深圳大学一阶、二阶系统的幅频特性测试实验
一、二阶系统频率特性测试与分析

【实验目的】1. 掌握测量典型一阶系统和二阶系统的频率特性曲线的方法;2. 掌握软件仿真求取一、二阶系统的开环频率特性的方法;3. 学会用Nyquist 判据判定系统的稳定性。
【实验设备与软件】1. labACT 实验台与虚拟示波器2. MATLAB 软件 【实验原理】1.系统的频率特性测试方法对于现行定常系统,当输入端加入一个正弦信号)sin()(t X t X m ωω=时,其稳态输出是一个与输入信号频率相同,但幅值和相位都不同的正弦信号)s in ()()s in ()(ψωωψω+=+=t j G X t Y s Y m m 。
幅频特性:m m X Y j G /)(=ω,即输入与输出信号的幅度比值,通常转换成)(lg 20ωj G 形式。
相频特性:)(arg )(ωωϕj G =,可以直接基于虚拟示波器读取,也可以用“李沙育图行”法得到。
可以将用Bode 图或Nyquist 图表示幅频特性和相频特。
在labACT 试验台采用的测试结构图如下:被测定稳定系统对于实验就是有源放大电路模拟的一、二阶稳定系统。
2.系统的频率测试硬件原理 1)正弦信号源的产生方法频率特性测试时,一系列不同频率输入正弦信号可以通过下图示的原理产生。
按照某种频率不断变化的数字信号输入到DAC0832,转换成模拟信号,经一级运放将其转换为模拟电压信号,再经过一个运放就可以实现双极性电压输出。
根据数模转换原理,知 R V NV 8012-= (1) 再根据反相加法器运算方法,得R R R V N V N V R R V R R V 1281282282201210--=⎪⎭⎫⎝⎛+-⨯-=⎪⎪⎭⎫ ⎝⎛+-= (2) 由表达式可以看出输出时双极性的:当N 大于128时,输出为正;反之则为负;当输入为128时,输出为0.在labACT 实验箱上使用的参考电压时5V 的,内部程序可以产生频率范围是对一阶系统是0.5 H Z ~64H Z 、对二阶系统是0.5 H Z ~16 H Z 的信号,并由B2单元的OUT2输出。
实验二典型二阶环节的参数测量

实验二典型二阶环节的参数测量第一篇:实验二典型二阶环节的参数测量实验二二阶系统的瞬态响应分析一、实验目的(1)掌握典型环节模拟电路的构成方法;(2)观察和记录二阶系统在阶跃输入作用下的输出响应,分析参数变化对典型环节动态特性的影响;二、实验仪器设备(1)TKKL-1型控制理论实验箱一台(2)YB4320B示波器一台三、实验内容二阶系统的模拟电路如下图所示。
由模拟电路可求出该电路的闭环传递函数。
U0(s)19.6=Ui(s)s2+1s+19.6RfC由此可见,改变滑动电位器电阻Rf的大小,就可以改变系统的阻尼比。
实验要求根据计算设置的阻尼比,在阶跃信号作用下,观察并记录相应的阶跃响应曲线。
四、实验预习(1)根据欲搭建的二阶系统的物理模型,验证给出的闭环传递函数是否正确。
写出二阶系统的典型表达式,搭建系统的无阻尼自然振荡频率ωn为多少?若选取Rf=100KΩ,470KΩ,阻尼比分别为多少?(2)写出欠阻尼二阶系统的单位阶跃响应的时域表达式。
五、实验报告要求(1)画出二阶系统的模拟电路。
(2)画出实验所得的阶跃响应曲线。
六、思考题(1)对于二阶系统,说明如何从欠阻尼情况阶跃响应曲线上求取动态性能指标δ%、tp及ts的方法(图示说明),分析ζ对δ%及ts 的影响。
(2)分析输入通路上有哪些典型环节,写出其传递函数表达式。
第二篇:实验二典型环节的模拟研究与二阶系统瞬态响应和稳定性自动控制理论实验实验二典型环节的模拟研究与二阶系统瞬态响应和稳定性(北京理工大学自动化学院班级:姓名:学号:)摘要:本次实验是基于电路连接的半实物半仿真。
主要内容包括:典型环节的模拟研究和二阶系统瞬态响应和稳定性分析。
关键词:比例、惯性、积分、微分、二阶系统、瞬态、稳定性一、实验目的了解和掌握各典型环节模拟电路的构成方法、传递函数表达式和输出时域函数表达式。
观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。
《自动控制原理》实验指导书-深圳大学光电工程学院

K
Ts
1
图1.4.1
uo t
