1固体物理-晶体结构1

合集下载

《固体物理学》房晓勇主编教材-习题解答参考01第一章 晶体的结构

《固体物理学》房晓勇主编教材-习题解答参考01第一章 晶体的结构

(h
2 1
2 + k + l12 ) i( h22 + k22 + l2 ) 2 1 12
h1h2 + k1k2 + l1l2
12
பைடு நூலகம்
解:三个晶轴相互垂直且等于晶格常数 a,则晶胞基矢为
a1 = ai, a2 = a j, a3 = ak ,
其倒格子基矢为
b1 =
2π 2π 2π i, b2 = i, b3 = i a a a 2π ( hi + k j + lk ) a
a 2 +j a 0 − 2
a 2
a 2 +k a 0 2
0 a 2
=−
b 1=
a2 a2 a2 i+ j+ k 4 4 4
2π 2π a 2 ⎛ a 2 a2 a2 a 2 × a3 = 3 − i + j + ⎜ a Ω 2 ⎝ 4 4 4 4 2π 2π b 2= i − j + k ,b 3= i+ j−k a a
i = −( h + k )
得证 (2)由上可知,h,k,i 不是独立的, ( 001) , 133 , 110 , 323 , (100 ) , ( 010 ) , 213 . 中各 i 等于
( )( )( )
( )
i1 = −(h1 + k1 ) = −(0 + 0) = 0, i2 = 2 , i3 = 0 , i4 = 1 , i5 = 1 i6 = 1 , i7 = 3 即得
a1 ⋅ n = h1d , a2 ⋅ nh2 d , a3 ⋅ n = h3d ,
假定 h1 , h2 , h3 不是互质的数,则有公约数 p,且 p>1;设 k1 , k2 , k3 为互质的三个数,满足

固体物理 第一章 晶体结构 晶格的周期性

固体物理 第一章  晶体结构 晶格的周期性
固体物理学
Ch1晶体结构 1.2晶格的周期性
1
前课回顾
• 什么是晶格?什么是基元? • 常见的晶格结构?
2
本节内容
• 晶格具有周期性,用原胞和基矢描述。 • 原胞:一个晶格最小的重复单元。 • 晶体学单胞(晶胞):反映晶格对称性,选取较大的
周期单元。
• 基矢:原胞或晶胞的边矢量,α1、α2、α3 。 • 简立方、面心立方、体心立方、六角密堆积的原胞、
34
Click to edit Master title style
Click to edit Master subtitle style
35
Click to edit Master title style
Click to edit Master subtitle style
36
Click to edit Master title style
Click to edit Master subtitle style
42
Click to edit Master title style
晶向、晶面和它们的标志
Click to edit Master subtitle style
43
本课小结
晶体结构=晶格+基元 布拉维格子、基矢、格矢、格点 原胞,晶体中体积最小的周期性重复单元 维格纳-塞茨(WS)原胞及其构造方法 常见的布拉维格子及其WS原胞
原胞是晶体中体积最小的周期性重复单元,常取 以基矢为棱边的平行六面体; 对某一晶格,尽管习惯上常取三个不共面的最短 格矢为基矢,但基矢的取法并不唯一,因此原胞 的取法也不唯一。
无论如何选取,原 胞都具有相同的体 积,每个原胞只含 有一个格点。

1固体物理-晶体结构1

1固体物理-晶体结构1

晶面

{ }表示一组由于对称性而相互等价的晶面; 如对简单立方格子,{100}表示3个相互等价的晶 面,(100), (010), (001).
晶面
晶面

对于简单立方格子,晶向[h1, h2, h3]与晶面(h1, h2, h3)正交.
单胞(unit cell)


晶体学中,习惯用晶系的基矢a, b, c构成的 平行六面体作为周期性重复排列的基本单 元,称为单胞或惯用单胞(conventional unit cell). 原胞只含有一个格点,是体积最小的周期 性重复单元,单胞则不同,可含有一个或 者数个格点,体积是原胞的一倍或数倍。
晶格
晶体结构包括两方面: (1)重复排列的单元,称为基元(basis or motif); (2)基元重复的方式,一般抽象成空间点阵,称为晶体格子 (crystal lattice),简称晶格; 基元以相同的方式,重复地放置在晶格的格点上(等价性); 基元中的原子种类,数量、位置依不同晶体而定(结构性);
本课小结


晶体结构=晶格+基元 布拉维格子、基矢、格矢、格点 原胞,晶体中体积最小的周期性重复单元 维格纳-塞茨(WS)原胞及其构造方法 常见的布拉维格子及其WS原胞 晶向、晶面、米勒指数
晶体结构数据库

(CCDC) http://www.fiz-karlsruhe.de/icsd.html (ICSD) /AMS/amcsd.php (AMCSD) (COD) /pcd/ (PCD) http://www.cryst.ehu.es/
原胞
维格纳-塞茨(Wigner-Seitz)原胞

