判别分析案例

合集下载

08聚类分析与判别分析的例题

08聚类分析与判别分析的例题

聚类分析与判别分析的例题1、某超市经销十种品牌的饮料,其中有四种畅销,三种滞销,三种平销。

下表是这十种品牌饮料的销售价格(元)和顾客对各种饮料的口味评分、信任度评分的平均数。

(1)根据数据建立贝叶斯判别函数,并根据此判别函数对原样本进行回判。

(2)现有一新品牌的饮料再该超市试销,其销售价格为3.0,顾客对其口味的评分平均分为8,信任评分为5,试预测该饮料的销售情况。

2、银行的贷款部门需要判别每个客户的信用好坏(是否未履行还贷责任),以决定是否给予贷款。

可以根据贷款申请人的年龄、受教育程度、现从事工作的年龄、未变更住址的年数、收入,负债收入比例、信用卡债务、其他债务等来判断其信用情况。

下表是某银行的客户资料中抽取的部分数据,(1)根据样本资料分别用距离判别法、贝叶斯判别法和费系尔判别法建立判别函数和判别规则。

(2)某客户的如上情况资料为(53,1,9,18,50,11,20,2.02,3.58),对其进行信用好坏的判别。

目前信用好坏客户序号已履行还贷责任1 23 1 7 2 31 6.6 0.34 1.712 34 1 173 59 8.0 1.81 2.913 42 2 7 23 41 4.6 0.94 0.944 39 1 195 48 13.1 1.93 4.365 35 1 9 1 34 5.0 0.40 1.30未履行还贷责任6 37 1 1 3 24 15.1 1.80 1.827 29 1 13 1 42 7.4 1.46 1.658 32 2 11 6 75 23.3 7.76 9.729 28 2 2 3 23 6.4 0.19 1.2910 26 1 4 3 27 10.5 2.47 0.363、从胃癌患者、萎缩性胃炎患者和非胃炎患者中分别抽取五个病人进行思想生化指标的化验:血清铜蛋白、蓝色反应、尿吲哚乙酸和中性硫化物,数据见下表。

