spss判别分析案例详解

合集下载

判别分析(spss)

判别分析(spss)
判 别 分 析
判别
有一些昆虫的性别很难看出,只有通过 解剖才能够判别; 但是雄性和雌性昆虫在若干体表度量上 有些综合的差异。于是统计学家就根据 已知雌雄的昆虫体表度量(这些用作度 量的变量亦称为预测变量)得到一个标 准,并且利用这个标准来判别其他未知 性别的昆虫。 这样的判别虽然不能保证百分之百准确, 但至少大部分判别都是对的,而且用不 着杀死昆虫来进行判别了。
-4
-3
-2
-1
0
1
2
3
-4 -2 0 2 4 6
逐步判别法(仅仅是在前面的方 逐步判别法 仅仅是在前面的方 法中加入变量选择的功能) 法中加入变量选择的功能
有时,一些变量对于判别并没有什么作用, 为了得到对判别最合适的变量,可以使用 逐步判别。也就是,一边判别,一边引进 判别能力最强的变量, 这个过程可以有进有出。一个变量的判别 能力的判断方法有很多种,主要利用各种 检验,例如Wilks’ Lambda、Rao’s V、The Squared Mahalanobis Distance、Smallest F ratio 或 The Sum of Unexplained Variations等检验。其细节这里就不赘述了; 这些不同方法可由统计软件的各种选项来 实现。逐步判别的其他方面和前面的无异。
0.035IS+3.283SE+0.037SA-0.007PRR+0.068MS-0.023MSR-0.385CS-3.166 035IS+3 283SE+0 037SA- 007PRR+0 068MS- 023MSR- 385CSIS+ SE+ SA PRR+ MS MSR CS 005IS+ 567SE+ 041SA+ 012PRR+ 048MS+ 044MSR IS+0 SE+0 SA+0 PRR+0 MS+0 MSR- 159CS CS0.005IS+0.567SE+0.041SA+0.012PRR+0.048MS+0.044MSR-0.159CS-4.384

SPSS判别分析方法案例分析

SPSS判别分析方法案例分析

SPSS判别分析方法案例分析一、教学内容本节课的教学内容选自人教版小学数学五年级下册第五章《数据的处理》中的“SPSS判别分析方法案例分析”。

本节课的主要内容包括:1. 了解判别分析的概念和意义;2. 学习判别分析的基本步骤;3. 通过案例分析,掌握SPSS判别分析方法的操作和使用。

二、教学目标1. 了解判别分析的概念和意义,能说出判别分析的基本步骤。

2. 学会使用SPSS进行判别分析,并解释分析结果。

3. 通过对案例的分析,培养学生的数据分析能力和问题解决能力。

三、教学难点与重点重点:1. 判别分析的基本步骤;2. SPSS判别分析方法的操作和使用。

难点:1. 判别分析的数学原理;2. 对SPSS判别分析结果的理解和解释。

四、教具与学具准备教具:多媒体教学设备、黑板、粉笔学具:学生电脑、SPSS软件、案例分析资料五、教学过程1. 实践情景引入:通过一个简单的案例,让学生感受判别分析在实际生活中的应用。

2. 讲解判别分析的概念和意义,介绍判别分析的基本步骤。

3. 操作演示:使用SPSS进行判别分析,让学生跟随操作,熟悉软件的使用。

4. 案例分析:让学生分组进行案例分析,锻炼学生的数据分析能力。

5. 随堂练习:设计一些相关的练习题,让学生巩固所学知识。

6. 作业布置:布置一些相关的作业,让学生进一步巩固所学知识。

六、板书设计板书设计如下:判别分析概念:什么是判别分析?意义:为什么进行判别分析?步骤:1. 收集数据2. 选择变量3. 建立判别函数4. 进行判别5. 解释结果七、作业设计1. 请简述判别分析的概念和意义。

答案:判别分析是一种统计方法,用于根据已知的数据特征,建立判别函数,对新的数据进行分类。

2. 请列出判别分析的基本步骤。

答案:判别分析的基本步骤包括:收集数据、选择变量、建立判别函数、进行判别、解释结果。

3. 请使用SPSS进行一次判别分析,并将分析结果解释。

答案:由于此作业需要使用软件进行操作,具体的操作步骤和分析结果需要学生在电脑上进行实际操作后得出。

spss进行判别分析步骤

spss进行判别分析步骤

spss进行判别分析步骤1.Discriminant Analysis判别分析主对话框图1-1 Discriminant Analysis 主对话框(1)选择分类变量及其范围在主对话框中左面的矩形框中选择表明已知的观测量所属类别的变量(一定是离散变量),按上面的一个向右的箭头按钮,使该变量名移到右面的Grouping Variable 框中。

此时矩形框下面的Define Range 按钮加亮,按该按钮屏幕显示一个小对话框如图1-2 所示,供指定该分类变量的数值范围。

图1-2 Define Range 对话框在Minimum 框中输入该分类变量的最小值在Maximum 框中输入该分类变量的最大值。

按Continue 按钮返回主对话框。

(2)指定判别分析的自变量图1-3 展开Selection Variable 对话框的主对话框在主对话框的左面的变量表中选择表明观测量特征的变量,按下面箭头按钮。