维格纳-塞茨(WS)原胞 以晶格中某一格点为中心, 作其与近邻格点连线的垂直平分面,这些平面所 围成的以该点为中点的最小体积是属于该点的WS 原胞。

(参考资料)固体物理习题带答案

(参考资料)固体物理习题带答案

D E ( ) ,其中 , 表示沿 x , y , z 轴的分量,我们选取 x , y , z
沿立方晶体的三个立方轴的方向。
显然,一般地讲,如果把电场 E 和晶体同时转动, D 也将做相同转动,我们将以 D' 表示转
动后的矢量。
设 E 沿 y 轴,这时,上面一般表达式将归结为:Dx xyE, Dy yyE, Dz zy E 。现在
偏转一个角度 tg 。(2)当晶体发生体膨胀时,反射线将偏转角度
tg , 为体胀系数
3
解:(1)、布拉格衍射公式为 2d sin ,既然波长改变,则两边同时求导,有
2d cos ,将两式组合,则可得 tg 。
(2)、当晶体发生膨胀时,则为 d 改变,将布拉格衍射公式 2d sin 左右两边同时对 d
考虑把晶体和电场同时绕 y 轴转动 / 2 ,使 z 轴转到 x 轴, x 轴转到 z 轴, D 将做相同
转动,因此
D'x Dz zy E
D'y Dy yyE
D'z Dx xy E 但是,转动是以 E 方向为轴的,所以,实际上电场并未改变,同时,上述转动时立方晶体
的一个对称操作,所以转动前后晶体应没有任何差别,所以电位移矢量实际上应当不变,即
第一章:晶体结构 1. 证明:立方晶体中,晶向[hkl]垂直于晶面(hkl)。
证 明 : 晶 向 [hkl] 为 h1 k2 l3 , 其 倒 格 子 为
b1
2
a1
a2
a3
(a2 a3 )
b2
2
a1
a3 a1 (a2 a3)
b3
2
a1
a1
a2
(a2 a3)
。可以知道其倒格子矢量

固体物理参考答案(前七章)

固体物理参考答案(前七章)

固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。

固体物理 第一章 晶体结构习题

固体物理 第一章 晶体结构习题

第一章晶体结构1.试述晶态、非晶态、准晶、多晶和单晶的特征性质。

解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。

非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。

准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。

另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。

2.晶格点阵与实际晶体有何区别和联系?解:晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点。

当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。

晶格点阵与实际晶体结构的关系可总结为:晶格点阵+基元=实际晶体结构3.晶体结构可分为Bravais格子和复式格子吗?解:晶体结构可以分为Bravais格子和复式格子,当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表该原子,这种晶体结构就称为简单格子或Bravais格子;当基元包含2个或2个以上的原子时,各基元中相应的原子组成与格点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。

解:(a)“面心+体心”立方不是布喇菲格子。

从“面心+体心”立方体的任一顶角上的格点看,与它最邻近的有12个格点;从面心任一点看来,与它最邻近的也是12个格点;但是从体心那点来看,与它最邻近的有6个格点,所以顶角、面心的格点与体心的格点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。

(b)“边心”立方不是布喇菲格子。

从“边心”立方体竖直边心任一点来看,与它最邻近的点子有八个;从“边心”立方体水平边心任一点来看,与它最邻近的点子也有八个。

虽然两者最邻近的点数相同,距离相等,但他们各自具有不同的排列。

固体物理学答案朱建国版完整版

固体物理学答案朱建国版完整版

固体物理学答案朱建国版3HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】固体物理学·习题指导配合《固体物理学(朱建国等编着)》使用2022年4月28日第1章晶体结构 0第2章晶体的结合 (11)第3章晶格振动和晶体的热学性质 (17)第4章晶体缺陷 (26)第5章金属电子论 (30)第1章 晶体结构1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。

从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于 多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于 面心的原子与顶角原子的距离为:R f =2a对于体心立方,处于体心的原子与顶角原子的距离为:R b那么,RfRb =31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点若ABC 面的指数为(234),情况又如何答:晶面族(123)截a 1,a 2,a 3分别为1,2,3等份,ABC 面是离原点O 最近的晶面,OA 的长度等于a 1的长度,OB 的长度等于a 2长度的1/2,OC 的长度等于a 3长度的1/3,所以只有A 点是格点。

若ABC 面的指数为(234)的晶面族,则A 、B 和C 都不是格点。

1.3 二维布拉维点阵只有5种,试列举并画图表示之。

答:二维布拉维点阵只有五种类型,两晶轴b a 、,夹角 ,如下表所示。

1 简单斜方2 简单正方3 简单六角4 简单长方5 有心长方二维布拉维点阵1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213) 答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。