0 图1.4.3a
R1 C R3 R2 R R
+ +
t
uo t
ui
R0
+ +
uo
0
PD
图 1. 4 . 2
t
图1.4.3b
4
实际 PD 环节的传递函数为:
⎤ U o ( s ) R1 + R2 ⎡ R1 R2Cs = ⎢1 + ⎥ U i (s) R0 ⎣ ( R1 + R2 )( R3Cs + 1) ⎦ (供软件仿真参考) ( R1 R2 + R2 R3 + R3 R1 )Cs + ( R1 + R2 ) = R0 R3Cs + R0
uo t
Ui s
K
1
Uo s
Ts
图1.3.1
0 图1.3.3
t
其方块图、模拟电路和阶跃响应,分别如图 1.3.1、图 1.3.2 和图 1.3.3 所示,于是 R K = 1 , T = R0C R0 实验参数取 R0=200k,R1=200k,C=1uF,R=10k。
3
R1
C R
-
R
ui
R0
+ + + +
《自动控制原理》实验指导书
深圳大学光电工程学院 2016 年 12 月
实验注意事项
1.实验前U9~U16单元内的运放需要调零。 2.运算放大器边上的锁零点G接线要正确。不需要锁零时(运放构成环节中不
含电容或输入信号为正弦波时),必须把G与-15V相连;在需要锁零时,必
须与其输入信号同步的锁零信号相连。如在采用PC产生的经D/A通道输出的信号O1作为该环节 或系统的输入时,运放的锁零信号G应连U3单元中锁零信号G1;类似地,如采用PC产生的信号 O2作输入,则锁零信号G应连U3单元中锁零信号G2。锁零主要用于对电容充电后需要放电的场 合,一般不需要锁零。 3.在设计和连接被控对象或系统的模拟电路时,要特别注意,实验台上的运放都是反相输 入的,因此对于整个系统以及反馈的正负引出点是否正确都需要仔细考虑,必要时接入反号器。 4.作频率特性实验和采样控制实验时,必须注意只用到其中1路A/D输入和1路D/A输出,具 体采用“I1~I8”中哪一个通道,决定于控制箱上的实际连线。 5.U3单元的“地”应与其他单元的“地”相连。 6.上位机软件提供线性系统软件仿真功能。在作软件仿真时,无论是一个环节、或是几个 环节组成的被控对象、或是闭环系统,在利用上位机界面作实验时,都必须将开环或闭环的传 递函数都转化成下面形式,以便填入参数ai, bj
实验二 二阶系统的模拟及频率特性测试

实验二 二阶系统的模拟及频率特性测试一、实验目的1. 学会二阶系统的模拟方法,研究系统参数n ω和ξ对阶跃响应指标的影响;2. 学习频率特性测试仪的使用方法;3. 学会系统频率特性测试方法。
二、实验设备1. 自动控制原理试验箱一台;2. 双踪示波器一台;3. 频率特性测试仪一台;4. 万用表一块。
三、实验内容及步骤1. 二阶系统的阶跃响应按图2-1接线,传递函数222()()()2nn nC s G s R s s s ωξωω==++,其中110R K R =、111T R C =、222T R C =、n ω=112n T ξω=。
取1212120.1(1010)T T T s R R K C C F μ=====Ω==,,则在00.5(10)R K ξ==Ω取时,110n Tω==,观测二阶系统的阶跃响应曲线。
2. 测试二阶系统的频率响应特性方法与步骤:(1)按图2-1先接成二阶系统,并观测阶跃响应。
接上频率特性测试仪,如图2-2 所示。
(2)先测试转折频率 1.592(10/)f H z rad s ω==时对应的幅值R 和相角ϕ。
设定频率 1.592FREQ clear EN TER →→→;设定前面板状态w aveform ~,d e l a y 0.1s ,inputrang AUTO ,int errator AUTO ,display mod e R 、ϕ,sw eep o ff 。
按sin gle 键,从显示窗读取对应 1.592f H z =的R 和ϕ的值。
(3)系统参数不变。
采用单次步进测量,记录f 由0.1Hz 到15Hz ,步长为0.5Hz的R 和ϕ的值。
设定最大频率 m ax 15.0f clear EN TER →→→;设定最小频率 m in 0.1f clear EN TER →→→;设定步长(0.5Hz )/0.5Lin F step clear EN TER →∆→→→; 设定前面板状态 sw eep Lin →∆,其他与(2)同。