试用距离判别法建立判别函数,并根据此判别函数对原样本进行回判。

bayes判别分析案例及结果

bayes判别分析案例及结果

例:研究某年全国各地区农民家庭收支的分布规律,根据抽样调查资料进行分类,共抽取28个省、市、自治区的六个指标数据。

先采用聚类分析,将28个省、市、自治区分为三组。

北京、上海、广州3个城市属于待判样本。

(家庭收支.sav)1.选中判别分析,2.选择Fisher 即bayes判别分析方法,易混!!!3.确定组别4. 选择保存结果5. 模型检验(即判别准确率)重要结果分类函数系数类别1 2 3食品.480 .473 .429 衣着 1.612 1.354 .933 燃料 2.421 2.189 .777 住房.555 .335 .052 用品及其它 1.032 .580 .847 文化支出 5.387 5.446 4.317(常量) -117.620 -89.052 -53.616Fisher 的线性判别式函数按照案例顺序的统计量案例数目实际组最高组第二最高组判别式得分预测组P(D>d |G=g)P(G=g| D=d)到质心的平方Mahalanobis距离组P(G=g| D=d)到质心的平方Mahalanobis距离函数1函数2 p df初始 1 1 1 .320 2 1.000 2.282 2 .000 22.754 3.163 -2.7172 1 1 .799 2 1.000 .449 2 .000 17.611 3.559 -1.6593 1 2**.095 2 .688 4.705 1 .312 6.283 2.737 1.2754 1 1 .797 2 .984 .453 2 .016 8.670 2.855 -.5695 1 1 .504 2 1.000 1.372 2 .000 20.770 4.205 -1.4616 1 1 .313 2 .996 2.321 2 .004 13.305 1.847 -2.1317 2 2 .788 2 .986 .476 1 .011 9.482 .566 .5958 2 2 .405 2 .992 1.806 1 .008 11.456 1.756 1.9139 2 2 .532 2 .987 1.263 1 .013 9.942 1.645 1.60710 2 2 .451 2 .999 1.593 1 .001 15.008 1.358 2.26911 2 2 .826 2 .984 .383 1 .015 8.758 .816 .71812 2 2 .769 2 .994 .524 1 .006 10.742 1.252 1.52313 2 2 .378 2 .861 1.945 3 .139 5.594 -.611 .53914 2 2 .219 2 .639 3.034 3 .361 4.179 -1.036 .60515 2 2 .304 2 .941 2.379 3 .059 7.903 -.943 1.59616 2 2 .935 2 .997 .134 1 .003 12.046 .874 1.48517 3 3 .387 2 .994 1.899 2 .006 12.039 -1.570 -1.44818 3 3 .801 2 1.000 .443 2 .000 19.449 -3.157 -1.07619 3 3 .413 2 .991 1.767 2 .009 11.104 -1.531 -1.30320 3 3 .570 2 .984 1.124 2 .016 9.398 -1.635 -.84721 3 3 .880 2 .997 .255 2 .003 11.791 -2.562 -.12822 3 3 .826 2 .993 .383 2 .007 10.155 -2.282 -.14023 3 3 .130 2 1.000 4.077 2 .000 29.305 -4.643 -.18324 3 3 .078 2 .995 5.095 2 .005 15.558 -3.369 1.52625 3 3 .323 2 1.000 2.260 2 .000 25.638 -3.294 -1.98926 未分组的1 .0002 1.000 20.223 2 .000 62.899 7.054 -3.27827 未分组的1 .0002 1.000 82.160 2 .000 150.236 11.796 -3.63028 未分组的1 .0052 1.000 10.431 2 .000 25.808 5.621 .759交叉验证a 1 1 1 .349 6 1.000 6.707 2 .000 27.3012 1 1 .025 6 .999 14.400 2 .001 29.4123 1 2**.087 6 1.000 11.051 1 .000 37.7404 1 1 .233 6 .900 8.064 2 .100 12.4595 1 1 .136 6 1.000 9.738 2 .000 28.7186 1 1 .182 6 .975 8.851 2 .025 16.1797 2 2 .249 6 .945 7.850 1 .043 14.0428 2 2 .734 6 .984 3.575 1 .016 11.8079 2 2 .039 6 .880 13.285 1 .120 17.26810 2 2 .078 6 .996 11.349 1 .004 22.46511 2 2 .701 6 .967 3.819 1 .031 10.68312 2 2 .461 6 .984 5.669 1 .016 13.90313 2 3**.129 6 .703 9.898 2 .297 11.62214 2 3**.444 6 .684 5.820 2 .316 7.36815 2 2 .123 6 .635 10.047 3 .365 11.15116 2 2 .000 6 .878 35.006 1 .121 38.97317 3 3 .114 6 .955 10.252 2 .044 16.40718 3 3 .925 6 1.000 1.939 2 .000 20.37119 3 3 .288 6 .959 7.373 2 .041 13.67820 3 3 .652 6 .963 4.186 2 .037 10.70721 3 3 .526 6 .991 5.139 2 .009 14.63422 3 3 .834 6 .986 2.792 2 .014 11.30223 3 3 .101 6 1.000 10.616 2 .000 39.41124 3 3 .018 6 .917 15.261 2 .083 20.05725 3 3 .268 6 1.000 7.611 2 .000 32.555对初始数据来说,平方Mahalanobis 距离基于典则函数。

判别分析例子

判别分析例子

例1. 现有分别来自总体A 和总体B 的两组随机样本,样本量分别为5和6,样本均值分别为⎪⎪⎭⎫⎝⎛00和⎪⎪⎭⎫⎝⎛23,样本离差阵分别为⎪⎪⎭⎫⎝⎛4004和⎪⎪⎭⎫ ⎝⎛5005.2。

今欲判别一个新样本⎪⎪⎭⎫⎝⎛2.11来自哪一个总体:(1). 请使用距离判别法(采用马氏距离)对上述新样本进行判别(不假设两个总体有相同的自协方差阵)。

(2). 请采用Fisher 判别法求出判别函数,并利用此判别函数对上述新样本进行判别。

解答:(1)、先求取新样本到不同总体均值的马氏距离: 44.22.11002.114004151002.112212=+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-'⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛=-AMD64.88.022232.115005.2161232.112212=+⨯=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-'⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛=-B MD显然有22B AMD MD<,故此,应判别新样本来自总体A 。