固体物理课件 第一章 晶体结构

固体物理课件 第一章 晶体结构

晶面指数(122)
a
c b
(100)
(110)
(111)

在固体物理学中,为了从本质上分析固体的性质,经常要研究晶体中的 波。根据德布罗意在1924年提出的物质波的概念,任何基本粒子都可以 看成波,也就是具备波粒二象性。这是物理学中的基本概念,在固体物 理学中也是一个贯穿始终的概念。

在研究晶体结构时,必须分析x射线(电磁波)在晶体中的传播和衍射 在解释固体热性质的晶格振动理论中,原子的振动以机械波的形式在晶 体中传播;
1 3 Ω = a1 ⋅ a 2 × a 3 = a 2
(
)

金刚石
c
c
面心立方

钙钛矿 CaTiO3 (ABO3)
Ca
O
Ti
简单立方
所有的格点都分布在相互平行的一族平面 上,且每个平面上都有格点分布,这样的 平面称为晶面,该平面组称为晶面族。
特征: (1)同一晶面族中的晶面相互平行; (2)相邻晶面之间的间距相等;(面间距是
至今为止,晶体内部结构的观测还需要依靠衍射现象来进行。
(1)X射线 -由高速电子撞击物质的原子所产生的电磁波。 早在1895年伦琴发现x射线之后不久,劳厄等在1912年就意识到X射线的 波长在0.1nm量级,与晶体中的原子间距相同,晶体中的原子如果按点阵排 列,晶体必可成为X射线的天然三维衍射光栅,会发生衍射现象。在 Friedrich和Knipping的协助下,照出了硫酸铜晶体的衍射斑,并作出了正确 的理论解释。随后,1913年布拉格父子建立了X射线衍射理论,并制造了第 一台X射线摄谱仪,建立了晶体结构研究的第一个实验分析方法,先后测定 了氯化钠、氯化钾、金刚石、石英等晶体的结构。从而历史性地一举奠定 了用X射线衍射测定晶体的原子周期性长程序结构的地位。 时至今日,X射线衍射(XRD)仍为确定晶体结构,包括只具有短程序的无 定型材料结构的重要工具。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



晶向

如沿晶向方向的最短格矢为 则该晶向可记为 l1l2l3


l1a1 l2 a2 l3a3
如右图中, a1轴方向记为[1 0 0], a2轴方向记为[0 1 0], a3轴方向记为[0 0 1], a1轴和a2轴的夹角方向 记为[1 1 0];
晶向


< >表示一组由于对称性而相互等价的晶向; 如对简单立方格子,<100>表示6个相互等价的方 向,[100],[1 00],[010],[0 1 0],[001],[00 1] 其中数字1上有负号,分别表示-a1, -a2, -a3方向;
立方晶系布拉维格子
简单立方(sc)
ˆ, a2 ay ˆ , a3 az ˆ a1 ax
简单立方WS原胞

格点配位数z=6 简单立方WS原胞仍为立方体
http://www.chembio.uoguelph.ca/educmat/chm729/wscells/construction.htm http://www.chembio.uoguelph.ca/educmat/chm729/wscells/cells.htm
体心立方(bcc)
a ˆ y ˆz ˆ , a1 x 2 a ˆy ˆz ˆ , a2 x 2 a ˆ y ˆz ˆ a3 x 2
体心立方WS原胞

格点配位数z=8 简单立方WS原胞为截角八面体
体心立方WS原胞
面心立方(fcc)
a a1 y ˆ z ˆ, 2 a a a 2 x ˆ z ˆ, a 3 x ˆ y ˆ 2 2
二维和三维空间的布拉维格子
Rn n1a1 n2 a2
Rn n1a1 n2 a2 n3a3
原胞(primitive cell)

原胞是晶体中体积最小的周期性重复单元,常取 以基矢为棱边的平行六面体; 对某一晶格,尽管习惯上常取三个不共面的最短 格矢为基矢,但基矢的取法并不唯一,因此原胞 的取法也不唯一。 无论如何选取,原 胞都具有相同的体 积,每个原胞只含 有一个格点。

晶格+基元=晶体结构
晶格+基元=晶体结构
布拉维(Bravais)格子

晶格可以用布拉维格子来表示; 定义:布拉维格子是矢量
Rn n1a1 n2 a2 n3a3
全部端点的集合,其中n1, n2, n3为整数, a1, a2, a3是三个不共面的矢量,称为布拉维 格子的基矢(primitive vector),Rn称为布拉 维格子的格矢,其端点称为格点(lattice site).
晶向
晶面