一阶二阶系统的幅频特性的实验误差分析

一阶二阶系统的幅频特性的实验误差分析
一阶和二阶系统的幅频特性实验误差分析主要包括以下几方面:
1. 系统参数测量误差:实验中测量系统的参数时,由于测量仪器的精度限制和人为误差等原因,测量值与真实值之间存在一定的差异,从而导致实验结果的误差。
2. 信号源误差:实验中使用的信号源可能存在输出幅度非线性、频率偏移等问题,这些问题都会影响实验结果的准确性。
3. 传感器误差:若实验中使用的传感器存在非线性、灵敏度漂移、噪声等问题,将会对实验结果产生一定的影响。
4. 实验条件的限制:实验环境中可能存在温度变化、振动等因素,这些环境条件的变化会对仪器和设备的性能产生影响,从而引入实验误差。
5. 信号处理误差:在实验数据的采集和处理过程中,由于采样频率不足、滤波算法的选择等原因,信号采集和处理过程中可能引入一定的误差。
为减小实验误差,可以采取以下措施:
1. 选用精度高的测量仪器,并选择合适的测量方法和技术,确保测量值的准确性。
2. 对信号源进行校准,确保其输出的幅度、频率等参数满足要求。
3. 对传感器进行校准和调试,以减小传感器误差。
4. 在实验之前对实验环境进行合理的控制,确保实验条件的稳定性。
5. 在信号采集和处理过程中,根据实际需要选用合适的采样频率和滤波算法,保证数据的准确性。
需要注意的是,在进行实验时应遵守实验室安全规定,确保人身和设备的安全。
一二阶系统频率特性测试与分析

一二阶系统频率特性测试与分析一、引言二阶系统是控制系统中常见的一种类型,它的频率特性对系统的稳定性和性能具有重要影响。
频率特性测试是分析系统动态响应的重要手段之一,通过对二阶系统进行频率特性测试和分析,可以获取系统的幅频特性和相频特性,进一步了解系统的稳定性和性能指标。
本文将介绍二阶系统频率特性测试的基本原理和方法,并通过实例进行分析。
二、二阶系统频率特性测试原理二阶系统是由两个一阶系统级联组成的复合系统,其传递函数可以表示为:G(s)=K/((s+a)(s+b))其中K为系统的增益,a和b为系统的两个极点。
二阶系统的频率特性可以通过系统的幅频特性和相频特性来描述。
1.幅频特性:幅频特性反映了系统对不同频率输入信号的增益响应。
在频率特性测试中,可以通过给系统输入正弦信号,并测量系统输出信号的幅值与输入信号的幅值之比来得到系统的幅频特性。
一般情况下,可以使用频率响应仪或示波器进行测量。
2.相频特性:相频特性反映了系统对不同频率输入信号的相位响应。
在频率特性测试中,可以通过测量系统输出信号与输入信号的相位差来得到系统的相频特性。
一般情况下,可以使用频率响应仪或示波器进行测量。
三、二阶系统频率特性测试方法二阶系统的频率特性测试方法主要有两种,一种是激励法,另一种是响应法。
1.激励法:激励法是通过给系统输入不同频率的正弦信号,并测量系统的输出响应来获取系统的频率特性。
具体步骤如下:(1)设置输入信号的幅值和频率范围;(2)给系统输入不同频率的正弦信号,并记录系统的输出响应;(3)根据记录的数据,绘制系统的幅频特性曲线和相频特性曲线。
2.响应法:响应法是通过给系统输入一个周期或多个周期的脉冲信号,并测量系统的输出响应的特性来获取系统的频率特性。
具体步骤如下:(1)设置输入信号的幅值、频率和脉冲宽度;(2)给系统输入一个周期或多个周期的脉冲信号,并记录系统的输出响应;(3)根据记录的数据,绘制系统的幅频特性曲线和相频特性曲线。
一阶二阶系统对象特性

4. 分析用上述方法测试获得的数学模型有什么局限性? 1)由于是开环测得的对象特性,所以系统对象受外界的扰动比较大,系统的数 学模型精度较低; 2)需要在系统稳定后再给出阶跃信号,阶跃信号大小受系统限制,这可能导致 偏差; 3)该方法仅适用于自衡对象。 5. 利用 Matlab 的 Simulink 功能,组成一阶、二阶对象,放入实测得到的 K、T、 τ,观察其阶跃响应曲线;在这些参数基础上依次小幅改变这些参数,观察其对 象特性曲线的变化规律,并进行总结;
K
y y 0 x
对一阶对象的时间常数,可采用 0.632 法;τ可由图中直接读出。
