保持备用。
空预器吹灰汽源切至辅汽,并通知检修就地调节吹灰压力至正常。
2.2减负荷阶段
接到调度命令进行深度调峰工作,按正常操作顺序停磨减负荷,无特殊情况
必须保持下层磨A、B磨调峰期间运行。
按调度深度调峰要求开始操作至规定调
峰深度350MW必须在1.5h内完成。
机组减负荷至600MW以下时,逐渐关闭除
氧器水位调节辅阀,关小水位调节主阀,提高凝结水压力不低于1.2mpa,防止精处理跳旁路。
机组减负荷550MW时,要注意关注高、低加水位,及时对水位设
定值进行下调,防止解列。
且要通过停真空泵或节流真空泵入口阀调整凝汽器
A/B背压至4.5~6kPa左右。
负荷减至550MW以下时,注意给水流量控制稳定。
当汽泵进口流量逐渐降低至700T/h时,为防止两台汽泵再循环调阀同时开启造成给水流量不稳定,可将1A汽泵再循环调阀撤手动并逐渐开启至60%使1B汽泵再
循环调阀始终关闭,保持两台给水泵转速在3100rpm以上。
负荷减至500MW,
汇报值长可进行深度调峰,及时投入AGC。
负荷450MW时,汇报领导,联系仪
控确认强置以下逻辑:解除给水流量低低MFT;解除锅炉总风量低低MFT;解除
脱硝反应器入口温度低(303℃)联跳脱硝;强置启动循环泵启动允许条件;强
置WDC阀隔离阀开允许条件;DEH中IPR保护退出。
减负荷中,锅炉侧加强火检的监视,必要时投油稳燃,同时投入空预器连续吹灰,以及水冷壁温的监视;汽
机侧加强主机轴振、差胀、温度的监视,出现异常短时间不能恢复的及时汇报,
及时停止减负荷,申请加负荷。
2.3低负荷运行阶段
低负荷时严密监视火检,燃烧不稳时及时投油稳燃,同时投入空预器连续吹灰;随着炉膛温度下降,煤量不变时负荷会逐渐下降,及时调整燃料量,同时注
意锅炉各受热面壁温变化,及时调整相应区二次风门。
低负荷时加强氧量监视,
控制氧量小于7%,必要时切除送风自动,及时调整总风量,减小风量对锅炉燃
烧的影响。
低负荷期间排烟温度大幅变化,应通知灰硫值班人员加强监视FGD和
除尘系统运行工况调整监视。
维持负荷稳定,监视各参数正常。
2.4升负荷阶段
接调度深度调峰结束指令开始操作至500MW必须在1h内完成。
升负荷至
450MW时,汇报领导,联系仪控确认放开之前强置的相关逻辑。
升负荷至
500MW以上时,逐渐恢复以下系统至正常运行方式:汽泵流量增加超过700 T/h
后逐渐手动关小汽泵再循环调节阀并投入自动;凝结水母管压力上升后逐渐开启
除氧器水位调节阀;高、低加水位设定值逐渐提高至正常水位;机组供热恢复热
备用。
3数据分析
可以看出,国家能源泰州发电公司1-4号机组的深度调峰试验结果均满足电
网需求,在不投油的情况下机组各项运行参数控制在正常范围内,未发生环保超
标的情况。
4结论
a)循环流化床机组的实际调峰能力受机组自身设计、燃用煤种及机组类型的限制。
燃用挥发分较高的煤种,着火点低,机组的最低稳燃负荷低,调峰能力强;该类型机组的最低稳燃负荷为19.69%~25.7%,其最大调峰能力可达到19.69%~100%,但部分机组在深度调峰负荷下,氮氧化物排放不满足超低排放标准,需进
行超低负荷下低氮燃烧改造及调整。
b)循环流化床锅炉压火时间随着锅炉炉型和燃用煤种的不同而变化。
燃用高挥发分煤种的自然循环锅炉压火时间最长,燃用低挥发分煤种直流炉压火时间最短。
c)循环流化床锅炉可以实现压火后不投油启动。
机组压火时,从压火前解列到压火启动后再次并网的时间间隔通常为3~7h。
参考文献:
[1]刘树明.基于神经网络的锅炉内火焰燃烧稳定性研究[J].计算机仿真,2012,29(8):187-195.
[2]孙海彦,高炜,刘润华等.1000MW超超临界机组深度调峰研究与实践[J].上海电力学院学报,2017,33(6):559-562.。