(2) 、先求取线性判别函数: ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=-+=--9/213/600235005.24004)()(11)2()1(A BX XSSu线性判别函数为:X X u y u '⎪⎪⎭⎫⎝⎛='=9/213/6)(。

新样本的判别函数值:7282.02.119/213/6)()0(≈⎪⎪⎭⎫⎝⎛'⎪⎪⎭⎫ ⎝⎛=X u ; 总体A 的均值的判别函数值:0)(=A X u ;总体B 的均值的判别函数值:829.1239/213/6)(≈⎪⎪⎭⎫⎝⎛'⎪⎪⎭⎫⎝⎛=B X u ; 临界值:9977.00116829.1)()(≈+⨯=+++BA B B BA A A n n n X u n n n X u ;由于)()(B A X u X u <,且7282.0)()0(≈X u 小于临界值0.9977,所以应判别新样本来自总体A 。

多元统计第五章判别分析

多元统计第五章判别分析
第五章 判别分析
第一节 引言
在我们的日常生活和工作实践中,常常会遇到判别分析问题。
案例一:为了研究中小企业的破产模型,选定4个经济指标:总负债率、
收益性指标、短期支付能力、生产效率性指标。对17个破产企业(1类)和21
个正常运行企业(2类)进行了调查,得关于上述四个指标的资料。现有8个 未知类型的企业的四个经济指标的数据,判断其属于破产企业一类还是正 常运行企业一类? 案例二:根据经验,今天与昨天的湿度差x1及今天的压温差x2 (气压与温度
ˆ Σ
1 A , n 1
1,2,, k
三、判别分析的实质
设R1,R2,…,Rk是p维空间R p的k个子集,如果它们互
不 相交,且它们的和集为R p,则称R1,R2, …,Rk为R p的一 个划分。
在 两 个 总 体 的 距 离 判 别 问 题 中 , 利 用
W (X) (X μ)' α 可以得到空间 R p 的一个划分 R1 {X : W ( X) 0} R2 {X : W ( X) 0}
x2
-0.41 -0.31 0.02 -0.09 -0.09 -0.07 0.01 -0.06 -0.01 -0.14 -0.3 0.02 0 -0.23 0.05 0.11 -0.08 0.03 0 0.11 -0.27
x3
1.09 1.51 1.01 1.45 1.56 0.71 1.5 1.37 1.37 1.42 0.33 1.31 2.15 1.19 1.88 1.99 1.51 1.68 1.26 1.14 1.27
Σ 的一个联合无偏估计为
n
n2 1 和 X(2) Xi(2) n2 i 1 1 ˆ Σ ( A1 A2 ) n1 n2 2

判别分析-实例-PPT

判别分析-实例-PPT
对光顾该商店的顾客进行n次观察。 设:n1组数据为购买者(A)
n2组数据为非购买者(B) 由已知变量X1,X2,将n1+n2=n组数据分成两大类; 购买者(A)—— X1i (A), X2i (A) (I=1,2,…,n1)
非购买者(B)—— X1 j (B), X2 j (B) (j=1,2,…,n2)
例:样本A,舒张血压为75mmHg,血浆胆固醇为150mg%, 分别代入方程后
G1=1.12364*75+0.21222*150-72.60310=43.5029
G2=0.94031*75+0.16755*150-49.34373=46.31202
由于G1小于G2,所以样本A判为正常人组(G=2)。
大家好
19
6、计算判别指标
y 1
C1
X
1
1
C2
X
1
2
C3
X
1
3
0.216928.29 0.01820 6.42 0.05604 6.00
2.251533
y 2
C1
X
2
1
C2
X
2
2
C3
X
2
3
0.21692 3.20 0.01820 3.80 0.05604 4.00
0.987464
判别指标为
大家好
35
大家好
36
大家好
37
大家好 待判样品
38
大家好
39
大家好
40
大家好
41
大家好
42
大家好
43
大家好
44
大家好
45
大家好
46

