判别分析案例
判别分析实例

第7页,本讲稿共18页
结果分析
第8页,本讲稿共18页
结果
第9页,本讲稿共18页
第10页,本讲稿共18页
第11页,本讲稿共18页
第12页,本讲稿共18页
• 根据上表可以得出分类判别函数: • 完成博士学位=-394.5+11.8x性别+3.73x专业GRE成绩-3.48xGRE语
言成绩+18.86x推荐信2+17.54x推荐信3+12.35x动机水平+3.66x财 力和支持系统+2.9x被试当时的年龄+9.34X选择者进行面试后的印
第3页,本讲稿共18页
• SPSS操作程序 在因变量category的基础上预测被试对两组的从属关系。用17个自变量来
建立判别方程。 选择stepwise过程,采用使wilks'lamabda最小化的方法,加入变量的标准F值为
1.15,移除变量的标准F值为1.00;然后,选择Mean,Box'sM(多元正态性检验)和 UnivariateANOVA(检验所有自变量在各组间有无差别),以便对自变量的单变量 特征有更全面的理解,计算unstandarddized(基于判别变量原始分数建立的判别函 数的非标准化系数)Fisher's founction coefficients(规范判别函数系数)。 输出部分:选择Combined-groups plot(包括2个组别的直方图),Result for each case(所有被试的真实分组信息) 和Summary table(累计每组正确分 类和未正确分类数目及百分比)
判别分析实例
第1页,本讲稿共18页
研究目的: 使用先前博士研究生的信息来预测后来学生是否能成功完成毕业项目。
多元统计分析课件第六章-判别分析例题与操作过程可修改文字

.
(一) 操作步骤 1. 在SPSS窗口中选择Analyze→Classify→Discriminate,调 出判别分析主界面,将左边的变量列表中的“group”变量选 入分组变量中,将—变量选入自变量中,并选择Enter independents together单选按钮,即使用所有自变量进行判 别分析。
1
5
50.06 23.03 2.83 23.74 112.52 63.3
1
6
33.24 6.24 1.18 22.9 160.01 65.4
2
7
32.22 4.22 1.06 20.7 124.7 68.7
2
8
41.15 10.08 2.32 32.84 172.06 65.85
2
9
53.04 25.74 4.06 34.87 152.03 63.5
由此表可知,两个Fisher判别函数分别为:
y1 74.99 1.861X1 1.656X 2 0.877 X3 0.798X 4 0.098X 5 1.579X 6 y2 29.482 0.867X1 1.155X 2 0.356X 3 0.089X 4 0.054X 5 0.69 X 6
判别分析例题
例1:设有两个正态总体 G1 和 G2 ,已知:
(1)
ห้องสมุดไป่ตู้
10 15
(2)
20 25
18 12 1=12 32
20 7
2
=
7
5
试用距离判别法判断:样品:
X
20 20
,应归属于哪一类
判别分析例题 解:比较X到两个总体的马氏距离的大小
所以X属于正态总体 G1
例2:
判别分析案例

表示市场份额增长。
表示流动资金比例。
表示资金周转速度。
h
10
数gr据oup展示
表示类别
8个用来建立 判别标准的变量
•该数据disc.sav共有90个样本,其中30个属于上升型,30个属
于稳定性,30属于下降型。这个已知类别的数据称为一个“训
练样本”。
h
11
SPSS实现——数据读入 File → Open → Data → “Disc.sav”
h
6
逐步判别法
逐步判别法就是在前面的方法中加入变量选择功能。有时,一些变量对于判别没有什么作用,为了得到对判 别最合适的变量,可以使用逐步判别。
逐步判别的思想是先用少数变量进行判别,然后一边判别,一边引进判别能力最强的变量,同时淘汰判别能 力不强的的变量。
主要利用一些检验来判断变量的判别能力。
和它们已知的类别,找出分类标准,并对没分类的企业进行分类。
h
9
变量描述
变量名称 group
is se sa prr ms msr cp cs
涵义描述
表示类别。group-1代表上升,group-2代表稳定,group-3代表 下降。
表示企业规模。
表示服务。
表示雇员工资比例。
表示利润增长。
表示市场份额。
Prior Probabilities:设定先验概率。
All groups equal:各组等概率。
Compute from group sizesplay:输出。
Casewise result:每个观察单位判别分析后所属类别。