表 2.2 二阶实验曲线参数
K 负向输入(图 2.1) 0.5 T1 167 T2 167 τ 70
负向输入(图 2.2) 正向输入(图 2.3) 正向输入(图 2.4) 平均值
1.7 0.6 0.3 0.85
178 138 130 153
178 138 130 153
50 65 50 59
以图 2.2 为例,对于二阶对象,
可以求得 t1=320,t2=450,t1/t2=0.71>0.46,取 T1=T2=(320+450)/4.32=178。 3. 对不同条件下的对象特性测试结果进行分析、讨论,给出自己的结论和实验 的收获,根据不同通道和不同对象参数下对象的特点,预计控制的效果,并给出 理由。 (1)对象特性分析: 实验中,进行了从 60%到 50%,从 50%到 40%,再从 40%到 50%,从 50%到 60% 的手动输入变化。从图 2.1,2.2,2.3,2.4 可以看出,降阶变化比较明显,而升 阶变化不为明显。可能由于我组在系统没有稳定时进行了阶跃输入,导致系统结 果变化偏大;而且我组的检测装置传出的数据普遍偏小,导致误差非常大,可能 是在设备调试安装时检测装置的参数设置不合理所致。 (2)预测跟理由: 待两水箱液位平衡后,突增(或突减)智能仪表调节阀的大小,使其输出有一个 正 (或负) 阶跃增量的变化 (即阶跃干扰, 此增量不宜过大, 以免水箱中水溢出) , 于是水箱的液位便离开原平衡状态,经过一段时间后,水箱液位进入新的平衡状 态,液位的响应过程曲线将如图 2-3 所示。因为下水箱是二阶系统,下水箱比中 水箱变化的更为缓慢,因为下水箱 K 比中水箱大,所以下水箱变化幅度更大,而 且下水箱变化受中水箱影响,下水箱变化滞后于中水箱。
信号与系统实验报告

信号与系统实验实验一 常用信号分类与观察一、实验目的1、了解单片机产生低频信号源2、观察常用信号的波形特点及产生方法。
3、学会使用示波器对常用波形参数的测量。
二、实验仪器1、20MHz 双踪示波器一台。
2、信号与系统实验箱一台。
三、实验容1、信号的种类相当的多,这里列出了几种典型的信号,便于观察。
2、这些信号可以应用到后面的“基本运算单元”和“无失真传输系统分析”中。
四、实验原理对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。
因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。
在本实验中,将对常用信号和特性进行分析、研究。
信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。
常用信号有:指数信号、正弦信号、指数衰减正弦信号、抽样信号、钟形信号、脉冲信号等。
1、正弦信号:其表达式为)sin()(θω+=t K t f ,其信号的参数:振幅K 、角频率ω、与初始相位θ。
其波形如下图所示:图 1 正弦信号2、指数信号:指数信号可表示为atKetf=)(。
对于不同的a取值,其波形表现为不同的形式,如下图所示:图 2 指数信号3、指数衰减正弦信号:其表达式为⎪⎩⎪⎨⎧><=-)0()sin()0()(ttKettfatω其波形如下图:图 3 指数衰减正弦信号4、抽样信号:其表达式为:sin()tSa tt=。
)(tSa是一个偶函数,t = ±π,±2π,…,±nπ时,函数值为零。
该函数在很多应用场合具有独特的运用。
其信号如下图所示:图4 抽样信号5、钟形信号(高斯函数):其表达式为:2()()tf t Ee-τ= , 其信号如下图所示:图 5 钟形信号6、脉冲信号:其表达式为)()()(T t u t u t f --=,其中)(t u 为单位阶跃函数。
7、方波信号:信号周期为T ,前2T 期间信号为正电平信号,后2T期间信号为负电平信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳大学实验报告
课程名称:信号与系统
实验项目名称:一阶、二阶系统的幅频特性测试实验学院:信息工程
专业:通信工程
指导教师:
报告人:学号:班级:
实验时间:
实验报告提交时间: 2015.6.23
教务部制
一、实验目的与要求:
1、学会利用基本的运算电路单元,搭建一些简单的实验系统。
2、学会测试系统的频率响应的方法。
3、了解一阶、二阶系统的阶跃响应特性。
二、实验仪器
1、信号与系统实验箱一台(主板)。
2、线性系统综合设计性模块一块。
3、20M双踪示波器一台。
三、实验原理
1、基本运算单元
(1)比例放大
1)反相数乘器
由:
2
2
1
1
R
U
R
U
-
=则有:
1
1
2
2R
U
R
U-
=
2)同相数乘器
由:
5
4
4
4
3
R
R
U
R
U
+
=则有:
4
5
4
3
4
)
(
R
R
R
U
U
+
=
(2)积分微分器
1)积分器:由:12
1
2
1
1
//
U U
R R
sC
=-则有:2
21
121
(1)
R
U U
R sR C
=-
+
2)微分器:由:34
1
1
1
U U
R
sC
=-则有:
4311
U U R C s
=-
(3)加法器
1)反向加法器
有:)
(
2
1
1
3
2R
U
R
U
R
U+
-
=
2)正向加法器
由:
⎪
⎪
⎩
⎪⎪
⎨
⎧
+
=
-
=
+
-
+
8
7
5
7
6
4
4
3
3
R
R
U
R
U
R
U
R
U
R
U
则有)
(
)
(*
4
4
3
3
7
8
7
6
5R
U
R
U
R
R
R
R
U+
+
=
2、N阶系统系统
1
011
1
1
011
1
()()()()
()()()()
n n
n n
n n
m m
m m
m m
d d d
C y t C y t C y t C y t
dt dt dt
d d d
E x t E x t E x t E x t
dt dt dt
-
-
-
-
-
-
++++=
++++
根据零状态响应(起始状态为零),则对其进行拉氏变换有:
1
011
1
011
()()()()
()()()()
n n
n n
m m
m m
C s Y s C s Y s C sY s C Y s
E s X s E s X s E sX s E X s
-
-
-
-
++++=
++++
则其传函数可表达为:
-1
01-1
-1
01-1
s s s
(s)
(s)
(s)s s s
m m
m m
n n
n n
E E E E
Y
H
X C C C C
++++
==
++++
3、作为一阶系统,一般可表达为:
01
01
()
E s E
H s
C s C
+
=
+
一阶系统是构成复杂系统的基本单元,学习一阶的特点有助于对一般系统特性的了
解。
本实验提供搭建的电路为图7-1
图7-1 一阶系统分析
其传递函数表示为:
()1H H s sT
=
+
其中 1
2
0R R H -= ,12C R T = 则系统的频响特性为:
()1H H j j T
ωω=
+
在搭建时要进行元件的参数的合理设计,实验中可以改变其参数,或者根据其传递函数,设计出其它的一阶网络系统。
4、作为二阶系统,其一般可表达为:
2012
2
012
()E s E s E H s C s C s C ++=++ 在一阶系统的基础上,它又多了一个系统极点,本实验提供搭建的电路如下图7-2:
六、数据分析
1、一阶系统的频响测试。
1)输入为方波信号的阶跃响应
2)输入为正弦信号是的幅频特性、相频特性①一阶系统相频特性
②一阶系统幅频特性
2、二阶系统的频响测试。
二阶系统相频特性
②二阶系统幅频特性
六、实验结论:
1、在一阶系统的频响测试中,其幅频特性是随着频率的增加,其输出幅度先迅速下降,缓慢下降,最后趋向于零;其相频特性是随着频率的增加,其输出信号与原信号的相位差先迅速下降,再缓慢下降,最后趋向于75度;
2、在二阶系统的频响测试中,其幅频特性是随着频率的增加,其输出幅度先从6V 缓慢下降,最后趋向于零;其相频特性是随着频率的增加,其输出信号与原信号的相位差先线性增长,再缓慢增加,最后趋向于160度;
3、一阶系统的输入信号为正弦波,其阶跃响应输出信号为正弦波;
4、二阶系统的输入信号为方波,其阶跃响应输出信号随输入信号频率不同而不同,当频率低的时候,输出信号呈方波;当输入频率高的时候,输出信号呈三角波。
注:1、报告的项目或容设置,可根据实际情况加以调整和补充。
2、教师批改学生实验报告时间应在学生提交实验报告时间后10日。