聚类分析及判别分析案例

聚类分析及判别分析案例

聚类分析及判别分析案例⼀、案例背景随着现代⼈⼒资源管理理论的迅速发展,绩效考评技术⽔平也在不断提⾼。

绩效的多因性、多维性,要求对绩效实施多标准⼤样本科学有效的评价。

对企业来说,对上千⼈进⾏多达50~60个标准的考核是很常见的现象。

但是,⽬前多标准⼤样本⼤型企业绩效考评问题仍然困扰着许多⼈⼒资源管理从业⼈员。

为此,有必要将当今国际上最流⾏的视窗统计软件SPSS应⽤于绩效考评之中。

在分析企业员⼯绩效⽔平时,由于员⼯绩效⽔平的指标很多,各指标之间还有⼀定的关联性,缺乏有效的⽅法进⾏⽐较。

⽬前较理想的⽅法是⾮参数统计⽅法。

本⽂将列举某企业的具体情况确定适当的考核标准,采⽤主成分分析以及聚类分析⽅法,⽐较出各员⼯绩效⽔平,从⽽为企业绩效管理提供⼀定的科学依据。

最后采⽤判别分析建⽴判别函数,同时与原分类进⾏⽐较。

聚类分析⼆、绩效考评的模型建⽴1、为了分析某企业绩效⽔平,按照综合性、可⽐性、实⽤性和易操作性的选取指标原则,本⽂选择了影响某企业绩效⽔平的成果、⾏为、态度等6个经济指标(见表1)。

2、对某企业,搜集整理了28名员⼯2009年第1季度的数据资料。

构建1个28×6维的矩阵(见表2)。

3、应⽤SPSS数据统计分析系统⾸先对变量进⾏及主成分分析,找到样本的主成分及各变量在成分中的得分。

去结果中的表3、表4、表5备⽤。

表 5成份得分系数矩阵a成份1 2Zscore(X1) .227 -.295Zscore(X2) .228 -.221Zscore(X3) .224 -.297Zscore(X4) .177 -.173Zscore(X5) .186 .572Zscore(X6) .185 .587提取⽅法 :主成份。

构成得分。

a. 系数已被标准化。

4、从表3中可得到前两个成分的特征值⼤于1,分别为3.944和1.08,所以选取两个主成分。

根据累计贡献率超过80%的⼀般选取原则,主成分1和主成分2的累计贡献率已达到了83.74%的⽔平,表明原来6个变量反映的信息可由两个主成分反映83.74%。

判别分析案例(鸢尾花)

Wilks 的 Lambda卡方df Sig.函数检验Wilks 的Lambda1 到2 .025 538.950 8 .0002 .774 37.3513 .000标准化的典型判别式函数系数函数1 2花萼长-.346 .039花萼宽-.525 .742花瓣长.846 -.386花瓣宽.613 .555-=0.613⨯⨯0.846-1+3460.525.0花萼长z花萼宽花瓣长⨯z花瓣宽zD⨯+z=0.555⨯+0.3860.742⨯20.039-⨯花萼宽花瓣长花瓣宽花萼长zzD⨯+zz结构矩阵函数1 2花瓣长.726*.165花萼宽-.121 .879*花瓣宽.651 .718*花萼长.221 .340*判别变量和标准化典型判别式函数之间的汇聚组间相关性按函数内相关性的绝对大小排序的变量。