Limit cases to first []:前若干观察单位判别分析后所属类别。
距离判别法 Fisher判别法 Bayes判别法 逐步判别法
判别分析1_图文

图1由前面分析发现,协方差矩阵不等,可以考虑采用Separate-groups协方差矩阵。
输出结果表1-10:分類結果a被解释变量預測的群組成員資格總計Setosa 鸢尾花Versico-lor 鸢尾花Virginica 鸢尾花原始計數Setosa 鸢尾花50 0 0 50 Versico-lor 鸢尾花0 47 3 50Virginica 鸢尾花0 1 49 50 %Setosa 鸢尾花100.0 .0 .0 100.0 Versico-lor 鸢尾花.0 94.0 6.0 100.0 Virginica 鸢尾花.0 2.0 98.0 100.0a. 97.3% 個原始分組觀察值已正確地分類。
图2分類處理摘要已處理31 已排除遺漏或超出範圍群組代碼0至少一個遺漏識別變數0已在輸出中使用31群組的事前機率地区在前分析中使用的觀察值未加權加權1 .3332 2.0002 .333 2 2.0003 .333 1 1.000總計 1.000 5 5.000分類函數係數地区1 2 3人均食品支出.014 -.004 .021 人均衣着支出-.058 .024 -.092 (常數)-10.708 -3.645 -19.157 費雪 (Fisher) 線性區別函數图4 分類結果a地区預測的群組成員資格總計1 2 3原始計數 1 2 0 0 22 0 2 0 23 1 0 0 1未分組的觀察值8 18 0 26% 1 100.0 .0 .0 100.02 .0 100.0 .0 100.03 100.0 .0 .0 100.0未分組的觀察值30.8 69.2 .0 100.0a. 80.0% 個原始分組觀察值已正確地分類。
由表1-10可以看出,通过判别函数预测,有146个观测是分类正确的,其中,y=1组50个观测全部被判对,y=2组50个观测中有47个被判对,y=3组50个观测中有49个被判对,从而有97.3%的原始观测被判对。
2024版SPSS判别分析方法案例分析

01 查看判别分析的结果输出,包括判别函数系数、 结构矩阵、分类结果等。
02 根据输出结果,解读判别分析的结果,如判别函 数的贡献、分类准确率等。
03 结合专业知识和实际背景,对结果进行合理解释 和讨论。
05
案例分析:某公司客户流失预测 模型构建
案例背景及问题描述
01
某大型电信公司面临客户流失问题,需要构建客户流失
04
SPSS判别分析操作过程
导入数据并建立数据集
1
打开SPSS软件,选择“文件”->“打开”>“数据”,导入需要分析的数据文件。
2
在数据视图中检查数据的完整性和准确性,确保 数据质量。
3
根据需要,对数据进行预处理,如缺失值处理、 异常值处理等。
选择合适的判别分析方法
根据研究目的和数据特点,选择合适 的判别分析方法,如线性判别分析、 二次判别分析等。
决策树与随机森林
基于贝叶斯定理和多元正态分 布假设,通过最大化类间差异 和最小化类内差异来建立线性 判别函数。适用于正态分布且 各类别协方差矩阵相等的情况。
放宽了LDA的假设条件,允许各 类别具有不同的协方差矩阵。 通过构建二次判别函数进行分 类。适用于更一般的数据分布 情况。
基于距离度量的方法,将新样 本分配给与其最近的K个已知样 本中最多的类别。适用于多类 别、非线性可分问题。
数据变换与标准化
数据变换
根据分析需求,对数据进行适当的变换,如对数变换、平 方根变换等,以改善数据的分布形态或满足分析要求。
数据标准化
对数据进行标准化处理,消除量纲和数量级的影响,使不 同变量具有可比性。常用的标准化方法包括Z分数标准化、 最小最大标准化等。
数据离散化
判别分析例子

例1. 现有分别来自总体A 和总体B 的两组随机样本,样本量分别为5和6,样本均值分别为⎪⎪⎭⎫⎝⎛00和⎪⎪⎭⎫⎝⎛23,样本离差阵分别为⎪⎪⎭⎫⎝⎛4004和⎪⎪⎭⎫ ⎝⎛5005.2。
今欲判别一个新样本⎪⎪⎭⎫⎝⎛2.11来自哪一个总体:(1). 请使用距离判别法(采用马氏距离)对上述新样本进行判别(不假设两个总体有相同的自协方差阵)。
(2). 请采用Fisher 判别法求出判别函数,并利用此判别函数对上述新样本进行判别。