布拉维格子还可以看成分布在一系列平行等距平 面族上,这些平面称为晶面。

这些相互平行、等间距的平面可以将所有的格点包 括无遗
晶面

如某一晶面族把基矢a1, a2, a3分成h1, h2, h3等份,则该晶 面族标记为(h1, h2, h3), 其中h1, h2, h3称为该晶面族的米 勒指数(Miller indices). ( h1, h2, h3 一般要化为互质数)
固体物理学
晶体结构1
晶体
固体(solid) 晶体 非晶体 准晶体 crystal noncrystal quasicrystal

其他

diamond
固体由大量的原子 (分子)堆积而成; 晶体具有规则的几何 外形,反映了其内部 原子排列的规律性。
晶体结构
晶体中的原子排列

把原子设想成小球,考查球的堆积
本课小结


晶体结构=晶格+基元 布拉维格子、基矢、格矢、格点 原胞,晶体中体积最小的周期性重复单元 维格纳-塞茨(WS)原胞及其构造方法 常见的布拉维格子及其WS原胞 晶向、晶面、米勒指数
网络学习资源



晶体结构数据库 /lattice/ 晶体结构三维显示软件CrystalMaker, etc. / 分子结构三维显示软件Rastop, etc. /rastop/
原胞
维格纳-塞茨(Wigner-Seitz)原胞

维格纳-塞茨(WS)原胞 以晶格中某一格点为中心, 作其与近邻格点连线的垂直平分面,这些平面所 围成的以该点为中点的最小体积是属于该点的WS 原胞。
维格纳-塞茨(Wigner-Seitz)原胞
维格纳-塞茨(Wigner-Seitz)原胞

维格纳-塞茨(WS)原胞的构造中不涉及对基矢的任 何特殊选择,它与相应的布拉维格子有完全相同 的对称性,也称为对称化原胞.
立方晶系布拉维格子
立方晶系布拉维格子有 (1)简单立方(simple cubic, sc) (2)体心立方(body-centered cubic, bcc) (3)面心立方(face-centered cubic, fcc)


在布拉维格子中离某一格点最近的格点,称 为该格点的最近邻(nearest neighbor); 布拉维格子中格点相互等价,每个格点具有 相同的最近邻数,称为该格子的配位数 (coordination number=12 简单立方WS原胞为菱形十二面体
面心立方WS原胞
NaCl晶体的布拉维格子?
金刚石的布拉维格子
晶向(crystal direction)

布拉维格子的格点可以看成分布在一系列相互平 行等距的直线族上,每一直线族定义一个方向, 称为晶向. 这些相互平行的直 线可以将所有的格 点包括无遗,称为 晶列(crystal array); 在一个平面内,相 邻晶列之间的距离 相等。
单胞和原胞
单胞

单胞强调了晶系归属,突出了晶格的对称性; 单胞的边长称为晶格常数(lattice parameter); 晶向、晶面和基元位置的标记,也通常以单胞为 准。
单胞中原子的坐标

单胞中原子的坐标用其在基矢轴上的投影表示,投影 通常写成轴长的分数形式. 如立方晶系单胞中心点记为(½ , ½ , ½ ),沿体对角线到 体心的一半处, 记为(1/4, 1/4, 1/4),单胞原点附近3 个面心分别记为(½ , ½ , 0), (½ , 0, ½ ), (0, ½ , ½ ).
晶面


{ }表示一组由于对称性而相互等价的晶面; 如对简单立方格子,{100}表示3个相互等价的晶 面,(100), (010), (001).
晶面
晶面

对于简单立方格子,晶向[h1, h2, h3]与晶面(h1, h2, h3)正交.
单胞(unit cell)


晶体学中,习惯用晶系的基矢a, b, c构成的 平行六面体作为周期性重复排列的基本单 元,称为单胞或惯用单胞(conventional unit cell). 原胞只含有一个格点,是体积最小的周期 性重复单元,单胞则不同,可含有一个或 者数个格点,体积是原胞的一倍或数倍。
课后任务(不需要上交)


手工画出“简单立方”,“体心立方”和 “,面心立方”布拉维格子及其WS原胞图 形。 预习“点群”、“空间群”概念,熟悉“7 个晶系”、“14个布拉维格子”。
作业(需要上交)

手工画出体心立方和面心立方晶格结构的 固体在(100), (110), (111)晶面上的原子排 列(体心立方和面心立方的晶面指数与简 单立方的晶面指数一致)。

晶体具有周期性重复的规则结构,可以看成一 个(或者一组多个)原子以某种方式在空间中 周期性重复平移的结果。
晶格
晶体结构包括两方面: (1)重复排列的单元,称为基元(basis or motif); (2)基元重复的方式,一般抽象成空间点阵,称为晶体格子 (crystal lattice),简称晶格; 基元以相同的方式,重复地放置在晶格的格点上(等价性); 基元中的原子种类,数量、位置依不同晶体而定(结构性);
相关文档
最新文档