*. 每个变量和任意判别式函数间最大的绝对相关性0.1550.196--=0.299.0花瓣宽.2526-0631zz花萼长z花萼宽⨯z花瓣长⨯D⨯+⨯+0.089-+-=0.271 978⨯2.60.0070.218z花萼长z花萼宽花瓣长花瓣宽zz⨯⨯+D⨯+区域图典则判别函数 2-16.0 -12.0 -8.0 -4.0 .0 4.0 8.0 12.0 16.0+---------+---------+---------+---------+---------+---------+---------+---------+16.0 + 13 +I 13 II 13 II 123 II 123 II 12 23 I12.0 + + + + 12 23 + + + +I 12 23 II 12 23 II 12 23 II 12 23 II 12 23 I8.0 + + + + 12 + 23 + + + +I 12 23 II 12 23 II 12 23 II 12 23 II 12 23 I4.0 + + + + 12 + 23 + + + +I 12 23 II 12 23 II 12 23 II 12 23 II 12 23 * I.0 + + + * + 12 + 23 + + +I 12 * 23 II 12 23 II 12 23 II 12 23 II 12 23 I-4.0 + + + + 12 + + 23 + + +I 12 23 II 12 23 II 12 23 II 12 23 II 12 23 I-8.0 + + + +12 + + 23 + + +I 12 23 II 12 23 II 12 23 II 12 23 II 12 23 I-12.0 + + + 12 + + 23 + +I 12 23 II 12 23 II 12 23 II 12 23 II 12 23 I-16.0 + 12 23 ++---------+---------+---------+---------+---------+---------+---------+---------+ -16.0 -12.0 -8.0 -4.0 .0 4.0 8.0 12.0 16.0典则判别函数 1区域图中使用的符号符号组标签---- -- --------------1 1 刚毛鸢尾花2 2 变色鸢尾花3 3 佛吉尼亚鸢尾花* 表示一个组质心。

判别分析案例(多元统计)

实验、判别分析
一、实验名称:判别分析
二、实验目的:通过本实验掌握使用SPSS进行判别分析
三、实验过程:
1.判断解释变量是属性变量而解释变量是度量变量。

2.判断各组的变量得协方差矩阵相等,并用很简单的公式来计算判别函数和进行显著性检验。

3. 各判别变量间具有多元正态分布,精确计算显著性检验值和分组归属的概率。

四、分析结果:
特征值
函数特征值方差的 % 累积 % 正则相关性
1 18.207a91.6 91.6 .974
2 1.460a7.
3 98.9 .770
3 .212a 1.1 100.0 .419
a. 分析中使用了前 3 个典型判别式函数。

从表显示出典型分析最终形成三个判别函数,判别函数F1的特征值为18.207,判别函数F2的特征值为1.460,判别函数F3的特征值为0.212.可见判别函数F1的判别能力大于F2和F3。

该表是非标准化的典型判别函数系数,写成函数为:
对原始数据中未进行分类的职工进行典型的判别分析。

得到结果如上图,可知职工号为26、27、28三个职工分别被判入了第三类和第四类。

数据:
表示工作产量,表示工作质量,表示工作出勤
表示工作损耗,表示工作态度,表示工作能力
五、心得体会:
通过判别,我们知道了当遇到需要识别一个个体所属类别的情况时,就能够运用自己所学的判别分析的知识,去解决这一类的问题,并能够准确的将其分类,甚至在遇到多重共线性问题,也能使用判别分析来解决。

通过此次的报告过程,我们对判别分析有了更进一步得认识,受益颇多。

第六章 bayes判别分析+ 举例


学 习 目 的
本章只介绍判别分析的几种最基本的方法: 贝 叶斯判别、距离判别及费歇判别.学习本章,要密 切联系实际, 着重理解判别分析的基本思想方法及 具体实现步骤,了解几种不同判别分析方法的优、 缺点及应用背景.
第六章
判 别 分 析
贝 贝 叶 叶 斯 斯 判 判 别 别
距 离 判 别 费 歇 判 别 费 歇 判 别
i =1
给定 R 的一个划分 R = ( R1 , R2 ,
Ri ∩ R j = φ (i ≠ j , i, j = 1,2,
, Rk ) , 即 ∪ Ri =R m ,
i =1
k
, k) , 由 R 规 定 的 判 别 准
空间 R m 的一个分划(有时也称为判别) 。即
R m = {R1 , R2 | R1 ∪ R2 = R m , R1 ∩ R2 = φ }
由 R 规定的判别准则如下: 如果 x 落在 R1 内,则判其来自总体 π 1 ; 如果 x 落在 R2 内,则判其来自总体 π 2 。 给定分划的损失函数及平均损失 设 C (1 | 2) 为样品 x 来自总体 π 2 而误判为总体 这 其 π 1 的损失, 一 误 判 的 概 率 记 为 P (1 | 2 , R ) , 中 R = ( R1 , R2 ) ; (2 | 1) 为样品 x 来自总体 π 1 而误判 C 于是有 为总体 π 2 的损失,误判的概率记为 P(2 | 1, R) 。
R m 的任一划分,即
(6-4)
* * 证明:设 R = ( R1 , R2 ) 由(6-4)给出, R * = ( R1 , R2 ) 为
* * * * R1 ∪ R2 = R m , R1 ∩ R2 = φ 。
g(R1 , R2 ) = q1C(2 | 1) P(2 | 1, R) + q2 C(1 | 2) P(1 | 2, R)