解答:(1)、先求取新样本到不同总体均值的马氏距离: 44.22.11002.114004151002.112212=+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-'⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛=-AMD64.88.022232.115005.2161232.112212=+⨯=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-'⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛=-B MD显然有22B AMD MD<,故此,应判别新样本来自总体A 。
(2) 、先求取线性判别函数: ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=-+=--9/213/600235005.24004)()(11)2()1(A BX XSSu线性判别函数为:X X u y u '⎪⎪⎭⎫⎝⎛='=9/213/6)(。
新样本的判别函数值:7282.02.119/213/6)()0(≈⎪⎪⎭⎫⎝⎛'⎪⎪⎭⎫ ⎝⎛=X u ; 总体A 的均值的判别函数值:0)(=A X u ;总体B 的均值的判别函数值:829.1239/213/6)(≈⎪⎪⎭⎫⎝⎛'⎪⎪⎭⎫⎝⎛=B X u ; 临界值:9977.00116829.1)()(≈+⨯=+++BA B B BA A A n n n X u n n n X u ;由于)()(B A X u X u <,且7282.0)()0(≈X u 小于临界值0.9977,所以应判别新样本来自总体A 。
多元统计第五章判别分析

第一节 引言
在我们的日常生活和工作实践中,常常会遇到判别分析问题。
案例一:为了研究中小企业的破产模型,选定4个经济指标:总负债率、
收益性指标、短期支付能力、生产效率性指标。对17个破产企业(1类)和21
个正常运行企业(2类)进行了调查,得关于上述四个指标的资料。现有8个 未知类型的企业的四个经济指标的数据,判断其属于破产企业一类还是正 常运行企业一类? 案例二:根据经验,今天与昨天的湿度差x1及今天的压温差x2 (气压与温度
ˆ Σ
1 A , n 1
1,2,, k
三、判别分析的实质
设R1,R2,…,Rk是p维空间R p的k个子集,如果它们互
不 相交,且它们的和集为R p,则称R1,R2, …,Rk为R p的一 个划分。
在 两 个 总 体 的 距 离 判 别 问 题 中 , 利 用
W (X) (X μ)' α 可以得到空间 R p 的一个划分 R1 {X : W ( X) 0} R2 {X : W ( X) 0}
x2
-0.41 -0.31 0.02 -0.09 -0.09 -0.07 0.01 -0.06 -0.01 -0.14 -0.3 0.02 0 -0.23 0.05 0.11 -0.08 0.03 0 0.11 -0.27
x3
1.09 1.51 1.01 1.45 1.56 0.71 1.5 1.37 1.37 1.42 0.33 1.31 2.15 1.19 1.88 1.99 1.51 1.68 1.26 1.14 1.27
Σ 的一个联合无偏估计为
n
n2 1 和 X(2) Xi(2) n2 i 1 1 ˆ Σ ( A1 A2 ) n1 n2 2
判别分析-实例-PPT

n2组数据为非购买者(B) 由已知变量X1,X2,将n1+n2=n组数据分成两大类; 购买者(A)—— X1i (A), X2i (A) (I=1,2,…,n1)
非购买者(B)—— X1 j (B), X2 j (B) (j=1,2,…,n2)
例:样本A,舒张血压为75mmHg,血浆胆固醇为150mg%, 分别代入方程后
G1=1.12364*75+0.21222*150-72.60310=43.5029
G2=0.94031*75+0.16755*150-49.34373=46.31202
由于G1小于G2,所以样本A判为正常人组(G=2)。
大家好
19
6、计算判别指标
y 1
C1
X
1
1
C2
X
1
2
C3
X
1
3
0.216928.29 0.01820 6.42 0.05604 6.00
2.251533
y 2
C1
X
2
1
C2
X
2
2
C3
X
2
3
0.21692 3.20 0.01820 3.80 0.05604 4.00
0.987464
判别指标为
大家好
35
大家好
36
大家好
37
大家好 待判样品
38
大家好
39
大家好
40
大家好
41
大家好
42
大家好
43
大家好
44
大家好
45
大家好
46
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大纲
disc.sav, disc.txt
SPSS
实现
数据 介绍
结果 分析
R语言
实现
数据介绍——disc.sav