把选中的变量移到Independents 矩形框中,作为参与判别分析的变量。

(3)选择观测量图1-4 Set Value 子对话框如果希望使用一部分观测量进行判别函数的推导而且有一个变量的某个值可以作为这些观测量的标识,则用Select 功能进行选择,操作方法是单击Select 按钮展开Selection Variable。

选择框如图1-3 所示。

并从变量列表框中选择变量移入该框中再单击Selection Variable 选择框右侧的Value按钮,展开Set Value(子对话框)对话框,如图1-4 所示,键入标识参与分析的观测量所具有的该变量值,一般均使用数据文件中的所有合法观测量此步骤可以省略。

(4)选择分析方法在主对话框中自变量矩形框下面有两个选择项,被选中的方法前面的圆圈中加有黑点。

这两个选择项是用于选择判别分析方法的Enter independent together 选项,当认为所有自变量都能对观测量特性提供丰富的信息时,使用该选择项。

【精品】多元统计分析--判别分析SPSS实验报告

【精品】多元统计分析--判别分析SPSS实验报告

【精品】多元统计分析--判别分析SPSS实验报告一、实验目的1.掌握判别分析的基本原理和应用方法;2.掌握SPSS软件进行判别分析的具体操作;3.通过一个实例,学习如何运用判别分析对指标进行判别。

二、实验内容三、实验原理1.判别分析基本原理:判别分析(Discriminant Analysis),是一种统计学中的分类技术,它是对变量进行归类的技术。

判别分析是用来确定一个对象或自变量集合属于哪一个预设类型或者组别的过程。

判别分析能够生成一个函数,将数据点映射到特定的类型上。

判别分析的应用领域非常广泛,主要应用于以下领域:(1)股票市场(预测股价的涨跌与时间、公司发展情况等因素的关系);(2)医学(区分疾病、患者状态等);(3)市场调查(确定客户类型、产品或服务喜好);(4)产业分析(区分有助于产品销售的市场决策因素);(5)经济学(预测月度或季度的经济指标)。

3.判别分析的主要应用步骤:(1)建立模型:首先选择和收集数据,将收集的数据分为训练集和测试集;(2)训练模型:使用训练数据建立模型;(3)评估模型:通过模型诊断来评估建立的模型的好坏;(4)应用模型:对新的数据建立模型并进行预测。

四、实验过程1. 上机操作:1)打开SPSS软件,加载数据文件;2)选择分类变量和连续变量;3)选择训练数据集;4)建立模型;5)预测实验数据集。

2. 操作步骤:SPSS分析的步骤如下:1)将数据输入SPSS软件,确保数据格式正确;2)选择Analyse- Classify- Discriminant;3)有两种不同的分类变量,单分类或多分类,如果你要解释一个特定的分类变量,选择单分类。

如果你不确定哪个分类变量最适合,请尝试不同的选项;4)选择两个或更个你认为与指定分类变量相关的连续变量;5)选择要用于判别分析的数据集;6)确定分类变量分类比率。

这可以在设置选项中完成;7)点击OK,开始进行分析;8)评估结果,包括汇总、判别函数、方差-方差贡献、判别矩阵;五、实验结果选取鸢尾花数据,经过训练,得到如下表所示的结果。

2024版SPSS判别分析方法案例分析

2024版SPSS判别分析方法案例分析

01 查看判别分析的结果输出,包括判别函数系数、 结构矩阵、分类结果等。
02 根据输出结果,解读判别分析的结果,如判别函 数的贡献、分类准确率等。
03 结合专业知识和实际背景,对结果进行合理解释 和讨论。
05
案例分析:某公司客户流失预测 模型构建
案例背景及问题描述
01
某大型电信公司面临客户流失问题,需要构建客户流失
04
SPSS判别分析操作过程
导入数据并建立数据集
1
打开SPSS软件,选择“文件”->“打开”>“数据”,导入需要分析的数据文件。
2
在数据视图中检查数据的完整性和准确性,确保 数据质量。
3
根据需要,对数据进行预处理,如缺失值处理、 异常值处理等。
选择合适的判别分析方法
根据研究目的和数据特点,选择合适 的判别分析方法,如线性判别分析、 二次判别分析等。
决策树与随机森林
基于贝叶斯定理和多元正态分 布假设,通过最大化类间差异 和最小化类内差异来建立线性 判别函数。适用于正态分布且 各类别协方差矩阵相等的情况。
放宽了LDA的假设条件,允许各 类别具有不同的协方差矩阵。 通过构建二次判别函数进行分 类。适用于更一般的数据分布 情况。
基于距离度量的方法,将新样 本分配给与其最近的K个已知样 本中最多的类别。适用于多类 别、非线性可分问题。
数据变换与标准化
数据变换
根据分析需求,对数据进行适当的变换,如对数变换、平 方根变换等,以改善数据的分布形态或满足分析要求。
数据标准化
对数据进行标准化处理,消除量纲和数量级的影响,使不 同变量具有可比性。常用的标准化方法包括Z分数标准化、 最小最大标准化等。
数据离散化