判别分析

判别分析假设有k 个总体,判别分析就是根据某个个体的观察值来推断该个体是来自这k 个总体中哪一个总体。

下面的例子说明判别分析有着广泛的应用。

(1)根据已有的气象资料,如气温、气压等判断明天是晴天还是阴天,是有雨还是无雨。

明天的天气情况是未来的行为。

因为是未来行为,难以得到它的完全信息。

已有的气象资料仅是它的一部分信息。

基于未来行为的不完全信息对未来行为进行预测是判别分析的一个应用。

(2)在非洲发现了一种头盖骨化石,考古学家要研究它究竟是像猿(如黑猩猩)还是像人。

倘若研究对象是活的,就能对他进行各方面的观察,有充足乃至完全的信息。

但研究对象早就死了,他的很多重要信息都丢失了。

考古学家只能根据不完全信息,如牙齿的长宽来进行判断。

当信息丢失后,对过去的行为进行判断是判别分析的另一个应用。

(3)有时人们难以得到完全的信息,这里有两种情况。

情况之一是信息完全只能来自破坏性试验。

例如,汽车的寿命只有在把它用坏之后才知道。

一般地,希望根据一些测量指标(如零部件的性能)就能事先对汽车的寿命作出判断。

情况之二是获得完全信息的代价太高。

例如,有些疾病可用代价昂贵的检查或通过手术得到确诊。

但人们往往更希望用便于观察得到的一些外部症状来诊断体内的疾病,以避免过大的开支和损失。

在完全信息难以得到时,对行为判断是判别分析的又一格应用。

正因为判别分析是基于不完全信息作出的判断,它就不可避免地会犯错误,一个好的判别法则错判的概率应很小。

除了错判概率,在判别分析问题中还应考虑费用,一个好的判别法则错误的损失应很小。

关于判别法则优良性的讨论从略。

判别分析问题的描述:设有k 个m 维总体k G G G ,,,21 ,其分布特征已知(如已知分布函数分别为)(,),(),(21x F x F x F k ,或知道来自各个总体的训练样本)。