• 数据来源:吴喜之——《统计学:从数据到 结论》。 • 数据介绍:某专家编出一套打分体系来描绘 企业的状况。该体系对每个企业的一些指标 (变量)进行评分。共有8个指标,如下页 表格所示。 • 有一些企业已经被某杂志划分为上升企业、 稳定企业和下降企业。我们希望根据这些企 业的上述变量的打分和它们已知的类别,找 出分类标准,并对没分类的企业进行分类。
Fisher’s:Fisher函数系数——Bayes判别函数系数。 Unstandardized:非标准化函数系数——Fisher判别函数系数。
SPSS实现——Statistics模块
选择Means 进行均数估计 选择ANOVAs进行 各组均值相等检验
选择Box’s M 进行各组协方 差阵相等检验
选择以样本量百 分比为先验概率 显示每个单位判别 分析后所属类别 显示判别符合率表 类别显示在 同一散点图中
以剔出某观察单位所建立的判别函数判别该观察单位所属类别
SPSS实现——Save模块
Save:存为新变量。
Predicted group membership:预测观察单位所属类别。 Discriminant scores:判别分。 Probabilities of group membership:观察单位属于某一类 的概率。
变量描述
变量名称 group is se sa prr ms msr cp cs 涵义描述 表示类别。group-1代表上升,group-2代表稳 定,group-3代表下降。 表示企业规模。 表示服务。 表示雇员工资比例。 表示利润增长。 表示市场份额。 表示市场份额增长。 表示流动资金比例。 表示资金周转速度。
结果分析——Fisher判别法
Structure Matrix Function 2 .413* .343 .400* -.007 .381* .068 -.332* -.314 .329* .219 -.217* .146 -.311 .618* -.326 .499* Pooled within-groups correlations between discriminating variables and standardized canonical discriminant functions Variables ordered by absolute size of correlation within function. *. Largest absolute correlation between each variable and any discriminant function 雇员工资比例 企业规模 服务 资金周转速度 市场份额 流动资金比例 市场份额增长 利润增长 1
标准化典型 判别函数系数
需要注意的是:这是标准化 后的判别函数,若要将变量 带入计算判别分,必须将变 量进行标准化处理(即减均 值除以标准差)。
得到2个标准化典型判别方程:
y1 = 0.415 x1 + 0.433x2 + 0.365 x3 − 0.334 x4 + 0.457 x5 − 0.355 x6 − 0.019 x7 − 0.435 x8 y2 = 0.065 x1 + 0.127 x2 + 0.426 x3 + 0.541x4 + 0.369 x5 + 0.634 x6 + 0.285 x7 − 0.193x8
90个变量100%读 入,没有缺失值
0 0 90
.0 .0 100.0
结果分析
各自变量的方差分 析及λ统计量
Tests of Equality of Group Means Wilks' Lambda .190 .205 .179 .256 .256 .271 .441 .252 F 185.828 168.241 199.700 126.415 126.148 117.063 55.040 128.913 df1 2 2 2 2 2 2 2 2 df2 87 87 87 87 87 87 87 87 Sig. .000 .000 .000 .000 .000 .000 .000 .000
Fisher判别法
• 所谓Fisher判别法,就是一种先投影的方 法,把高维空间中的点向低维空间进行投 影。 • 主要思想是通过将多维数据投影到某个合 适的方向上。而投影的原则是将总体与总 体之间尽可能的分开,然后选择合适的判 别规则,进行分类判别。
Bayes判别法
• 当每个分类的观察值不同时,最好用Bayes 判别。因为每个分类的观察值不同时,每类 出现的机会是不同的,而Fisher判别法忽视 了这个问题。 • 具体方法是:对每一个样品先计算出判别分 数D,然后根据先验概率和D的条件概率, 计算出该样品被判为每一类的后验概率,哪 类的后验概率最大,则判为哪一类。
说明拒绝协方差矩 阵相等的假设,即 不能认为各组间协 方差矩阵相等。