应用统计学:SPSS-判别分析

应用统计学:SPSS-判别分析
选择: 1. Predicted group membership 2. Descriminant Scores 3. Probabilities of group membership
4.对输出结果的认识
¾ 认真阅读输出文件,搞清楚各指标的意 义,以及判别的结果
SHale Waihona Puke SS逐步判别分析¾ 选用数据文件data14-04 ¾ 将slen,swid,plen,pwid移入
框 ¾ 将spno移入Grouping Variables框
1.选择分类参数
在主对话框中, 单击Classify按纽, 展开Classification对话框
1. Prior Probabilities---All groups equal 2. Use Covariance Matrix---Within groups 3. Plots---Combined groups,Separate groups,
¾ 在判别分析中,一个判别函数所代表的方差量 用所对应的特征值(eigenvalue)来相对表示
¾ 典型相关系数Canonical correlations
Can. Corr = Eigenvalue i 1 + Eigenvalue i
剩余判别指标 ---Wilks’ Lambda
¾ 间接地进行判别函数的显著性检验,其 值越小表示越高的判别力
组重心---group centroid
¾ 组重心是描述在判别空间中每一类的中 心位置
判别指数 (方差百分比) ---percent of variance
¾ 判别指数 (potency index)有时更直接地称为 方差百分比(percent of variance),所表示 的值越大说明分组差异越显著

判别分析的SPSS操作

判别分析的SPSS操作

在“Method”选项组中选择进行逐步判别分析的方法,可供 选择的判别分析方法有5种:
1.Wilks’lambda Wilks’lambda方法。默认选项,每步 都是Wilk的概计量最小的进入判别函数。
2.Unexplained variance 不可解释方差方法。选择该项, 表示每步都是使各类不可解释的方差和最小变量进入判别函数。
对已知类别的样品判别分类
对已知类别的样品(通常称 为训练样品)用线性判别函 数进行判别归类,结果如 下表,全部判对。
(5)对判别效果作检验
判别分析是假设两组样品取自不同总体,如果两个总体的均值向量在统计上 差异不显著,作判别分析意义就不大:所谓判别效果的检验就是检验两个正态总体 的均值向量是否相等,取检验的统计量为:
1
《人类发展报告》中公布的。该报告建议,目前对人文发展的衡量应
当以人生的三大要素为重点,衡量人生三大要素的指示分别采用出生
时的预期寿命、成人识字率和实际人均GDP,将以上三个指示指标
的数值合成为一个复合指数,即为人文发展指数。资料来源UNDP
《人类发展报告》1995年。
2 今从1995年世界各国人文发展指数的排序中,选取高发展水平、中 等发展水平的国家各五个作为两组样品,另选四个国家作为待判样品 作判别分析。
单击添加副标题
判别分析的SPSS 操作
§1. 基本原理
§2.实例分析
§1. 基本原理
判别分析的目的是得到体现分类的函数关系式,即判别 函数。基本思想是在已知观测对象的分类和特征变量值的前 提下,从中筛选出能提供较多信息的变量,并建立判别函数; 目标是使得到的判别函数在对观测量进行判别其所属类别时 的错判率最小。
Fisher’s 选择该项,表示可以用于对新样本进行判别分 类的fisher系数,对每一类给出一组系数,并给出该组中判别分数 最大的观测量。

spss教程_13-1(判别分析)

spss教程_13-1(判别分析)

具体操作 Save: 保存新变量 Predicted group membership : 建立新变量,表明预测的类成员 Discriminant score:建立新变量, 表明判别分数 Probabilities of group membership : 建立新变量.表明样品属于某一类的概率
Wilk’s λ最小法
U统计量 λ=组内平方和/总平方和,每一步都是统计量 最小的进入判别函数 容许度=1-Ri2 (Ri2为偏相关系数)
1 p F引 p 1 p
p 1
ng p g 1
p 1 1 p n g p F剔 p 1 g 1 p
判别分析
分类: 1、按判别的组数来分,有两组判别分析和多 组判别分析 2、按区分不同总体所用的数学模型来分,有 线性判别和非线性判别 3、按判别对所处理的变量方法不同有逐步判 别、序贯判别。 4、按判别准则来分,有费歇尔判别准则、贝 叶斯判别准则
判别分析
判别分析和前面的聚类分析有什么不同呢? 主要不同点就是,在聚类分析中一般人们事 先并不知道或一定要明确应该分成几类,完 全根据数据来确定。 而在判别分析中,至少有一个已经明确知道 类别的“训练样本”,利用这个数据,就可 以建立判别准则,并通过预测变量来为未知 类别的观测值进行判别了。
Casewise:逐步输出每个样品的分类结果 limit cases to:最大样品数 Summary table:分类概括表 Leave-one-out classification 剔除一个样品 后用其他样品得到的该样品的分类结果
具体操作
Plot: 输出统计图 Combined-groups:各类输出在同一张散点图中 Separate-groups:每类输出一张散点图中 Territorial mao:分类区域图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档