对给定的一个新样品X ,我们要判断它来自哪个总体。

在进行判别归类时,由假设的前提,判别的依据及处理的手法不同,可得出不同判别方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表示市场份额增长。
表示流动资金比例。
表示资金周转速度。
h
10
数gr据oup展示
表示类别
8个用来建立 判别标准的变量
•该数据disc.sav共有90个样本,其中30个属于上升型,30个属
于稳定性,30属于下降型。这个已知类别的数据称为一个“训
练样本”。
h
11
SPSS实现——数据读入 File → Open → Data → “Disc.sav”
h
6
逐步判别法
逐步判别法就是在前面的方法中加入变量选择功能。有时,一些变量对于判别没有什么作用,为了得到对判 别最合适的变量,可以使用逐步判别。
逐步判别的思想是先用少数变量进行判别,然后一边判别,一边引进判别能力最强的变量,同时淘汰判别能 力不强的的变量。
主要利用一些检验来判断变量的判别能力。
和它们已知的类别,找出分类标准,并对没分类的企业进行分类。
h
9
变量描述
变量名称 group
is se sa prr ms msr cp cs
涵义描述
表示类别。group-1代表上升,group-2代表稳定,group-3代表 下降。
表示企业规模。
表示服务。
表示雇员工资比例。
表示利润增长。
表示市场份额。
Prior Probabilities:设定先验概率。
All groups equal:各组等概率。
Compute from group sizesplay:输出。
Casewise result:每个观察单位判别分析后所属类别。
Limit cases to first []:前若干观察单位判别分析后所属类别。
距离判别法 Fisher判别法 Bayes判别法 逐步判别法
h
3
距离判别法
假设有两个总体G1和G2, 如果能够定义点x到它们的距离D(x,G1)和D(x,G2), 则 ① 如果D(x,G1) < D(x,G2),则 x∈G1 ② 如果D(x,G2) < D(x,G1),则 x∈G2 ③ 如果D(x,G1) = D(x,G2),则待判。
距离判别法的不足之处: ① 判别方法与总体各自出现的的概率大小无关; ② 判别方法与错判之后所造成的损失无关。
h
4
Fisher判别法
所谓Fisher判别法,就是一种先投影的方法,把高维空间中的点向低维空间进行投影。
主要思想是通过将多维数据投影到某个合适的方向上。而投影的原则是将总体与总体之间尽可能的分开 ,然后选择合适的判别规则,进行分类判别。
h
5
Bayes判别法
当每个分类的观察值不同时,最好用Bayes判别。因为每个分类的观察值不同时,每类出现的机会是不同的 ,而Fisher判别法忽视了这个问题。
具体方法是:对每一个样品先计算出判别分数D,然后根据先验概率和D的条件概率,计算出该样品被判为 每一类的后验概率,哪 类的后验概率最大,则判为哪一类。
Total covariance:总协方差阵。
h
18
SPSS实现——Statistics模块
选择Means 进行均数估计
选择ANOVAs进行 各组均值相等检验
选择Box’s M 进行各组协方 差阵相等检验
生成Bayes判别方程系数和Fisher 判别方程系数。
h
19
SPSS实现——Classify模块
Univariate ANOVAs:单变量方差分析。
Box’s M:组间协方差齐性检验。
Matrices:矩阵
Within-groups correlation:合并组内相关阵。
Within-groups covariance:合并组内协方差阵。
Separate-groups covariance:各组协方差阵。
h
12
SPSS实现——数据编辑
Variable View → “Group”变量Decimals:“2” → “0”; Label:添加变量名称,便于识别; “Group”变量Value:添加组别。
h
13
SPSS实现——数据分析
Analyze → Classify → Discriminant
h
14
SPSS实现——模块介绍
Grouping Variable:选入分类变量“Group”,Define Range被激活。点击弹出 Range对话框,分别输入分类变量最小值和最大值,本例为“1”和“3”。
Independents:选入自变量。本例选入变量“is—cs”。
Enter independents together:所有自变量同时进入方程。
h
15
SPSS实现——选择变量的方法
两种变量选择方法
自变量同时 进入方程
逐步 判别法
h
16
SPSS实现——变量选择
group 选入分组变量
选择自变量 同时进入方程的方

is-cs 选入自变量
h
17
SPSS实现——Statistics模块
Descriptives:描述性统计量。
Means:均数估计。
h
7
大纲
disc.sav, disc.txt
SPSS 实现
数据 介绍
结果 分析
R语言 实现
h
8
数据介绍——disc.sav
数据来源:吴喜之——《统计学:从数据到结论》。 数据介绍:某专家编出一套打分体系来描绘企业的状况。该体系对每个企业的一些指标(变量)进行评分。
共有8个指标,如下页表格所示。 有一些企业已经被某杂志划分为上升企业、稳定企业和下降企业。我们希望根据这些企业的上述变量的打分
Use stepwise method:逐步判别法。按自变量贡献大小,逐个引入和剔出变量, 直到没有新的有显著作用的自变量可以引入,也没有无显著作用的自变量可以 从方程内删除为止。选此项后,激活Method按钮。
Select Variable:挑选观察单位。框内选入变量后(不能选入分类变量和自变量 中已选入的变量),Value按钮被激活,填入数值。自己符合该数值的的观察单 位才参与判别分析;若不选此项,则所有观察单位都参与判别分析。
多元统计分析——判别分析
统计
h
研一
苏旸
2007100196
1
判别分析——把对象归到已知类中
人们常说: ——“像诸葛亮那么神机妙算” ——“像泰山那么稳固” ——“像钻石那么坚硬”
一些判别标准都是有原型的,虽然这些判别的标准并不那么精确或严格,但大都是根据一些现有的模型 得到的。
h
2
判别分析的方法
相关文档
最新文档