从一些统计实践的结 果来看,很少有碰到 检验不显著的情况。 而在一些实践中,比 如线性判别分析,即 使方差-协方差结构 不相等,对于结果的 影响也不会有非常大 的影响。
结果分析——Fisher判别法
Standardized Canonical Discriminant Function Coefficients Function 企业规模 服务 雇员工资比例 利润增长 市场份额 市场份额增长 流动资金比例 资金周转速度 1 .415 .433 .365 -.334 .457 -.355 -.019 -.435 2 .065 .127 .426 .541 .369 .634 .285 -.193
group 表示类别
数据展示
8个用来建立 判别标准的变量
•该数据disc.sav共有90个样本,其中30个属于 上升型,30个属于稳定性,30属于下降型。这 个已知类别的数据称为一个“训练样本”。
SPSS实现——数据读入
File → Open → Data → “Disc.sav”
SPSS实现——数据编辑
• • • • 距离判别法 Fisher判别法 Bayes判别法 逐步判别法
距离判别法
• 假设有两个总体G1和G2, 如果能够定义点x 到它们的距离D(x,G1)和D(x,G2), 则 ①如果D(x,G1) < D(x,G2),则 x∈G1 ②如果D(x,G2) < D(x,G1),则 x∈G2 ③如果D(x,G1) = D(x,G2),则待判。 • 距离判别法的不足之处: ① 判别方法与总体各自出现的的概率大小无 关; ② 判别方法与错判之后所造成的损失无关。
逐步判别法
• 逐步判别法就是在前面的方法中加入变量选 择功能。有时,一些变量对于判别没有什么 作用,为了得到对判别最合适的变量,可以 使用逐步判别。 • 逐步判别的思想是先用少数变量进行判别, 然后一边判别,一边引进判别能力最强的变 量,同时淘汰判别能力不强的的变量。 • 主要利用一些检验来判断变量的判别能力。
Variable View → “Group”变量Decimals:“2” → “0”; Label:添加变量名称,便于识别; “Group”变量Value:添加组别。
SPSS实现——数据分析
Analyze → Classify → Discriminant
SPSS实现——模块介绍
Grouping Variable:选入分类变量“Group”,Define Range Define 被激活。点击弹出Range对话框,分别输入分类变量最小 值和最大值,本例为“1”和“3”。 Independents:选入自变量。本例选入变量“is—cs”。 Enter independents together:所有自变量同时进入方程。 Use stepwise method:逐步判别法。按自变量贡献大小, 逐个引入和剔出变量,直到没有新的有显著作用的自变量 可以引入,也没有无显著作用的自变量可以从方程内删除 为止。选此项后,激活Method Method按钮。 Select Variable:挑选观察单位。框内选入变量后(不能选 入分类变量和自变量中已选入的变量),Value Value按钮被激 活,填入数值。自己符合该数值的的观察单位才参与判别 分析;若不选此项,则所有观察单位都参与判别分析。
公司
徽标
多元统计分析——判别分析
统计
研一
苏旸
2007100196
判别分析——把对象归到已知类中
• 人们常说: ——“像诸葛亮那么神机妙算” ——“像泰山那么稳固” ——“像钻石那么坚硬” • 一些判别标准都是有原型的,虽然这些判 别的标准并不那么精确或严格,但大都是 根据一些现有的模型得到的。
判别分析的方法
SPSS实现——选择变量的方法
判别法
SPSS实现——变量选择
group 选入分组变量 is-cs 选入自变量
选择自变量 同时进入方程 的方法
SPSS实现——Statistics模块
Descriptives:描述性统计量。
Means:均数估计。 Univariate ANOVAs:单变量方差分析。 Box’s M:组间协方差齐性检验。
企业规模 服务 雇员工资比例 利润增长 市场份额 市场份额增长 流动资金比例 资金周转速度
λ统计量在0-1之间。 越接近0组间差异越 显著;越接近1组间 差异越不显著。
说明在3类企业间, 各变量均有显著差异
结果分析
各组协方差阵 相等的检验
Test Results 207.175 Approx. 2.498 df1 72 df2 21089.679 Sig. .000 Tests null hypothesis of equal population covariance matrices. Box's M F